
SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Thanks for a great conference.

This year's Software Product Line Conference had 170 attendees from all over the world.
We published a great record of the conference in two special proceedings volumes.

Volume 1, which contains session research papers, experience reports, workshop
descriptions, tutorial descriptions, and doctoral symposium descriptions (ISBN 978-0-
9786956-2-0)

Volume 2, which contains workshop papers, doctoral symposium papers, tool demo
descriptions

Organizations Need Software Product Lines
Now More Than Ever

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/ (1 of 3) [11/4/2009 12:06:05 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/
http://www.sei.cmu.edu/splc2009/

SPLC 2009 | The 13th International Software Product Line Conference

Effectively using software product lines improves time to market, cost, productivity, and
quality. They also enable rapid market entry and flexible response. And, using software
product lines simplifies software maintenance and enhancement.

Product line approaches apply practices, processes, technology, and tools aimed at strategic,
planned reuse – reuse of technical and business artifacts throughout the life cycle. The
success of product line approaches depends on overall organizational goals in alignment
with the implementation of appropriate product line practices and technologies. This strong
interrelationship between organizational concerns and engineering practices makes working
and researching the field of software product lines as interesting as it is challenging.

If your organization develops software, you need to explore the benefits software product
lines deliver. If you already work with software product lines, you need to ensure that every
potential advantage is reached and risk mitigated.

About SPLC 2009

The Software Product Line Conference (SPLC) is the premier forum for product line
researchers, practitioners, and educators to present and discuss current and emerging trends.
SPLC provides the product line community with opportunities to hear industry leaders' real-
world experiences and researchers’ latest ideas, and to learn from both. Now in its 13th
year, SPLC 2009 was held held August 24 – 28 in San Francisco, California.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

modeling at SPLC »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:
* Paul Jensen, Overwatch, USA

http://www.sei.cmu.edu/splc2009/ (2 of 3) [11/4/2009 12:06:05 PM]

http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/ (3 of 3) [11/4/2009 12:06:05 PM]

http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Program

Monday, August 24, 2009

Workshops – 8:30 AM – 5:00 PM Contact

W1: Third International Workshop on
Dynamic Software Product Lines (DSPL)
learn more >

Mike Hinchey
Lero, the Irish Software Engineering
Research Centre, Limerick, Ireland

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/program.html (1 of 9) [11/4/2009 12:06:11 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

W2: First International Workshop on
Model-Driven Approaches in Software
Product Line Engineering (MAPLE 2009)
learn more >

Goetz Botterweck
Lero, University of Limerick, Ireland

W3: Scalable Modeling Techniques for
Software Product Lines (SCALE 2009)
learn more >

Tomoji Kishi
Waseda University, Japan

AM Tutorials – 8:30 AM – 12:00 PM

T1: Introduction to Software Product Lines
Patrick J. Donohoe, Software Engineering Institute, USA

T2: Systems and Software Product Line Engineering with the SPL Lifecycle
Framework
Charles Krueger, BigLever Software, USA

T3: Production Planning in a Software Product Line Organization
Gary Chastek & John D. McGregor, Software Engineering Institute, USA

PM Tutorials – 1:30 PM – 5:00 PM

T5: Introduction to Software Product Line Adoption
Linda M. Northrop & Lawrence G. Jones, Software Engineering Institute,
USA

T6: From Product Line Requirements to Product Line Architecture -
Optimizing Industrial Product Lines for New Competitive Advantage
Juha Savolainen, Nokia Research Center, Helsinki, Finland
Mike Mannion, Glasgow Caledonian University, Glasgow, Scotland

Tuesday, August 25, 2009

Workshops – 8:30 AM – 5:00 PM Contact

modeling at SPLC»

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John D. McGregor, Clemson
University, USA

http://www.sei.cmu.edu/splc2009/program.html (2 of 9) [11/4/2009 12:06:11 PM]

http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

W5: Service-Oriented Architectures and
Software Product Lines (SOAPL)—
Enhancing Variation
learn more >

Robert W. Krut
Software Engineering Institute, USA

W6: Consolidating Community
Consensus in Product Line Practice
learn more >

Paul Clements,
Software Engineering Institute,
USA

AM Tutorials – 8:30 AM – 12:00 PM

T4: Introducing and Optimizing Software Product Lines Using the FEF
Klaus Schmid, University of Hildesheim, Germany

T8: Evolutionary Product Line Requirements Engineering
Isabel John, Fraunhofer IESE, Germany
Karina Villela, Fraunhofer IESE, Germany

T9: Transforming Legacy Systems into Software Product Lines
Danilo Beuche, pure-systems GmbH, Germany

T10: Leveraging Model Driven Engineering in Software Product Line
Architectures
Bruce Trask, MDE Systems, Inc
Angel Roman, MDE Systems, Inc

PM Tutorials – 1:30 PM – 5:00 PM

T7: Inner Source Product Line Development
Frank van der Linden, Philips Medical Systems, The Netherlands

T11: Building Reusable Testing Assets for a Software Product Line
John D. McGregor, Software Engineering Institute, USA

T12: Pragmatic Strategies for Variability Management in Product Lines in
Small- to Medium-Size Companies
Stan Jarzabek, National University of Singapore, Singapore

T13: Using Domain-Specific Languages for Product Line Engineering
Markus Voelter, itemis AG, Germany

Industry Track:
* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed.

© 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/program.html (3 of 9) [11/4/2009 12:06:11 PM]

http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

Wednesday, August 26, 2009

9:00 AM – 9:30 AM – Introduction

9:30 AM – 10:30 AM – Keynote Address
Richard Gabriel, IBM
Science Is Not Enough: On the Creation of Software

10:30 AM – 11:00 AM – Break

11:00 AM – 12:30 PM – Parallel Session

Research Papers:
Configuration

Dealing with Fine-Grained
Configurations in Model-Driven SPLs
Hugo Arboleda, Rubby Casallas, Jean-
Claude Royer

Automated Reasoning for Multi-Step
Software Product Line Configuration
Problems
Jules White, David Benavides, Brian
Dougherty, Douglas C. Schmidt

Issues in Mapping Change-Based
Product Line Architectures to
Configuration Management Systems
Nicolás López, Rubby Casallas, André
van der Hoek

Experience Report: Industry 1

Supporting Usability in Product Line
Architectures
Pia Stoll, Len Bass, Elspeth Golden,
Bonnie E. John

Building a Comprehensive Software
Product Line Cost Model
Andrew J. Nolan

Building Automotive Product Lines
around Managed Interfaces
Walter J. Slegers

12:30 PM – 2:00 PM – Lunch

2:00 PM – 3:30 PM – Parallel Session

http://www.sei.cmu.edu/splc2009/program.html (4 of 9) [11/4/2009 12:06:11 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Research Papers:
Scoping

A Decade of Scoping - A Survey
Isabel John, Michael Eisenbarth

Inferring Information from Feature
Diagrams to Product Line Economic
Models
David Fernandez-Amoros, Ruben
Heradio-Gil, Jose Antonio Cerrada-
Somolinos

Default Values for Improved Product
Line Management
Juha Savolainen, Jan Bosch, Juha
Kuusela, Tomi Männistö

Working Session 1:

Future Directions –
The View from the Lab

Nobuaki Kozuka
Yuzo Ishida
NOMURA RESEARCH Institute, Ltd.

Ralf Carbon
Fraunhofer IESE

Linda M. Northrop
Software Engineering Institute

3:30 PM – 4:00 PM – Break

4:00 PM – 5:30 PM – Parallel Session

Research Papers:
Variability

Strategies for Variability Transformation
at Runtime
Carlos Cetina, Øystein Haugen, Xiaorui
Zhang, Franck Fleurey, Vincente
Pelechano

Modeling PLA Variation of Privacy-
Enhancing Personalized Systems
Yang Wang, Scott A. Hendrickson,
André van der Hoek, Richard N. Taylor,
Alfred Kobsa

Variability Management in Software
Product Lines: A Systematic Review
Lianping Chen, Muhammad Ali Babar,
NourAli

Tool Demos 1

A Tool to Support Usability in
Product Line Architectures
Elspeth Golden, Bonnie E. John, Len
Bass

PLUM (Product Line Unified
Modeller)
Jabier Martínez, Cristina López, Aitor
Aldazabal, Jason Mansell and Marta
del Hierro

The Fraunhofer Decision Modeler
Daniel Pech, Isabel John

7:00 PM – 10:00 PM – Reception

http://www.sei.cmu.edu/splc2009/program.html (5 of 9) [11/4/2009 12:06:11 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Thursday, August 27, 2009

9:30 AM – 10:30 AM – Keynote Address
Jacob G. Refstrup, HP
Adapting to Change: Architecture, Processes and Tools: A Closer Look at
HP's Experience in Evolving the Owen Software Product Line

10:30 AM – 11:00 AM – Break

11:00 AM – 12:30 PM – Parallel Session

Research Papers:
Experiences and Evolution

Gathering Current Knowledge About
Quality Evaluation in Software Product
Lines
Sonia Montagud, Silvia Abrãhao

Running a Software Product Line –
Standing Still Is Going Backwards
Hans Peter Jepsen, Danilo Beuche

From Software Product Lines to
Software Ecosystems
Jan Bosch

Experience Report: Industry 2

Adopting Software Product Line
Principles to Manage Software
Variants in a Complex Avionics
System
Walter Hipp, Frank Dordowsky

Experiences with Software Product
Line Engineering in Product-
Development-Oriented
Organizations
Yasuaki Takebe

Variability Management in Small
Development Organizations
Daniel Pech, Jens Knodel, Ralf
Carbon, Clemens Schitter, Dirk Hein

12:30 PM – 2:00 PM – Lunch

2:00 PM – 3:30 PM – Parallel Session

http://www.sei.cmu.edu/splc2009/program.html (6 of 9) [11/4/2009 12:06:11 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Research Papers:
Derivation

Important Issues and Key Activities in
Product Derivation: Experiences from
Two Independent Research Projects
Pádraig O'Leary, Rick Rabiser, Ita
Richardson, Steffen Thiel

Context Awareness for Dynamic
Service-Oriented Product Lines
Carols Parra, Xavier Blanc, Laurence
Duchien

Product-Line-Based Requirements
Customization for Web Service
Compositions
Hongyu Sun, Robyn R. Lutz, Samik
Basu

Working Session 2:

Future Directions –
The View from the Trenches

3:30 PM – 4:00 PM – Break

4:00 PM – 6:00 PM – Parallel Sessions

Research Papers:
Industrial Product Lines

Towards a Product Line Approach for
Office Devices Facilitating
Customization of Office Devices at
Ricoh Co. Ltd.
Ralf Carbon, Sebastian Adam, Takayuki
Uchida

Verifying Architectural Design Rules of
the Flight Software Product Line
Dharmalingam Ganesan, Mikael
Lindvall, Chris Ackermann, David
McComas, Maureen Bartholomew

An Industrial Case of Exploiting Product
Line Architectures in Agile
Software Development
Muhammad Ali Babar, Tuomas Ihme,
Minna Pikkarainen

Tool Demos 2

Modeling and Building Software
Product Lines with pure::variants
Danilo Beuche

IBM Rational: Moving Beyond
Application Lifecycle Management
to Product Line Lifecycle
Management
Marty Bakal, John Carrillo, Ken
Jackson

The BigLever Software Gears
Software Product Line Lifecycle
Framework
Charles W. Krueger

XVCL Reuse Method and XVCL
Workbench
Stan Jarzabek

http://www.sei.cmu.edu/splc2009/program.html (7 of 9) [11/4/2009 12:06:11 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Friday, August 28, 2009

9:30 AM – 10:30 AM – Keynote Address
Kyo Chul Kang, Ph. D., Pohang University of Science and
Technology (POSTECH) in Korea
FODA: Twenty Years of Perspective on
Feature Models

10:30 AM – 11:00 AM – Break

11:00 AM – 12:30 PM – Parallel Session

Research Papers:
Feature Models

On the Impact of the Optional Feature
Problem: Analysis and Case Studies
Christian Kaestner, Sven Apel, Syed Saif
ur Rahman, Marko Rosenmueller, Don
Batory, Gunter Saake

Supplier Independent Feature Modelling
Herman Hartmann, Tim Trew, Aart
Matsinger

Relating Requirements and Feature
Configurations: A Systematic Approach
Thein Than Tun, Quentin Boucher,
Andreas Classen, Arnaud Hubaux,
Patrick Heymans

GoldFish Panel:

How to Maximize Business Return
of Software Product Line
Development

12:30 PM – 2:00 PM – Lunch

2:00 PM – 3:30 PM – Parallel Session

http://www.sei.cmu.edu/splc2009/program.html (8 of 9) [11/4/2009 12:06:11 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Research Papers:
Feature Modeling

A Framework For Constructing
Semantically Composable Feature
Models from Natural Language
Requirements
Nathan Weston, Ruzanna Chitchyan,
Awais Rashid

Formal Modelling and Analysis of
Feature Configuration Workflows
Arnaud Hubaux, Andreas Classen,
Patrick Heymans

SAT-Based Analysis of Feature
Models Is Easy
Marcilio Mendonca, Andrzej Wasowski,
Krzysztof Czarnecki

Panel:

Quality Assurance in Software
Product Lines

Robyn R. Lutz
Jet Propulsion Lab, NASA
Iowa State University

Len J. Bass
Software Engineering Institute

3:30 PM – 4:00 PM – Break

5:00 PM – 6:00 PM – Ice Cream Social

4:00 PM – 5:30 PM – Hall of Fame
Chair: David Weiss

A hall of fame serves as a way to recognize distinguished members of a
community in a field of endeavor. Those elected to membership in a hall of fame
represent the highest achievement in their field, serving as models of what can
be achieved and how. Each Software Product Line Conference culminates with
a session in which members of the audience nominate systems for induction
into the Software Product Line Hall of Fame.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/splc2009/program.html (9 of 9) [11/4/2009 12:06:11 PM]

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Five Reasons Why You Can’t Afford to Miss SPLC 2009

If you attend only one software development event this year, make sure it’s the 13th
International Software Product Line Conference (SPLC 2009), August 24-28 in San
Francisco California. From an outstanding technical program and celebrated keynote
speakers who are experts in their field to high-quality tutorials, workshops, and working
sessions, you will learn best practices for software product line adoption and get a chance to
exchange knowledge with software product line practitioners from all over the world.

Here are five reasons why you can’t afford to miss SPLC 2009:

1. Get a chance to learn from Kyo Kang.
Kang—a professor at the Pohang University of Science and Technology and expert
in software reuse and product line engineering, requirements engineering, and
computer-aided software engineering—will mark the 20th anniversary of Feature-

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature
modeling at SPLC»

● Take advantage of expert-led tutorials at

http://www.sei.cmu.edu/splc2009/five_reasons.html (1 of 3) [11/4/2009 12:06:12 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

Oriented Domain Analysis (FODA) with his keynote on the technique.
2. Network in excellent company.

Organizations including Ericsson, Hitachi, Honeywell, IBM, Lockheed Martin,
Mitsubishi, Nokia, Philips, Raytheon, Rolls Royce, Siemens, and Toshiba have
attended previous SPLCs.

3. Tell your software product line story.
Through interactive tutorials, workshops, and working sessions that cover topics
across the experience spectrum, SPLC 2009 provides many opportunities to share
your experience with others and learn from their successes and failures. And by the
time you leave, you’ll be equipped with the latest software product line research to
apply to your job and share with coworkers.

4. Come to beautiful San Francisco.
San Francisco is a great location that offers some of the world’s greatest restaurants,
scenery, and cultural attractions. It offers unique landmarks such as the Golden Gate
Bridge, cable cars, Alcatraz, and the largest Chinatown in the United States. It is
home to stellar theatre, opera, symphony, and ballet companies, and its creative
chefs, abundance of fresh ingredients, and diverse cultural influences create
unforgettable dining experiences.

5. Save $200 if you register by August 9.
In addition to that early-bird savings, you can save with a special conference hotel
rate. And if you’re an SEI Member or a student, you can save even more. Register
today.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/five_reasons.html (2 of 3) [11/4/2009 12:06:12 PM]

http://www.sei.cmu.edu/membership/
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/five_reasons.html (3 of 3) [11/4/2009 12:06:12 PM]

http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Call for Participation and
Important Submission and Acceptance Information

Workshop Paper Submission Guidelines

Accepted workshop papers will be published electronically in the conference proceedings.
Papers must not exceed 10 pages in the IEEE Computer Society Conference Format for
8.5x11-inch Proceedings Manuscripts.

To submit your camera-ready accepted paper, please follow these steps:

● Visit the SPLC 2009 submission site hosted by EasyChair.org at:
http://www.easychair.org/conferences/?conf=splc2009

● Create an EasyChair account by completing the request form. A confirmation email

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/call.html (1 of 3) [11/4/2009 12:06:14 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://www.sei.cmu.edu/splc2009/EasyChair.org
http://www.easychair.org/conferences/?conf=splc2009
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

will be sent to your email address.

● Confirm your email address by clicking on the link in the email and entering your
secret word. Create your account.

● Visit http://www.easychair.org/conferences/?conf=splc2009, enter your user name
and password, and submit your proposal.

For Reference Only - All Deadlines Passed

View the call for participation in the doctoral symposium »

View the call for industry track reports »

View the call for workshop proposals »

View the call for tutorial proposals »

View the call for tool and demonstration proposals »

We are seeking contributions from diverse perspectives along two dimensions:

1. ranging from practice to research

● Practice perspectives capture the identified needs or the selected solutions relative to
a unique organizational context and its associated constraints.

● Research perspectives drive product line technologies forward by improving
practices, underlying technologies, or tool support.

2. ranging from retrospectives to visions

● Retrospectives summarize existing work or experiences and derive lessons learned
for product line researchers or practitioners.

● Visions motivate and outline work to be done in the field of software product lines
ranging from postulating product line engineering methods to pointing out open

modeling at SPLC »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

http://www.sei.cmu.edu/splc2009/call.html (2 of 3) [11/4/2009 12:06:14 PM]

http://www.easychair.org/conferences/?conf=splc2009
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

hypotheses that must be validated by the product line community

Within these two perspectives we expect the following questions to be of particular
interest to the product line community:

● How can safety (or any other quality attribute) be managed systematically in a
product line context?

● How can product lines be engineered in a complex organizational network of
original equipment manufacturers (OEMs) and suppliers including those of
commercial off-the-shelf (COTS) or open source components?

● How can a product line approach be centered on a given reference architecture in a
certain domain or market segment (e.g., AUTOSAR for the automotive industry)?

● How can agile approaches be combined with product line practices?

● How can service-oriented architecture (SOA) be combined with product line
practices?

We invite you to present your perspectives to the product line community and discuss them
at SPLC 2009. Please submit your contributions as research or experience papers, tutorials,
workshop proposals, demonstrations, or poster presentations. Additionally, we strongly
encourage young researchers to participate in the Doctoral Symposium.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

Program Chair: John McGregor, Clemson
University, USA

Industry Track:
* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed.

© 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/call.html (3 of 3) [11/4/2009 12:06:14 PM]

http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

SPLC 2009 Speakers

Richard P. Gabriel

Science is Not Enough:
On the Creation of Software

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/speakers.html (1 of 3) [11/4/2009 12:06:16 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

Richard P. Gabriel is a Distinguished Engineer at IBM Research and is looking into the
architecture, design, and implementation of extraordinarily large, self-sustaining systems.
He is the award-winning author of four books and a poetry chapbook. He lives in California.

Jacob G. Refstrup

Adapting to Change: Architecture, Processes, and Tools: A Closer Look at HP's
Experience in Evolving the Owen Software Product Line

Jacob G. Refstrup is a distinguished technologist at Hewlett-Packard's Imaging and Printing
Group. He is the lead architect for the Owen software product line architecture, which is
used across multiple inkjet product families. He has spent the last 10 years contributing to
the Owen architecture, processes, tools, and code base. He has a master's degree in software
engineering from Imperial College, London.

Kyo Chul Kang, Ph. D.

modeling at SPLC! REGISTER NOW»

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/speakers.html (2 of 3) [11/4/2009 12:06:16 PM]

http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

FODA: Twenty Years of Perspective on
Feature Models

After receiving his Ph.D. from the University of Michigan in 1982, Dr. Kang worked as a
visiting professor at the University of Michigan and as a member of the technical staff at
Bell Communications Research and AT&T Bell Laboratories. He joined the Carnegie
Mellon Software Engineering Institute as a senior member of the technical staff in 1987. He
is currently a professor at the Pohang University of Science and Technology (POSTECH)
in Korea. He served as director of the Software Engineering Center at Korea Information
Technology Promotion Agency (KIPA) from 2001 to 2003. Also, he served as general chair
for the 8th International Conference on Software Reuse (ICSR) held in Madrid, Spain in
2004 and as general chair for the 11th International Product Line Conference (SPLC 2007)
held in Kyoto, Japan in 2007.

While at the University of Michigan, he was involved in the development of PSL/PSA, a
requirements engineering tool system, and a Meta modeling technique. Since then, his
research has focused on software reuse. While on leave to KIPA, he promoted the use of the
SEI's Capability Maturity Model (CMM) in Korea. His current research areas include
software reuse and product line engineering, requirements engineering, and computer-aided
software engineering.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed.

© 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/speakers.html (3 of 3) [11/4/2009 12:06:16 PM]

http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

Travel

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Travel & Venue

Hotel Accommodations
San Francisco Airport Marriott
1800 Old Bayshore Highway
Burlingame, California 94010 USA
T: 1-650-692-9100
F: 1-650-692-8016

The San Francisco Airport Marriott is located just minutes from the San Francisco
International Airport and 15 miles from downtown San Francisco.

Reservations
$159 per night plus sales and occupancy taxes

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/travel_venue.html (1 of 3) [11/4/2009 12:06:18 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

Register online or call the hotel at 1-650-692-9100 and mention SPLC 2009.

Travel
If you plan to arrive by airplane, plan to take advantage of the hotel’s free shuttle from the
San Francisco International Airport. To get to the shuttle, go to the airport’s second floor—
the departure level—and follow the shuttle signs. (Please note that the Marriott and Hyatt
share a shuttle, so both names will appear on the vehicle.) And once you’re at the hotel,
getting to downtown San Francisco is a short and easy trip via the Bay Area Rapid Transit
(BART) system.

Registration Desk Hours

All the technical sessions will take place at the conference hotel—the San
Francisco Airport Marriott. The registration desk will be staffed during the
following hours:

Monday, August 24, 2009 7:30 AM – 5:00 PM

Tuesday, August 25, 2009 7:30 AM – 5:00 PM

Wednesday, August 26, 2009 8:00 AM – 3:00 PM

Thursday, August 27, 2009 8:00 AM – 3:30 PM

Friday, August 28, 2009 8:00 AM – 1:30 PM

Receptions
Plan to socialize with your fellow attendees at a special reception planned at the hotel from
7-10PM on Wednesday, August 26. Please join us for this kickoff event to enjoy some local
San Francisco fare and prepare for a great conference experience. We are also planning an
ice cream social from 5-6PM on Friday, August 28, to coincide with the conference’s final
event, the Product Line Hall of Fame.

Be sure to review the final program details and come ready to network with your peers and
learn about the latest software product line research and practices.

About San Francisco

modeling at SPLC »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:
http://www.sei.cmu.edu/splc2009/travel_venue.html (2 of 3) [11/4/2009 12:06:18 PM]

http://www.marriott.com/hotels/travel/SFOBG?groupCode=SEISEIA&app=resvlink&fromDate=8/22/09&toDate=8/25/09
http://www.bart.gov/index.aspx
http://www.bart.gov/index.aspx
http://www.marriott.com/hotels/travel/sfobg-san-francisco-airport-marriott/
http://www.marriott.com/hotels/travel/sfobg-san-francisco-airport-marriott/
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

San Francisco is often called "Everybody’s Favorite City," a title earned by its scenic
beauty, cultural attractions, diverse communities, and world-class cuisine. Measuring 49
square miles, this very walkable city is dotted with landmarks like the Golden Gate Bridge,
cable cars, Alcatraz, and the largest Chinatown in the United States. A stroll of the City’s
streets can lead to Union Square, the Italian-flavored North Beach, Fisherman’s Wharf, the
Castro, Japantown, and the Mission District, with intriguing neighborhoods to explore at
every turn.

The City is home to world-class theatre, opera, symphony and ballet companies and often
boasts premieres of Broadway-bound plays and culture-changing performing arts. San
Francisco is one of America’s greatest dining cities. The diverse cultural influences,
proximity of the freshest ingredients and competitive creativity of the chefs result in
unforgettable dining experiences throughout the city.

For more information about events, activities, and transportation in San Francisco, visit
www.onlyinsanfrancisco.com.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed.

© 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/travel_venue.html (3 of 3) [11/4/2009 12:06:18 PM]

http://www.onlyinsanfrancisco.com/
http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

SPLC 2009 Sponsors

Platinum Sponsors

Software Engineering Institute

Since 1984, the Carnegie Mellon® Software Engineering
Institute (SEI) has served the nation as a federally funded
research and development center. The SEI staff has advanced
software engineering principles and practices and has served as a national resource in
software engineering, computer security, and process improvement. As part of Carnegie
Mellon University, which is well known for its highly rated programs in computer science
and engineering, the SEI operates at the leading edge of technical innovation.

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/sponsors.html (1 of 6) [11/4/2009 12:06:20 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

visit the SEI website »

Hitachi

Hitachi, Ltd., headquartered in Tokyo, Japan, is a leading
global electronics company with approximately 390,000
employees worldwide. The company offers a wide range of
systems, products, and services in market sectors including
information systems, electronic devices, power and industrial systems, consumer products,
materials, logistics, and financial services.

visit hitachi’s website »

Lero

Lero is the Irish Software Engineering Research Centre. It is
a collaborative organisation, embracing the software
engineering research activities in the University of Limerick
(UL – lead partner), Dublin City University (DCU), Trinity
College Dublin (TCD) and University College Dublin (UCD). Lero focuses on specific
domains, especially those where reliability is crucial, including automotive, medical
devices, telecommunications and financial services. We develop models, methods and tools
that make it cheaper, faster or easier to produce the crucial software. Lero's researchers
carry out world class research informed by the requirements of its chosen industrial
domains. Our researchers concentrate on problem areas that have potential real-world
application and much of the research is carried out in collaboration with industry partners.

visit Lero’s website »

modeling at SPLC! REGISTER NOW»

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/sponsors.html (2 of 6) [11/4/2009 12:06:20 PM]

http://hitachi.com/
http://www.lero.ie/
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

Gold Sponsors

BigLever Software, Inc.TM

BigLever Software, Inc.TM is the industry's leading provider of
software product line engineering framework, tools and
services. BigLever's patent-pending Gears solution—recipient
of the 18th Annual Jolt Productivity Award —dramatically simplifies the creation,
evolution and maintenance of embedded or standalone software for a product line portfolio.
The Gears tool and software product line (SPL) lifecycle framework shifts the development
focus from a multitude of products to a single software production line capable of
automatically producing all of the products in a portfolio.

With Gears, software development organizations can reduce development costs and bring
new product line features and products to market faster, enabling the business to more
reliably target and hit strategic market windows.

visit BigLever’s website »

Silver Sponsors

visit IBM’s website »

Fraunhofer

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed.

© 2008 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/sponsors.html (3 of 6) [11/4/2009 12:06:20 PM]

http://www.biglever.com/
http://www.ibm.com/
http://www.fc-md.umd.edu/
http://www.fc-md.umd.edu/
http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

Fraunhofer Center for Experimental Software
Engineering Maryland (FC-MD) advances real-world software practices through innovative
research into software-engineering technologies and processes. The Center's expertise
includes topics such as software architecture, verification & validation, process
improvement and measurement.

visit Fraunhofer’s website »

pure-systems GmbH

pure-systems GmbH provides pragmatic, vendor-
independent and open-standards-based tools and
solutions to help engineers and organisations efficiently manage variants and automate
product lines. The company, based in Magdeburg, Germany, was founded in 2001. pure-
systems solutions have been deployed with customers in a variety of industries including
automotive electronics, medical devices, industry automation, aerospace and transportation,
consumer electronics and banking. pure::variants allows organisations to manage complex
and variant-rich software systems and products, enabling effective variant management for
core assets at all stages of the development process at an affordable cost. For product line
development using Model-Driven-Architecture (MDA) and Development (MDD) pure::
variants supports UML and SysML at model-element level and provides integrations with
IBM Rational Rhapsody, Sparx Enterprise Architect and MATLAB Simulink®.
Requirements Management support in pure::variants allows for requirements derivation and
extraction of variant-specific information from IBM Rational DOORS, Borland Caliber,
MKS Requirements and XML-based documents. Change, Test and Defect Management
allowing for impact analysis and decision support is supported through integrations with
popular tools like Bugzilla, JIRA and IBM Rational ClearQuest. pure-systems customers
achieve significant savings in overall product development cost and shorten their time to
market for new products.

visit pure-systems’ website »

http://www.sei.cmu.edu/splc2009/sponsors.html (4 of 6) [11/4/2009 12:06:20 PM]

http://www.pure-systems.com/

SPLC 2009 | The 13th International Software Product Line Conference

Sponsor Opportunities

For more information or to reserve your contribution opportunity now, please contact Dr.
Dirk Muthig at +49 (631) 6800 1302 or dirk.muthig@lhsystems.com.

 Platinum
US$5,000

Gold
US$3,500

Silver
US$2,000

Visibility in
Conference
Bag

two letter-sized
pages (you
provide)

one letter-sized
page (you
provide)

-

Visibility in
Conference
Program

one-page
advertisement
(you provide)
+ contributor’s
name
+ logo

contributor’s
name
+ logo

contributor’s
name

Visibility in
Conference
Proceedings

contributor’s
name
+ logo

contributor’s
name

contributor’s
name

Visibility in
Call for
Participation

contributor’s logo - -

Visibility on
SPLC 2009

contributor’s
name
+ logo

contributor’s
name
+ logo

logo

Visibility in
Email
Distributions

contributor’s
name

contributor’s
name

contributor’s
name

Opening and
Closing Session

contributor’s
name mentioned

- -

http://www.sei.cmu.edu/splc2009/sponsors.html (5 of 6) [11/4/2009 12:06:20 PM]

mailto:dirk.muthig@lhsystems.com

SPLC 2009 | The 13th International Software Product Line Conference

Banners one banner
displayed at
conference site
(you provide)

- -

Posters one poster in
main
conference room
+ four posters in
other
conference
rooms
(you provide)

one ANSI D
poster in main
conference room
(you provide)

visibility on one
poster with all
Silver Level
contributors in
main conference
room

Free
Attendance

three free
conference
registrations
(does not
include tutorials
and workshops)

two free
conference
registrations
(does not
include tutorials
and workshops)

one free
conference
registration
(does not include
tutorials and
workshops)

NOTE: The contributor must provide all authorized materials by the stipulated deadline
and adhere to any conference format requirements.

*Amounts include value-added tax (VAT).

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/splc2009/sponsors.html (6 of 6) [11/4/2009 12:06:20 PM]

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

SPLC 2009 Online Registration

● Update a previous registration »

● Print out the PDF registration form for mailing or faxing »

Registration Dates for SPLC 2009

Early-bird registration for the conference runs until August 9, 2009. To qualify for early

Registration is now open for the 13th International
Software Product Line Conference to be held in San
Francisco, CA on August 24-28, 2009. Register by
August 9 to save $200 on the conference fee.

This year’s program includes keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the

http://www.sei.cmu.edu/splc2009/register.html (1 of 4) [11/4/2009 12:06:22 PM]

Home Register Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
https://regmaster2.com/cgi-bin/SPL09/on1/RMSs.cgi
https://regmaster2.com/cgi-bin/SPL09/on1/RMSu.cgi
http://www.regmaster.com/pdf/splc2009.pdf
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

bird savings, your payment must be received by that date along with your registration form.
Pre-registration closes at 5 p.m. EST on August 19, 2009. After that, all SPLC attendees
may register onsite.

SPLC 2009 Conference Registration Fees

All fees are
in U.S.
dollars.

Through
August 9, 2009

After
August 9, 2009

 Regular SEI
Member Student Regular SEI

Member Student

SPLC
Conference
only

$700 $595 $400 $900 $765 $600

Conference
plus one
tutorial OR
one
workshop

$800 $695 $500 $1000 $865 $700

Each
tutorial

$200 $200 $100 $300 $300 $200

Each
workshop

$200 $200 $100 $300 $300 $200

Doctoral
Symposium

$200 $200 $100 $300 $300 $200

Electronically
To register electronically, simply complete the online registration form. The online
registration site works with Internet Explorer and Netscape V6 or above. If you encounter
problems registering online, please contact Mandy Mann at Registration Systems Lab by
phone +1 (407) 971-4451 or email.

Via Mail or Fax

entire program here »

Register NOW »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature
modeling at SPLC! REGISTER NOW»

● Don’t miss out on the early-bird conference
rate! REGISTER FOR SPLC NOW»

● SPLC conference rate on San Francisco
Airport Marriott held over to August 7 »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● SAVE $200 when you register by August 9! »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

http://www.sei.cmu.edu/splc2009/register.html (2 of 4) [11/4/2009 12:06:22 PM]

https://regmaster2.com/cgi-bin/SPL09/on1/RMSs.cgi
mailto:mandy.mann@regmaster.com?subject=SPLC 2009 registration question

SPLC 2009 | The 13th International Software Product Line Conference

1. Simply download or print the Adobe Acrobat PDF file containing the registration
form here »

2. Submit the completed form after filling out the form completely and specifying the
payment method and any applicable credit card information.

3. Mail or fax the form and any payment papers (such as a check or purchase order).

Mail them to:
SPLC 2009
c/o Registration Systems Lab
779 East Chapman Road
Oviedo, FL 32765 USA
Fax them to +1 (407) 366-4138

PLEASE NOTE: By registering, you grant Carnegie Mellon University and/or anyone
acting on their behalf ("Carnegie Mellon") permission to photograph, film, or otherwise
record and use your name, likeness, image, voice and comments and to publish, reproduce,
exhibit, distribute, broadcast, edit and/or digitize the resulting images and materials in
publications, advertising materials, or in any other form, and for any purpose without
compensation.

Registration Terms and Conditions

Payment Methods Note: We must receive your full payment prior to the conference, or
you will be expected to pay onsite in order to attend the conference. Acceptable methods of
payment include the following:

● Credit cards - We accept MasterCard, Visa, and American Express.

● Company or personal checks - Your check must be mailed with your registration
form. Keep in mind that to qualify for early-bird savings, we must receive your
check by August 9, 2009. Please make your check payable to SEI/CMU and be sure
to write the name of your organization on it.

● Completed purchase orders - Purchase orders are accepted only until August 19,
2009 and should be signed by the designated fiscal officer in your organization.

Cancellation Requests - Refund requests received in writing and postmarked by August 9,
2009 will be processed minus a $50 administrative fee. NO REFUNDS WILL BE GIVEN
AFTER AUGUST 9, 2009. If you do not cancel and do not attend, you will be charged the

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Become an SEI Member and Save on
Registration for SPLC 2009

You can save 15% on the already reduced early-
bird registration price for SPLC 2009 by
becoming a Member of the Software Engineering
Institute.

SEI Members save on registrations for SEI-
sponsored conferences and courses and enjoy
opportunities to connect with others in their
fields.

Not a member? Join now »

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:
* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan

http://www.sei.cmu.edu/splc2009/register.html (3 of 4) [11/4/2009 12:06:22 PM]

http://www.regmaster.com/pdf/splc2009.pdf
http://www.regmaster.com/pdf/splc2009.pdf
http://www.linkedin.com/groups?gid=1912573
http://www.sei.cmu.edu/membership/
http://www.sei.cmu.edu/membership/

SPLC 2009 | The 13th International Software Product Line Conference

full registration fee. Substitute attendees are welcome at no extra charge; however, we
request written notification prior to the conference for preparation of registration materials.
For refunds, please allow two to four weeks for processing after the conference.

If you have any problems with this registration system, please send us an email.

We look forward to seeing you at SPLC 2009.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by

the U.S. Department of Defense and operated by Carnegie Mellon University.

* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/register.html (4 of 4) [11/4/2009 12:06:22 PM]

mailto:mandy.mann@regmaster.com?subject=SPLC 2009 registration question
http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Tutorials – Monday, August 24, 2009

Morning Session

T1

Introduction to Software Product Lines
Patrick Donohoe, Software Engineering Institute, USA

Abstract:
Software product lines have emerged as a new software development paradigm of great
importance. A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a prescribed
way. Organizations developing a portfolio of products as a software product line are

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/tutorials.html (1 of 18) [11/4/2009 12:06:26 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

experiencing order-of-magnitude improvements in cost, time to market, staff productivity,
and quality of the deployed products.

This tutorial introduces the essential activities and underlying practice areas of software
product line development. It is aimed at those in an organization who are in a position to
influence the decision to adopt a product line approach and those in a position to carry out
that decision. Anyone who can act as a technology change agent will benefit from this
tutorial. The tutorial reviews the basic concepts of software product lines, discusses the
costs and benefits of product line adoption, introduces the SEI Framework for Software
Product Line Practice, and describes approaches to applying the practices of the framework.

Presenter Biography:
Patrick Donohoe is a senior member of the technical staff at the Software Engineering
Institute, working in the Research, Technology, and System Solutions Program. His current
interests are analysis modeling and production planning for software product lines. He has
participated in several SEI Product Line Technical Probes and architecture evaluations and
is also an instructor in the SEI’s Software Product Line Curriculum.

T2

Systems and Software Product Line Engineering
with the SPL Lifecycle Framework
Charles Krueger, BigLever Software, USA

Mainstream forces are driving software product line (SPL) approaches to take a more
holistic perspective that is deeply integrated into the systems and software engineering
lifecycle. These forces illustrate that SPL challenges will not be solved at any one stage in
the product engineering lifecycle, nor will they be solved in independent and disparate silos
in each of the different stages of the lifecycle. We describe a response to these forces—the
SPL Lifecycle Framework. The motivation for this technology framework is to ease the
integration of tools, assets, and processes across the full systems and software development
lifecycle.

In this tutorial, we explore how the SPL Lifecycle Framework provides all product line
engineers—including systems analysts, requirements engineers, architects, modelers,
developers, build engineers, document writers, configuration managers, test engineers,

modeling at SPLC »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/tutorials.html (2 of 18) [11/4/2009 12:06:26 PM]

http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

project managers, product marketers, and so forth—with a common set of SPL concepts
and constructs for all of their tools and assets, at every stage of the lifecycle and how to
assure that product line development traceability and processes flow cleanly from one stage
of the lifecycle to another.

The SPL Lifecycle Framework has been adopted by IBM Rational Software as the standard
SPL solution for the Rational toolset, so we will illustrate how the framework is used in
conjunction with these and other widely used industry tools that many organizations already
have in-house, as well as how to integrate homegrown tools into the framework. We will
describe observations and firsthand experiences on how the SPL Lifecycle Framework has
enabled mainstream organizations, such as Lockheed Martin, with some of the largest, most
sophisticated and complex, safety-critical systems ever built, to transition legacy and new
systems and software assets to the SPL approach.

The target audience for this tutorial is (1) practitioners from industry settings who are
interested in the most efficient, effective, and proven methods for transitioning to and
sustaining software product line practice, and (2) members of the research community who
are interested in the new methods emerging from proven industry successes. The tutorial is
suitable for all levels, ranging from SPL novices who want to learn how the SPL Lifecycle
Framework approach is an improvement over early generation SPL approaches, to
experienced SPL practitioners who want to learn about the latest advances in commercial
SPL practices.

Presenter Biography:
Charles Krueger, PhD, is the founder and CEO of BigLever Software, the leading
provider of SPL framework, tools, and services. He moderates the SoftwareProductLines.
com website and is a thought leader in the SPL field, with 20 years of experience and over
40 articles, columns, book chapters, and conference sessions to his credit. He has proven
expertise in leading commercial software product line development teams and helping
companies establish some of the industry’s most highly acclaimed SPL practices. These
companies include nominees and inductees in the SPLC Hall of Fame including Salion, LSI
Logic, and HomeAway. He received his PhD in computer science from Carnegie Mellon
University.

T3

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed.

© 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/tutorials.html (3 of 18) [11/4/2009 12:06:26 PM]

http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

Production Planning in a Software Product Line Organization
Gary Chastek & John D. McGregor, Software Engineering Institute, USA

Most software product line organizations recognize the need for two roles: core asset
developers and product builders. These roles may both be assumed by the same individual,
or each may be assumed by persons who are in different administrative units, in different
geographic locations, or of vastly different skill levels. For example, a corporation may
have one lab assigned to produce core assets and other labs around the world to use those
assets to produce products. The greater the separation among these people, the greater the
need for communication and coordination regarding product production.

Production planning is used in many industries to coordinate the efforts of external
suppliers who supply parts and to structure the assembly line where products are produced.
The need for coordination in a software product line organization is even greater than in
hard-goods manufacturing, because product production is less constrained by physical
properties or industrial standards. Our research has shown that organizations that fail to
plan production are more likely to fail than those that do plan. The goal of this tutorial is to
provide participants with techniques for conducting production planning.

We will cover the complete product line life cycle from adoption until a first generation of
products is developed. We use a business strategy development tool, Porter’s Five Forces
model, to guide strategy development. We will use the Software Process Engineering Meta-
model and an instantiation of it—the Eclipse Process Framework—for method development
and documentation. For the production plan, we will use a document template that has been
used with numerous clients.

Presenter Biographies:
Gary J. Chastek is a senior member of the technical staff at the Software Engineering
Institute, working in the Research, Technology, and System Solutions Program. He has
presented tutorials and led workshops at SPLC and OOPSLA. Chastek’s current research
interests include production planning, variability management, and the use of aspect-
oriented development in a software product line.

John D. McGregor is an associate professor of computer science at Clemson University, a
founding partner of Luminary Software, and a Visiting Scientist at the Software
Engineering Institute. He is co-author of two books on software engineering, including A
Practical Guide to Testing Object-Oriented Software Engineering. McGregor teaches

http://www.sei.cmu.edu/splc2009/tutorials.html (4 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

graduate software engineering courses and courses in the SEI's Software Product Line
Curriculum and has presented numerous tutorials at a variety of conferences. He also
consults with numerous software development organizations.

Afternoon Session

T5

Introduction to Software Product Line Adoption
Linda Northrop & Larry Jones, Software Engineering Institute, USA

Through a software product line approach, organizations have achieved significant
reductions in cost and time to market and, at the same time, increased the quality of families
of their software systems. However, to date, there are considerable barriers to
organizational adoption of product line practices. Phased adoption is attractive as a risk
reduction and fiscally viable proposition. This tutorial describes a phased, pattern-based
approach to software product line adoption. This tutorial will acquaint participants with
product line adoption barriers and two ways to overcome them:

1. a phased, pattern-based adoption approach

2. explicit linkage with other improvement efforts

The objectives of the tutorial are to acquaint participants with

● issues surrounding software product line adoption
● a phased, pattern-based adoption approach
● adoption planning artifacts
● explicit linkage of software product line adoption with other improvement efforts

The tutorial begins with a discussion of software product line adoption issues, including
benefits, barriers, risks, and the technical and organizational factors that influence adoption.
We then present the Adoption Factory pattern, a roadmap for phased product line adoption.
The tutorial covers the Adoption Factory pattern in detail. Examples of product line
adoption plans following the pattern are used to illustrate its utility. The tutorial also
describes strategies for creating synergy within an organization between product line

http://www.sei.cmu.edu/splc2009/tutorials.html (5 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

adoption and ongoing CMMI or other improvement initiatives.

Participants should have experience in designing and developing software-intensive
systems, have some familiarity with modern software engineering concepts and
management practices, and be familiar with product line concepts. The tutorial is aimed at
those in an organization who are in a position to influence the decision to adopt a product
line approach and those in a position to carry out that decision. This includes technical
managers at all levels, as well as those on the software development staff. Anyone who can
act as a technology change agent will benefit from this tutorial.

Presenter Biographies:
Linda Northrop is director of the Research, Technology, and System Solutions Program at
the Software Engineering Institute where she leads the work in architecture-centric
engineering, software product lines, systems of systems, and ultra-large-scale (ULS)
systems. She is coauthor of the book Software Product Lines: Practices and Patterns and
led the research group on ULS systems that resulted in the book, Ultra-Large-Scale
Systems: The Software Challenge of the Future. Before joining the SEI, she was associated
with both the United States Air Force Academy and the State University of New York as
professor of computer science, and with both Eastman Kodak and IBM as a software
engineer.

Lawrence G. Jones is a senior member of the technical staff at the Software Engineering
Institute, working in the Research, Technology and System Solutions Program. He has over
39 years experience in software development, management and education including service
in the U.S. Air Force. He is the former Chair of the Computer Science Department at the
Air Force Academy, current Chair of the ABET Accreditation Council, Past Chair of the
ABET Computing Accreditation Commission, a Senior Member of the IEEE and the ACM,
and Secretary/Treasurer of the Computing Sciences Accreditation Board.

T6

From Product Line Requirements to Product Line Architecture – Optimizing Industrial
Product Lines for New Competitive Advantage
Juha Savolainen, Nokia Research Center, Helsinki, Finland
Michael Mannion, Glasgow Caledonian University, Glasgow, Scotland

http://www.sei.cmu.edu/splc2009/tutorials.html (6 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Product lines have been used in Nokia for more than a decade. In the consumer products, a
commercial challenge is to offer personalization of products and services for individual
customers at a mass-production price. Product line development is a compromise between
customer requirements, existing product line architectural constraints, and commercial
needs. Managing variability is the key to a successful product line development. As a
product line evolves, selections of requirements for new products are often constrained by
the design of the existing product line architecture and the cost of making these changes.

In this tutorial, we describe how to evaluate the current state of the product line, alleviate
identified problems, and select the right techniques for managing the evolution. We discuss
techniques, experiences, and open issues about managing the transitions back and forth
between product line requirements and architectural components as products evolve. We
present a set of rules to map variability in requirements to the architecture. We describe
architectural views to design, document, and analyze variability and dependencies. We
examine the challenges of these techniques and present results of using them for real-world
applications.

Attendees should have a reasonable understanding of product line engineering and the
problems of developing medium to large computer-based systems. The audience does not
need to know about the mobile phone domain used for the case study. Sufficient
explanation will be provided to enable understanding of our key development ideas.

Presenter Biographies:
Juha Savolainen is a principal member of the research staff at Nokia Research Center,
Helsinki, Finland. He has extensive experience in working closely with the developers of
numerous product lines, helping them to manage and realize variability. He is a frequent
speaker, teaching courses on requirements engineering and software architecture. His main
research interests include requirements engineering, software architectures, and product line
development. He has published more than 25 papers.

Michael Mannion is professor of computing and pro vice-chancellor (international) at
Glasgow Caledonian University, Glasgow, Scotland, UK. He has several years of software
engineering industrial experience and is a former chairman of the British Computer Society
Special Interest Group in Software Reuse. His research interests include product line
engineering, software engineering, and engineering education. He has published more than
50 papers.

http://www.sei.cmu.edu/splc2009/tutorials.html (7 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Tutorials – Tuesday, August 25, 2009

Morning Session

T4

Introducing and Optimizing Software Product Lines Using the FEF
Klaus Schmid, University of Hildesheim, Germany

This tutorial addresses in particular the needs of people who either want to introduce
product line engineering in their organizations or want to reevaluate and assess their
product line maturity.

The tutorial first provides a general introduction to the principles and success factors of
software product line engineering (PLE). It introduces PLE as a modern form of software
reuse and describes the history and success factors that make it different from earlier work
in the area of software reuse.

According to our point of view, the basic principles of PLE are

● business orientation: Product line engineering must be embedded in a business and
strategic context.

● variability management: Enabling the management of variation is key to efficient and
effective reuse.

● architecture-driven development: E ffective reuse of implementations requires
architectural measures.

● two-lifecycle approach: An explicit distinction between development for reuse and with
reuse on the process and organization level is very important for the integrity of the
product line.

Each of these principles is described, and its relation and importance to product line
engineering is discussed.

On this basis, the Families Evaluation Framework (FEF) is described. This is a framework

http://www.sei.cmu.edu/splc2009/tutorials.html (8 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

for assessing the status of a software product line organization along four dimensions:
business, architecture, process, and organization. While the process dimension relies on an
extension of the CMMI, the other three dimensions have been developed from scratch.

The FEF is also illustrated using examples of very large and very small organizations.

Presenter Biography:
Klaus Schmid, PhD, leads the software engineering group at the University of Hildesheim.
He has worked in various product line projects; both in research projects like ESAPS, Café,
and Families and in industrial projects where he helped to introduce product line
engineering or to optimize specific practices. He has authored numerous papers in various
areas of product line engineering, as diverse as product line economics and scoping,
variability management, product line evolution, and variant generation.

T8

Evolutionary Product Line Requirements Engineering
Isabel John, Fraunhofer IESE, Germany
Karina Villela, Fraunhofer IESE, Germany

Product line engineering has a widespread use in industry now. Therefore, there is a great
need for customizable, adaptable, as well as mature methods. Scoping and product line
analysis are a unique and integral part of product line engineering. In these phases, we
determine where to reuse and what to reuse, establishing the basis for all technical,
managerial, and investment decisions in the product line to come. Furthermore, these early
phases are highly context dependent. In this tutorial, we will give an introduction on how to
analyze an environment with the purpose of planning a product line and its future evolution.
We focus on product line requirements engineering methods, comprising product line
scoping, product line analysis, and planning for evolution.

With these topics, we completely cover the early phases of product line engineering,
enabling practitioners to start with product lines on a solid basis. The intended audience is
practitioners who want to learn how to carry out these early phases successfully, as well as
researchers who want to know about an integrated approach for product line analysis and
planning for future evolution.

http://www.sei.cmu.edu/splc2009/tutorials.html (9 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

1. Introduction
- overview on product line scoping, analysis, and modeling in an architecture-
centric product line approach
- importance of a thoroughly planned product line as a key factor for successful
product line engineering and evolution
- key principles of product line requirements engineering

2. Scoping
- introduction to the PuLSE-Eco approach for scoping, which includes an overview
on the activities and key principles of scoping
- explanation on how to build up key artifacts (e.g., a product–feature matrix)

3. Product Line Analysis
- introduction to the PuLSE-CDA approach for product line analysis, which adds
product line specifics to existing requirements engineering approaches and notations
- overview of other approaches for product line analysis, such as FAST and FODA

4. Product Line Evolution
- overview of a model of software evolution that defines key concepts for
systematic reasoning on product line requirements volatility
- introduction to PLEvo-Scoping, a method based on such concepts, encompassing
its activities and a complete example of its usage
- integration with existing scoping approaches

This tutorial is based on our experience with product line engineering in many industrial
projects. It crystallizes the essence of the experience gained in those industrial projects and
combines it with our latest research in the area of evolution in product line requirements.

Presenter Biographies:
Isabel John is a researcher and project leader at Fraunhofer IESE. She works in several
research and industrial projects in the context of software product lines, scoping, and
requirements engineering. Her work focuses on product line analysis and scoping. She has
given several presentations and tutorials on product line engineering at software
engineering conferences and in industrial contexts. She received her Diploma degree in
Computer Science from the Technical University of Kaiserslautern.

Karina Villela has recently become a researcher at Fraunhofer IESE. As part of her

http://www.sei.cmu.edu/splc2009/tutorials.html (10 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Alexander von Humboldt Fellowship at this institute, she defined a method for proactively
managing the evolving scope of a product line, which was applied in different application
domains. Since then, she has been working on product line requirements engineering with
the goal of improving the ability of product lines to evolve over time. She received her M.
Sc. and PhD degrees in computer science from the Federal University of Rio de Janeiro, in
Brazil.

T9

Transforming Legacy Systems into Software Product Lines
Danilo Beuche, pure-systems GmbH, Germany

Not every software product line starts from scratch. Often, an organization faces the
problem that after a while its software system is deployed in several variants and the need
arises to migrate to systematic variability and variant management using a software product
line approach.

The tutorial will discuss issues coming up during this migration process mainly on the
technical level but will also discuss some of the organisational questions. The goal of the
tutorial is to give attendees an initial idea how a transition into a software product line
development process could be done with respect to the technical transition.

The tutorial starts with a brief introduction to software product line concepts, discussing
terms such as problem and solution space, feature models, and versions vs. variants.

Further tutorial topics will be how to choose adequate problem space modelling and the
mining of problem space variability from existing artefacts such as requirements documents
and software architecture. Also, part of the discussion will be on the need for separation of
problem space from solution space and ways to realize it. A substantial part will be
dedicated to variability detection and refactoring in the solution space of legacy systems.

Presenter Biography:
Danilo Beuche, PhD, is CEO of the pure-systems GmbH. Pure-systems is a software
company specialized in services and tool development for the application of product line
technologies in embedded software systems. In 1995, he started to work in the field of
embedded operating systems and software families and received his PhD in this area. His

http://www.sei.cmu.edu/splc2009/tutorials.html (11 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

work on tool support for feature-based software development finally led to the founding of
pure-systems in 2001. At pure-systems, he also works as consultant in the area of product
line development, mainly for clients from the automotive industry. He has been tutorial
presenter, speaker, workshop organizer, and panelist at conferences such as AOSD, ISORC,
SPLC, and OOPSLA. In addition, he is the author of articles in scientific journals and
software developer magazines.

T10

Leveraging Model Driven Engineering in Software Product Line Architectures
Bruce Trask, MDE Systems, Inc
Angel Roman, MDE Systems, Inc

Model driven engineering (MDE) is a recent innovation in the software industry that has
proven to work synergistically with software product line architectures (SPLAs). MDE can
provide the tools necessary to fully harness the power of software product lines. The major
players in the software industry—including commercial companies such as IBM and
Microsoft, standards bodies such as the Object Management Group, and leading
Universities such as the ISIS group at Vanderbilt University—are embracing this MDE/
PLA combination fully. IBM is spearheading the Eclipse Foundation, including its MDE
tools like EMF, GEF, and GMF. Microsoft has launched its Software Factories foray into
the MDE space with its Domain Specific Language Toolkit. Top software groups such as
the ISIS group at Vanderbilt are using these MDE techniques in combination with SPLAs
for very complex systems. The Object Management Group is working on standardizing the
various facets of MDE. All of these groups are capitalizing on the perfect storm of critical
innovations today that allows such an approach to finally be viable. Further emphasizing
the timeliness of this technology is the complexity ceiling the software industry finds itself
facing, wherein the platform technologies have increased far in advance of the language
tools necessary to deal with them.

The process of d SPLAs can be a complex task. However, the use of MDE techniques can
facilitate their development by introducing domain-specific languages, domain-specific
graphical editors, and domain-specific generators. Together, these are considered the sacred
triad of MDE. Key to understanding MDE and how it fits into SPLAs is to know exactly
what each part of the trinity means, how it relates to the other parts, and what the various
implementations are for each. This tutorial will walk through the development of an entire

http://www.sei.cmu.edu/splc2009/tutorials.html (12 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

MDE tool as applied to a particular software product line of mobile applications (e.g., for
the new Google Android phone platform).

The goal of this tutorial is to educate attendees on what MDE technologies are, exactly how
they relate synergistically to SPLAs, and how to actually apply them using an existing
Eclipse implementation.

The benefits of the technology are so far reaching that the intended audience spans
technical managers, developers, and CTOs. In general, the target audience includes
researchers and practitioners who are working on problems related to the design and
implementation of SPLAs and would like to understand the benefits of applying MDE
techniques towards SPLAs.

Presenter Biographies:
Bruce Trask has been working on complex distributed real-time embedded systems for
over 20 years, specializing in software product lines and MDE as applied to these systems
in the last 7 years. He has been teaching C++, object orientation, design patterns, UML,
CORBA, and framework courses for over 10 years. He has led multiple study groups in the
New York/New Jersey/Connecticut area on various topics ranging from design patterns to
middleware. He is a regular speaker/presenter at software industry conferences and has
delivered tutorials at the OMG. Bruce Trask is the CEO of MDE Systems.

Angel Roman is the chief software architect of MDE Systems and an expert on the Eclipse
development environment and its application frameworks. He has presented at various
industry conferences on topics such as software defined radios and MDE technologies.

Afternoon Session

T7

Inner Source Product Line Development
Frank van der Linden, Philips Medical Systems, The Netherlands

Open source has shown to be an effective way to do distributed development. This tutorial
shows how to profit from the open source model in product line development.

http://www.sei.cmu.edu/splc2009/tutorials.html (13 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Inner source is a way to exploit the advantages of distributed development in the open
source way but in a wish to avoid problems with planning, ownership, and control. Several
companies have adopted an inner source development model. In inner source development,
a set of teams collaborates in a cooperative eco-system. Similar to open source
development, inner source development applies an open, concurrent, model of
collaboration. It implies distributed ownership and control of code, early and frequent
releasing, and many continuous feedback channels. It makes use of organization
mechanisms already in place; for example, for escalation of conflicts or setting up
roadmaps. Inner source enables flexibility in (starting, stopping, and changing of)
collaborations and in timing and setting priorities of development teams across
organizational (and geographical) boundaries.

The tutorial is mainly structured along the basic dimensions of BAPO and the FEF:
business, architecture, process, and organization.

The tutorial starts with an overview of BAPO and the FEF. This is a rehearsal of the basic
ideas presented in the tutorial T4: “Introducing and Optimizing Software Product Lines
Using the FEF.” Next, the idea of inner source is presented, followed with a detailed
explanation of inner source in each of the four BAPO dimensions.

Presenter Biography:
Frank van der Linden, PhD, works at Philips Healthcare CTO Office. He received his Ph.
D. in pure Mathematics in 1984 at the University of Amsterdam. He was then employed by
Philips Research and since 1999 by Philips Medical Systems. During this time, his main
interest was in software product lines. He was the project leader of four relevant ITEA
projects: ESAPS, CAFÉ, FAMILIES, and COSI. During these projects, he organized as
program chair a series of SWAPF & PFE workshops. He then served as general chair of the
SPLC 2005 and as program co-chair of the SPLC 2006.

T11

Building Reusable Testing Assets for a Software Product Line
John D. McGregor, Software Engineering Institute, USA

Testing consumes a significant percentage of the resources required to produce software-
intensive products. The exact impact on the project is often hard to evaluate, because testing

http://www.sei.cmu.edu/splc2009/tutorials.html (14 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

activities are distributed over the entire scope of the development effort. In this tutorial, we
take a comprehensive end-to-end view of the testing activities and roles that should be
present in a software product line organization.

The Software Engineering Institute (SEI) identifies three areas of responsibility in a product
line organization. We relate to testing those described below.

Organizational managers have responsibility for establishing the test strategy for the
organization in general and the product line in particular. These activities are directly
related to the business goals and scope of the product line.

Technical managers have responsibility for planning the numerous test activities needed to
implement the test strategy. These activities are planned in concert with the development
activities to coordinate milestones and resources.

Software engineers have responsibility for implementing the planned activities. They select
the specific test cases necessary to achieve specific test coverage levels and implement any
software needed to apply the test cases to the software under test.

The close relationship between developing software and testing it results in the test
activities being crafted with knowledge of the chosen development process. The method
engineer arranges the testing activities so that they are timely and have the appropriate
perspective for their position in the development process. This tutorial considers test
techniques and test process models.

Presenter Biographies:
John D. McGregor is an associate professor of computer science at Clemson University, a
founding partner of Luminary Software, and a Visiting Scientist at the Software
Engineering Institute. He is co-author of two books on software engineering, including A
Practical Guide to Testing Object-Oriented Software Engineering. McGregor teaches
graduate software engineering courses and courses in the SEI's Software Product Line
Curriculum and has presented numerous tutorials at a variety of conferences. He also
consults with numerous software development organizations.

T12

http://www.sei.cmu.edu/splc2009/tutorials.html (15 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Pragmatic Strategies for Variability Management in Product Lines in Small- to
Medium-Size Companies
Stan Jarzabek, National University of Singapore, Singapore

If you deploy multiple product variants for a variety of customers, you are already in the
software product line (SPL) business. Most SPLs in small- to medium-size companies
evolve from a single successful product. Each new product variant is often developed by ad
hoc reuse—copy and modify—of source code files implementing existing products. As the
SPL practice matures, a common practice is to stabilize a product component architecture
and to use preprocessing, parameter configuration files, Ant, or annotations (Java/JEE) to
handle the impact of variant features at the detailed level of code. If you use these
techniques, you may be aware of problems that usually emerge in time: Features get
complicated and inclusion of one feature into a custom product must be properly
coordinated with modifications of yet other features; core reusable components become
heavily instrumented with variation points and complex to work with.

If the above picture reflects your experience, you may find this tutorial useful. We’ll review
techniques commonly employed for SPL variability management and their strengths and
pitfalls. In the second part of the tutorial, we’ll examine the XML-based Variant
Configuration Language (XVCL) variation mechanism that exercises the total control over
SPL variability, from architecture, to component configuration, to any detail of code (e.g.,
variations at the source statement, expression, or keyword level). XVCL streamlines and
automates customizations involved in implementation of selected variant features into
custom products, from component reconfiguration to detailed customizations of component
code. The approach replaces the need for multiple variation mechanisms and avoids the
problems of digging out feature customization and reuse information from SCM
repositories. It complements conventional architecture-centric, component-based design for
reuse and works with any conventional programming language and/or platform such as
JEE, .NET, Ruby on Rails, or PHP.

In the tutorial, we discuss industrial case studies of product lines with XVCL.

Presenter Biographies:
Stan Jarzabek is an associate professor at the Department of Computer Science, School of
Computing, National University of Singapore. He spent 12 years of his professional career
in industry and 20 years in academia. Stan is interested in all aspects of software design, in
particular, techniques for design of adaptable, easy-to-change (high-variability) software,

http://www.sei.cmu.edu/splc2009/tutorials.html (16 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

clone detection, and program analysis. He is an author of the book Effective Software
Maintenance and Evolution: Reuse-based Approach and has published over 90 papers in
international journals and conference proceedings. (His recent paper received the ACM
Distinguished Paper Award). Stan works with industries, and XVCL has been applied to
manage web portal product lines at ST Electronics (Info-Software Systems) Pte Ltd. and to
create mobile phone role-playing games and customer relation management systems.

T13

Using Domain-Specific Languages for Product Line Engineering
Markus Voelter, itemis AG, Germany

Domain-specific languages, together with code generation or interpreters (a.k.a. model-
driven development), are becoming more and more important. Since there is a certain
overhead involved in building languages and processors, this approach is especially useful
in environments where a specific set of languages and generators can be reused many times.
Product lines are such an environment. Consequently, the use of domain-specific languages
(DSLs) for software product line engineering (SPLE) is becoming more relevant.

However, exploiting DSLs in the context of product lines involves more than just defining
and using languages. This tutorial explains the differences as well as commonalities
between model-driven development (MDD) and SPLE and shows how the two approaches
can be combined.

In this tutorial, we will first recap/introduce feature modeling and model-driven
development. We then build a simple textual DSL and a code generator based on Eclipse
openArchitectureWare (oAW). Based on this language, we’ll discuss the kinds of
variability expressible via DSLs versus those expressible via feature modeling, leading to a
discussion about ways to combine the two. In the next demo slot, we’ll do just that: We’ll
annotate a model with feature dependencies. When generating code, the elements whose
features are not selected will be removed, and hence no code will be generated. Finally,
we’ll discuss and demo the integration feature dependencies into code generators to
configure the kind of code generated from the model.

Presenter Biography:
Markus Völter works as an independent researcher, consultant, and coach for itemis AG in

http://www.sei.cmu.edu/splc2009/tutorials.html (17 of 18) [11/4/2009 12:06:26 PM]

SPLC 2009 | The 13th International Software Product Line Conference

Stuttgart, Germany. His focus is on software architecture, model-driven software
development, and domain-specific languages, as well as on product line engineering. He
coaches projects small to large, in business, science and embedded systems, trying to bridge
the gaps between these worlds. Markus also regularly writes (articles, patterns, books) and
speaks (trainings, conferences) on those subjects. Contact him via voelter@acm.org or
www.voelter.de.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/splc2009/tutorials.html (18 of 18) [11/4/2009 12:06:26 PM]

http://www.voelter.de/
mailto:voelter@acm.org

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Become an SEI Member and Save
on Registration for SPLC 2009

The Software Product Line Conference (SPLC) is the premier forum for product line
researchers, practitioners, and educators to present and discuss current and emerging trends.
SPLC provides the product line community with opportunities to hear industry leaders' real-
world experiences and researchers’ latest ideas, and to learn from both. Now in its 13th
year, SPLC 2009 will be held August 24 – 28 in San Francisco, California.

You can save 15% on the already reduced early-bird registration price for SPLC 2009 by
becoming a Member of the Software Engineering Institute. SEI Members save on
registrations for SEI-sponsored conferences and courses and enjoy opportunities to connect
with others in their fields.

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/members_save.html (1 of 3) [11/4/2009 12:06:28 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

modeling at SPLC »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/members_save.html (2 of 3) [11/4/2009 12:06:28 PM]

http://www.sei.cmu.edu/membership/
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/members_save.html (3 of 3) [11/4/2009 12:06:28 PM]

http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

SPLC 2009 Program Committee

Program Chair
John D. McGregor, Clemson University, USA

Program Committee
Muhammad Ali Babar, Lero, University of Limerick, Ireland
David Benavides, University of Seville
Jan Bosch, Intuit, USA
Manfred Broy, TU Munich, Germany
Paul Clements, Software Engineering Institute, USA
Krzysztof Czarnecki, University of Waterloo, Canada
Stuart Faulk, University of Orgeon, USA
Xavier Franch, Universitat Politècnica de Catalunya, Spain
Birgit Geppert, Avaya Labs, USA

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/committee.html (1 of 3) [11/4/2009 12:06:29 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

Stefania Gnesi, ISTI-CNR, Italy
Oystein Haugen, SINTEF and University of Oslo, Norway
Patrick Heymans, University of Namur - FUNDP, Belgium
Isabel John, Fraunhofer IESE, Germany
Kyo Kang, University Pohang, Korea
Tomoji Kishi, JAIST, Japan
Peter Knauber, HS Mannheim, Germany
Philipp Kutter, Montages, Switzerland
Patricia Lago, Vrije University Amsterdam, The Netherlands
Robyn Lutz, Iowa State University & Jet Propulsion Lab, USA
Andreas Metzger, University of Duisburg-Essen, Germany
Maurizio Moriso, Politecnico di Torino, Italy
Eila Niemelä, VTT Technical Research Centre of Finland, Finland
Liam O’Brien, NICTA, Australia
Rob van Ommering, Philips, The Netherlands
Robert Nord, Software Engineering Institute, USA
Daniel Paulish, Siemens, USA
Juha Savolainen, Nokia, Finland
Doug Schmidt, Vanderbilt University, USA
Steffen Thiel, Lero, University of Limerick, Ireland
Tim Trew, NXP, The Netherlands

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

modeling at SPLC»

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/committee.html (2 of 3) [11/4/2009 12:06:29 PM]

http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/committee.html (3 of 3) [11/4/2009 12:06:29 PM]

http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

SPLC 2009 Doctoral Symposium

Monday, August 24, 2009

1:30 – 1:40 PM Welcome Session

1:40 – 2:00 PM Achieving True Flexibility of SOA-Based Information
Systems by Adopting Practices from Product Line
Engineering

2:00 – 2:20 PM Discussion Paper 1

2:20 – 2:40 PM Streamlining Digital Games Development Through
Software Factories Automation

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/doctoral_symposium.html (1 of 3) [11/4/2009 12:06:31 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

2:40 – 3:00 PM Discussion Paper 2

3:30 – 3:50 PM Towards a Model-Driven Product Line for SCM
Systems

3:50 – 4:10 PM Discussion Paper 3

4:10 – 4:30 PM Rationale-Enriched Variability Management in
Software Product Lines

4:30 – 4:50 PM Discussion Paper 4

4:50 – 5:00 PM Closing

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

modeling at SPLC »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/doctoral_symposium.html (2 of 3) [11/4/2009 12:06:31 PM]

http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/doctoral_symposium.html (3 of 3) [11/4/2009 12:06:31 PM]

http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Third International Workshop on Dynamic Software Product
Lines (DSPL 2009)

Description

In domains such as ubiquitous computing, pervasive computing, service robots, unmanned
aerial vehicles, and so forth, the importance and complexity of software are increasing more
than ever. These domains are characterized above all by extensive variation both in
requirements and resource constraints. The software product line (SPL) approach has been
receiving increased attention as a means to cope with this, specifically as software
engineers and developers are faced with increasing pressure to deliver high-quality software
more quickly and economically.

More importantly, modern computing and network environments demand a high degree of

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/dspl.html (1 of 3) [11/4/2009 12:06:33 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

adaptability from software systems. Computing environments, user requirements, and
interface mechanisms between software and hardware devices like sensors may change
dynamically during runtime. Therefore, in these kinds of dynamic environments, the
application of SPL needs to be changed from a static perspective to a dynamic perspective,
where systems capable of modifying their own behavior with respect to changes in its
operating environment are achieved by dynamically rebinding variation points at runtime.
This is the idea of dynamic software product lines (DSPL).

DSPL is an emerging and promising area of research, with clear overlaps to other areas of
research in addition to SPL, notably: self-* (adapting/managing/healing ...) systems,
dynamic architectures, and agent-oriented software engineering. The objective of this
workshop is to solicit ideas, research directions, and results of SPL that employ and support
dynamism in the manner outlined above.

Important Dates

Submission Deadline: May 24, 2009
Notifications to Authors: June 19, 2009
Camera-Ready Papers: July 1, 2009

Contact Information

Mike Hinchey, Lero, the Irish Software Engineering Research Centre, Limerick, Ireland
mike.hinchey@lero.ie

To find out more, go to the DSPL 2009 workshop homepage.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

modeling at SPLC »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/dspl.html (2 of 3) [11/4/2009 12:06:33 PM]

mailto:mike.hinchey@lero.ie
http://www.lero.ie/dspl2009
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/dspl.html (3 of 3) [11/4/2009 12:06:33 PM]

http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

First International Workshop on Model-Driven Approaches
in Software Product Line Engineering (MAPLE 2009)

Description

Many of the benefits expected from software product lines (SPLs) are based on the
assumption that the additional investment in setting up a product line pays off later when
products are created. However, to fully exploit this we need to optimize application
engineering processes and handle SPL artifacts in a systematic and efficient manner. This
workshop explores how model-driven approaches can help to achieve these goals. In
particular the workshop revolves around three themes:

1) efficient product derivation – The true return on investment in product line engineering is
achievable when the product lines can be used efficiently for product derivation. How can
application engineering benefit from model-driven and aspect-oriented approaches?

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/maple.html (1 of 3) [11/4/2009 12:06:34 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

2) link PLE research and industry practice – We have to overcome the gap between
research and industrial practice so that both sides can learn from each other. Hence, we are
particularly interested in experience reports that discuss the use of models in real-world
PLE projects.

3) SPL models with a meaning – If we want to improve product derivation, we require
models that are more than just vehicles for documentation and discussions on the
whiteboard: models that are precise and expressive enough to be used for automation and in
advanced interactive tools. However, if the existing models are documentary and
ambiguous, how do we achieve more precise models?

Important Dates

Submission Deadline: June 5, 2009 - extended to June 10, 2009
Notifications to Authors: June 19, 2009
Camera-Ready Papers: July 1, 2009

Contact Information

Goetz Botterweck, Lero, University of Limerick, Ireland
goetz.botterweck@lero.ie

For more information, go to the MAPLE 2009 workshop homepage.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

modeling at SPLC »

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/maple.html (2 of 3) [11/4/2009 12:06:34 PM]

mailto:goetz.botterweck@lero.ie
http://www.lero.ie/maple2009/
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/maple.html (3 of 3) [11/4/2009 12:06:34 PM]

http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Workshop on Scalable Modeling Techniques for Software
Product Lines (SCALE 2009)

Description

Modeling techniques play essential roles in software product line development (PLD), and
various modeling techniques have been proposed so far. However, some of these techniques
are not actually usable in the industries, due to the lack of scalability. Although modeling
techniques are essentially for reducing scale and complexity, further development of
techniques are indispensable to manage the scale and complexity we are confronting today.
Especially in PLD, the problem becomes more serious, because we have to model target
domains, requirements, architectures, and designs along with complicated variabilities and
configurations— which is especially challenging if the product line is service based We
thus need scalable modeling techniques that can handle such spatial and temporal

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/smt.html (1 of 3) [11/4/2009 12:06:36 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

complexity and service orientation, based on careful study of actual modeling problems in
industries.

The objective of this workshop is to bring together both researchers and practitioners to
discuss the strengths and limitations of the current modeling techniques for supporting
large-scale and service-based PLD. The workshop will provide a forum to share ideas and
experiences about the current modeling approaches and to identify the future research
directions related to scalable modeling techniques for PLD. We expect that this workshop
will deepen mutual understanding among researchers and practitioners and promote the
development of scalable modeling techniques usable in the field.

Important Dates

Submission Deadline: June 1, 2009
Notification of Acceptance: June 15, 2009
Camera-Ready Version: July 1, 2009

Contact Information

Tomoji Kishi, faculty of science and engineering, Waseda University, Japan
kishi@waseda.jp

For more information, go to the SCALE 2009 workshop homepage.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

modeling at SPLC»

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

http://www.sei.cmu.edu/splc2009/smt.html (2 of 3) [11/4/2009 12:06:36 PM]

mailto:kishi@waseda.jp
http://kishi-www.jaist.ac.jp/SCALE2009/
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

Industry Track:
* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/smt.html (3 of 3) [11/4/2009 12:06:36 PM]

http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Workshop on Service-Oriented Architectures and Software
Product Lines (SOAPL)—Enhancing Variation

Description

The Service-Oriented Architectures and Software Product Lines (SOAPL) 2009 Workshop
is the third workshop to examine the connection between service-oriented architecture and
software product line approaches. While the first two workshops examined the connection
between the approaches and the experience of integrating them, this workshop will examine
how the two techniques benefit each other.

Workshop Presentations

2009 Workshop on Service-Oriented Architectures and Software Product Lines (SOAPL

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/soapl.html (1 of 5) [11/4/2009 12:06:40 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

2009): Enhancing Variation
Bob Krut and Sholom Cohen
View presentation »

Context Setting for Afternoon Discussion
Sholom Cohen
View presentation »

Service Oriented Product Line Engineering (A Negotiation Framework for Service-
Oriented Product Line Development)
Jaejoon Lee
View presentation »

Managing SOA System Variation through Business Process Lines and Process Oriented
Development
Nicola Boffoli, Marta Cimitile, Fabrizio Maria Maggi, Giuseppe Visaggio
View paper »
View presentation »

Towards an Approach for Service-Oriented Product Line Architectures
Flávio Mota Medeiros, Eduardo Santana de Almeida,
Silvio Romero de Lemos Meira
View paper »
View presentation »

Semantic Variability Modeling for Multi-staged Service Composition
Bardia Mohabbati, Nima Kaviani, Dragan Gasevic
View paper »
View presentation »

Service-Oriented Architecture (SOA) and Software Product Lines:
Pre-Implementation Decisions
Dennis Smith, Grace Lewis
View paper »
View presentation »

Motivation

modeling at SPLC»

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/soapl.html (2 of 5) [11/4/2009 12:06:40 PM]

http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

Product lines and service-oriented architecture are approaches to meet a common business
goal—reuse—using the same functionality in multiple contexts. In the case of product
lines, reuse happens by using a “core asset” (could be a hardware or a software product) in
multiple systems of a family of products (e.g., cell phone or medical records management
systems). Uses of core assets vary depending on the system context. In a service-oriented
system, reuse happens by using the same business functionality in multiple process,
workflow, or application contexts.

Product line development is a proven approach that has been adopted by key industry
players. On the other hand, although industry has accepted the benefits of a service-oriented
approach for systematic reuse, the implementation methods are still new and emerging.

The SOAPL Workshop gives participants an opportunity to examine how the two
techniques benefit each other.

Objectives

This workshop will build on the results of the SOAPL 2007 Workshop: Service-Oriented
Architectures and Product Lines - What Is the Connection? and the SOAPL 2008
Workshop: Service-Oriented Architectures and Product Lines – Putting Them Together.
This year’s workshop, SOAPL 2009, will explore how service-oriented architectures and
software product lines can benefit from each other, specifically

- how service-oriented systems can benefit from software product lines' variation
management approaches to identify and design services targeted to multiple service-
oriented systems

- how software product lines can benefit from service-oriented architectures by employing
services as a mechanism for variation within a product line

Topics and Intended Audience

Topics of interest for the workshop include both research and practitioner perspectives.

From a research perspective, how can these two reuse approaches benefit from each other?

1. Using service orientation in a product line:

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed.

© 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/soapl.html (3 of 5) [11/4/2009 12:06:40 PM]

http://splc.net/history.html#soapl2007
http://splc.net/history.html#soapl2007
http://splc.net/history.html#soapl2008
http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

a. implementing the software core assets of the product line as services
b. using service invocation as a variation mechanism
c. using service-oriented approaches to support end-user variations

2. Using product line concepts in a service-oriented context:
a. using concepts of variability and commonality analysis to understand and model
requirements variability that will eventually help identify the right set of services
that can be used in multiple contexts/environments
b. once the variability and commonality in services have been identified,
engineering this variability into the services
c. exploiting variation points for service versioning, which is a major problem in
service-oriented systems, both at design time and runtime

From the practitioner perspective, three topics of interest are

1. What product line practices have been used to successfully govern assets that were
created using a service-oriented approach?

2. What approaches have worked (and not worked) in the migration of legacy software
to services for use in multiple applications?

3. What are the underlying infrastructures that support product lines based on
implementations of service-oriented architecture?

Participants in SOAPL 2009 will include research and practitioners who have experience in
service-oriented architecture, software product lines, and variation management issues.

Submissions

Prospective participants must submit a five-to-eight-page position paper or experience
report that pertains to the workshop topics listed. Papers should be in the IEEE Computer
Society Conference Format for 8.5x11-inch Proceedings Manuscripts.

All submissions will be reviewed by members of the program committee for quality and
relevance. Accepted papers will be published electronically in the conference proceedings.
Three or four papers will be chosen to be presented during the workshop to foment
discussion.

Important Dates

Submit your paper in PDF form to soa-workshop@sei.cmu.edu by June 1, 2009.

http://www.sei.cmu.edu/splc2009/soapl.html (4 of 5) [11/4/2009 12:06:40 PM]

mailto:soa-workshop@sei.cmu.edu

SPLC 2009 | The 13th International Software Product Line Conference

Notifications of paper or experience report acceptance will be sent by June 15, 2009.
Camera-ready copies are due July 1, 2009.

Format and Program

The workshop will be highly interactive and focus on determining how best to integrate
service-oriented architecture and product line practices. The morning session will feature
invited speakers and selected presentations based on position papers. Participants in the
afternoon session will be assigned to working groups that cover specific topics of interest.
After the workshop, the leader of each working group will be asked to write a summary of
the working group’s discussion and (especially) its conclusions.

Contact Information

For more information, contact

Robert Krut
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Phone: +1-412-268-8505
Fax: +1-412-268-5758
Email: rk@sei.cmu.edu

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

http://www.sei.cmu.edu/splc2009/soapl.html (5 of 5) [11/4/2009 12:06:40 PM]

mailto:rk@sei.cmu.edu

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Workshop on Consolidating Community Consensus in
Product Line Practice

Description

This workshop is intended as the first step towards capturing and codifying proven and
effective product line engineering concepts, models, and practices. One way to capture and
codify is by creating a standard. The goals of this workshop are to explore the possibility of
creating a lightweight standard for product line engineering that defines what constitutes a
software product line, to determine what minimum engineering processes must be part of a
true product line engineering effort, and to list a number of proven practices. While this
workshop cannot produce such a standard, it can set the process in motion and provide
direction for the effort.

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/ccc.html (1 of 3) [11/4/2009 12:06:42 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

Important Dates

Submission Deadline: July 1, 2009
Notifications to Authors: August 1, 2009
Camera-Ready Papers: NA

Contact Information

Paul Clements, Software Engineering Institute, USA
clements@sei.cmu.edu

For more information, go to the workshop homepage.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

modeling at SPLC»

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

http://www.sei.cmu.edu/splc2009/ccc.html (2 of 3) [11/4/2009 12:06:42 PM]

mailto:clements@sei.cmu.edu
http://www.softwareproductlines.com/consensus2009/index.html
http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

Industry Track:
* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/ccc.html (3 of 3) [11/4/2009 12:06:42 PM]

http://www.sei.cmu.edu/splc2009/program/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

SPLC 2009 | The 13th International Software Product Line Conference

13th International Software
Product Line Conference (SPLC)
August 24–28, 2009 | Airport Marriott, San Francisco, CA, USA

Panels

Wednesday, August 26, 2009

2 PM – Working Session 1

This year’s program included keynotes by leaders in
the field, experience reports from industry,
presentations on current research, and product line
workshops, tutorials, and tool demos. View the
entire program here »

● Five Reasons Why You Can’t Afford to Miss
SPLC 2009

● Learn from experts on Feature-Oriented
Domain Analysis (FODA) and feature

http://www.sei.cmu.edu/splc2009/panels.html (1 of 3) [11/4/2009 12:06:43 PM]

Home Call for Participation Program Speakers Travel & Venue Sponsors SPLC.NET

http://www.sei.cmu.edu/
http://splc.net/

SPLC 2009 | The 13th International Software Product Line Conference

Future Directions: The View from the Labs
In this session, representatives from three research labs will share their views
on future directions in product line practice in short presentations. The majority
of the session will be spent in audience participation discussing future directions.

Nobuaki Kozuka
Yuzo Ishida
NOMURA RESEARCH Institute, Ltd.

Ralf Carbon
Fraunhofer IESE

Linda M. Northrop
Software Engineering Institute

Thursday, August 27, 2009

2 PM – Working Session 1 (continued)

This is a continuation of Working Session 1.

A brief summary of the presentations and discussion from Wednesday's session
will be given to initiate audience participation.

Nobuaki Kozuka
Yuzo Ishida
NOMURA RESEARCH Institute, Ltd.

Ralf Carbon
Fraunhofer IESE

Linda M. Northrop
Software Engineering Institute

Friday, August 28, 2009

2 PM – Working Session 2

modeling at SPLC»

● Take advantage of expert-led tutorials at
SPLC August 24-28 »

● Kyo Kang, Originator of Feature-Oriented
Domain Analysis (FODA), to Keynote at
SPLC 2009 »

● SAVE 15% on registration for SPLC with
your SEI Membership »

● HP’s Jacob G. Refstrup to keynote at SPLC »

● IBM's Dick Gabriel to Keynote at SPLC
2009 »

● Find out how to become a sponsor of SPLC
2009 »

● Conference to be held in San Francisco,
California August 24-28, 2009 »

Join the SPLC 2009 Conference
Mailing List and stay up to date:

To be included in the SPLC 2009 Conference
mailing list for latest updates, sign up here:

Email:

Organizing Committee Members

General Chair: Dirk Muthig, Lufthansa Systems
Passenger Services GmbH

Program Chair: John McGregor, Clemson
University, USA

Industry Track:

http://www.sei.cmu.edu/splc2009/panels.html (2 of 3) [11/4/2009 12:06:43 PM]

http://www.linkedin.com/groups?gid=1912573

SPLC 2009 | The 13th International Software Product Line Conference

Quality Assurance in Software Product Lines

What works and what doesn't? How do you trace quality attributes from
elicitation to code in your product lines? Researchers will pose problems they've
seen regarding the traceability of quality attributes, and the audience will engage
in an open discussion of the successes, failures, and unmet needs they've
experienced.

Robyn R. Lutz
Jet Propulsion Lab, NASA
Iowa State University

Len J. Bass
Software Engineering Institute

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored

by the U.S. Department of Defense and operated by Carnegie Mellon University.

* Paul Jensen, Overwatch, USA
* Kentaro Yoshimura, Hitachi, Japan
* Michael Schumpelt, ETAS, Germany

Workshops: Jaejoon Lee, Lancaster University,
UK

Demonstrations & Posters: Ronny Kolb,
Honeywell, Switzerland

Tutorials: Gary Chastek, Software Engineering
Institute, USA

Doctoral Symposium: Eduardo Santana de
Almeida, C.E.S.A.R., Brazil

Publicity: Pat Donohoe, Software Engineering
Institute, USA

See the list of program committee members.

Subscribe to the SPLC Conference news feed. © 2009 Carnegie Mellon University | Terms of Use

http://www.sei.cmu.edu/splc2009/panels.html (3 of 3) [11/4/2009 12:06:43 PM]

http://www.sei.cmu.edu/splc2009/splcrss.xml
http://www.cmu.edu/
http://www.sei.cmu.edu/about/disclaimer.html

1 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

© 2009 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

SPLC 2009

Adapting to Change:

architecture, processes & tools

Jacob Refstrup,
Distinguished Technologist,

Inkjet Systems

A closer look at HP's experience in evolving the OWEN software product line

SPLC 2009

2 10/28/2009 Hewlett-Packard

What‟s Owen?

• A embedded software product line
architecture

• Used in multiple Hewlett-Packard
product lines

− Deskjet, Photosmart, Officejet and
Officejet Pro

• First product intro in ‟98

• Same fundamental architecture in
place

− Evolved architecture/design of
subsystems

• Lots of tools & process changes

− From co-op to full re-use

2 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

3 10/28/2009 Hewlett-Packard

Topics
… a little bit of everything 

•Principles

•Owen‟s architecture

•SCM, build and tools

•Development model

•Variation

•Architectural evolution

•Futures & feature modeling

SPLC 2009

4 10/28/2009 Hewlett-Packard

Owen is not perfect
or glamorous…

• It‟s not a perfect architecture / set of processes
− Has it‟s share of issues

•You‟ll find very little earth-shattering in what we do
− E.g. continuous integration

• It works because of…
− Hard work

− Continuous evolution

− Automation of key processes

− Balance between structure/flexibility

3 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

5 10/28/2009 Hewlett-Packard

A few…

principles

SPLC 2009

6 10/28/2009 Hewlett-Packard

Principles

•Should matter who you
are not where you are

•Keep it simple

•Best is the enemy of good

•Make it easy to do the
right thing; hard to do the
wrong thing

•When something is
causing pain… do
something!

•Don‟t “bolt” something
onto the side – refactor!

•Edge of chaos

•Enforce key rules –
otherwise…

4 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

7 10/28/2009 Hewlett-Packard

One minute tour of…

architecture

SPLC 2009

8 10/28/2009 Hewlett-Packard

Owen architecture overview

• Nothing new…
− Component based system with client-

server topology (including libraries)

• Framework provides key services

• Components

• Libraries

• Shared resources
− Mostly memory

• Some assets are run-time data
driven

Component B

Component C

Library B

Library A

Component A

5 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

9 10/28/2009 Hewlett-Packard

Quick history of OWEN

• Started as co-op in ‟97
− Two geographies; mainly sharing print-

engine + framework
− Over-the-wall tar-ball approach  SCM

bridges (low frequency)
− Two products; < 50 components

• Then…
− More products, lots of branching &

merging (on a product basis)
− Divergent subsystems
− Overall leadership/sponsorship fizzled
− Inconsistencies in build (e.g. version of

compiler used)

• There were problems/issues but…
− They didn‟t cause enough pain
− And we shipped plenty of products

• But then… (circa ‟04)
− Needing to share more – but

incompatible subsystems…
− Problems got too big

• So…
− Formed small empowered technical +

business teams to address issues
− Sponsor + leadership identified
− Lots of improvement projects kicked off
− Bridged multiple SCM systems close to

real-time

• ‟04/‟05
− Same tools (build, single SCM system,

compiler)

• ‟06  ‟07
− Migrated from multiple branches (one or

more per major subsystem) to single
development branch

− Converged on defect tracking tool,
requirements tool and document sharing

• Now
− Five geographies; re-use / sharing

everything (directly off trunk)
− > 800 components; > 20 projects

SPLC 2009

10 10/28/2009 Hewlett-Packard

Sharing tools

• Needs to be done

− It‟s not sexy

− Requires investment (people,
process, culture, …)

− And should be done from the
beginning…

• Otherwise

− Lose reproducibility

− Chaos ensues (the unwanted
kind)

• So… make sure you can easily

− Add tools from vendors

− Support multiple versions

− Add your own tools

− And make them available for
everybody everywhere

6 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

11 10/28/2009 Hewlett-Packard

SCM lessons

• The obvious:- one SCM tool
− Makes merging/branching much

easier

• Branching
− Branching strategy depends on

maturity / culture of development
organization

− Cost of branching vs. cost of turmoil

• Ideal tool for SPL?
− Change-set based systems

− Need to tailor processes /
branching to capability of SCM tool

• Owen‟s SCM current state
− Note: Don’t copy unless …

− Development on trunk
• Unless would break build/run-time for

extended period

− Each project has own soft-freeze and
hard-freeze branch
• All changeset marked as defect fixes goes to

all current soft-freeze branches

• Project integrator chooses which changesets
goes from SF to HF branch

− Implies
• Variability done by build-time / run-time

configuration (not SCM configuration)

… how do we make it work?

 people, development model,
variation & continuous integration

SPLC 2009

12 10/28/2009 Hewlett-Packard

People & development model

• In the beginning…
− Small product teams (5-10 developers);

“touch” whatever part of source code
needed

− (Coordinated) evolution of subsystems
required inter project coordination + lots
of merging

• Current situation
− > 200 engineers working on trunk

− Can‟t have everybody stepping on-top of
each other

− Most engineers work within a few
subsystem

− Requires coordination in requirements and
execution when spanning subsystems

• Component ownership model
− Let the engineers know what‟s expected –

accountable for their components.

− “Owner” doesn‟t have to do all work

− A “fixme” process for quick fixes applies
to a single project but not suitable for all
products (done via build system)

• Architectural implications
− Evolve architecture such that fewest

number of subsystems are involved in new
feature development

− More generally, avoid coupling

• Still evolving…
− Need to enable more agile development

teams

− Make requirements process more fluid

7 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

13 10/28/2009 Hewlett-Packard

Variation
… how we ship >20 products/year

• The approach
− Component selection
− Build flag setting
− Project header files
− A BSP-like package unique to each

PCA

• Complexity
− > 800 components
− > 2000 build flags

• most dual valued

− Too many combinations
• < 100 valid combinations

• A few things we‟ve learned along the
way…
− Naming for the long-term is difficult!
− Avoid use of project names in source

code & build variables
• “Platform” names can be useful; use in sub-directory

names
• Keep product sub-directories to a minimum

− Define what are truly top-level build flags
− Avoid piggy-backing of someone else‟s

build flag
− Validate build variable settings
− Keep makefiles DRY
− Makefile lazy evaluation is hard; but it is

really powerful…

• Observations…
− This ain‟t good enough
− Too much of an art-form
− Need some kind of feature-modeling

more on that later…
COMPONENTS += comp_a
FEATURE_X = on
COMPONENTS += $(x_COMPONENTS_$(FEATURE_X))
x_COMPONENTS_on += comp_b

SPLC 2009

Continuous integration

14 10/28/2009 Hewlett-Packard

Unwritten rule

“if you never break a build, you aren‟t working fast enough”

- Joe Bauman, Owen Architect

8 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

15 10/28/2009 Hewlett-Packard

Continuous integration + build system

• Automated builds
− Whenever new code appears on

trunk start builds of all* active
projects

− Lots of emails 
− Expect develop to fix within

reasonable time period
• E.g. immediately, 4 hours, 1 day

• Testing
− Builds are tested automatically

w/small test suite on real HW
− Some tests executed manually

• Process is ~24/7
− There‟s always an accountable

person to chase down build/test
failures

* Not really all… but close enough

• Build system
− Needs to be VERY fast
− Makefile driven
− Linux
− Fast multi-core machines

• Automated/nightly builds
− Distributed

• Helper tools
− Check if a component builds

correctly in all active projects

SPLC 2009

16 10/28/2009 Hewlett-Packard

Stabilizing projects with
an ever evolving trunk

• Check-in template – choose
which projects (branches) need
the change

• Defect fixes automatically flows
to all active soft-freeze
branches

• Automatically flow changesets
to picked projects (branches)

• Implies cherry-picking

• Keep branched projects “alive”
in trunk
− >95% of changes can be done

in trunk

trunk

SF A

SF B

SF A

HF A

Automated

Manual

ti
m

e

9 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

17 10/28/2009 Hewlett-Packard

Code

maintenance

“Whatever „rock‟ I turn over I find something…”

Holt Mebane, Owen Architect

SPLC 2009

18 10/28/2009 Hewlett-Packard

Spring cleaning…

• What‟s obsolete - will never be
used again?
− Code fragment, a component,

subsystem, a DASIC, a build
flag, …

• When something starts feeling
wrong – do something; don‟t
put it off.

• Refactor
− To simplify, remove redundancy,

add functionality, …

• Part of normal development
process – not just in “spring” 

• Write tools to help you &
fellow developers

• Some useful tools…
− Compare build settings before

and after making configuration
changes

− Matrix of all build variable
settings/project

− Generated tree-view of makefile
inclusion processes

− Tool to fold/rewrite CPP
expressions

10 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

19 10/28/2009 Hewlett-Packard

Architectural

evolution

SPLC 2009

20 10/28/2009 Hewlett-Packard

Architectural evolution
A brief summary…

• Some high-lights…
− Evolved from centralized “system

manager” and other registration

− Added framework support for
new resource usage models

− Enforcing of key rules

− Converged several divergent
subsystems

− Eliminating bad patterns

− Adopted “policy” pattern

• Accomplished these
whilst continuing to
delivering products

• Take aways
− Easy to have central choke-

points in otherwise decoupled
system

− Avoid “server” component
knowing about clients

− Make all component interaction
explicit

− Tackle high pain-points first
− Phase things in when possible;

but make sure it gets finished
− Make sure infrastructure services

are used appropriately…

11 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

21 10/28/2009 Hewlett-Packard

Evolving the architecture…
policies

• Situation
− One component involved in all

error handling for a specific
subsystem

− No explicit interfaces

− Lots of coupling

• Approach
− Multi-year; mostly in trunk

− Explicit interfaces

− Delegate pattern with a few
twists
• Decoupled, multi-receiver – aka

synchronous events

− Sequencing of actions

X

Z

Subsystem Interface

Subsystem Infrastructure

Y

“Core” assets Policy modules

A

B

C

Well defined synchronous
events (with data)

Explicit interfaces – job
parameters, event/status,

configuration

Synchronous events,
sequencing, async user

notification

SPLC 2009

22 10/28/2009 Hewlett-Packard

In summary…

•Don‟t neglect tools

•Merge-capable SCM

•Establish good variation patterns

•Key agile practices

•Adapt to changes

•Evolving development model

12 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

23 10/28/2009 Hewlett-Packard

Future challenges

•Modular builds / dynamic linking

•Regression testing
−Framework/tools to make as easy as possible for
component owners

•Additional complexity
−Asymmetric multi-core, multiple embedded systems, …

•Feature modeling
−Make it easy & obvious to configure/add a new
project

SPLC 2009

24 10/28/2009 Hewlett-Packard

Owen feature modeling…

• Want to…
− Make it easy to add/configure a

new project

− Eliminate duplicate configuration

− Derive other artifacts from model –
e.g. project datasheets

• Restrictions
− Maintain same dev model (single

branch, all products)

− Use CPP for variation – known
model; all “paths” are visible

−  generate project makefile

• Modeling Owen
− Project chooses HW components

• We typically don‟t put more HW than needed


− Describe high-level product features
(e.g. wifi, certifications)
• What a non-firmware manager would

understand

− FW model then
• Depends on available HW and high-level

description

• Derives component lists, build-flags etc.

• Describes which HW connections are required

− A “board” object defines the logical-
to-physical connections

− Derive project makefile, header-files,
datasheet, …

13 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

25 10/28/2009 Hewlett-Packard

Modeling language

• Goals
− Simpler than make & lazy eval
− Be able to express modeling

hierarchy
− Automatically detect modeling

dependencies
− Smart defaults

• So far…
− Building on top of Ruby as domain

specific language
− Have tried purely declarative

• Difficult to learn; too much Ruby magic

− Also tried more imperative
• Less easy for dealing with dependencies
• Leads to duplicate info

− Next step
• DSL w/encapsulated Ruby syntax

• Example – Bluetooth
− Can be a USB dongle, built-in or not

supported
− FW need to know

• None, dongle, built-in

− If printer has USB host-port it‟s
typically enabled

− If we have a BT radio module on the
board  built-in

− DASIC needs a USB host controller

SPLC 2009

26 10/28/2009 Hewlett-Packard

Owen model example

Feature.new(‘io.bluetooth’) do
depends_on :device, UE::Device
depends_on :usbhost, Feature::io.usbhost
depends_on :hw_module, HW::Bluetooth::Radio, :optional
requires IO::BT::Profile

attribute :support, Enumeration,
[:none, :dongle, :embedded]

selection :profiles, IO::BT::Profile,
:conditional, :min => 1

def support?
support != :none

end

def embedded?
support == :embedded

end

def process(ctx)
default[:support] =

if hw_module
:embedded

elsif usbhost.support? && device.usbfront
:dongle

else
:none

end
values = [:none]
values << :dongle if usbhost.support? && device.usbfront
values << :embedded if hw_module && usbhost.support?
validate :support, values

derive Build::OnOff, ‘FEATURE_BLUETOOTH’, support?
derive Build::OnOff, ‘EMBEDDED_BLUETOOTH’, embedded?

return unless support?

validate :profiles
end

end

IO::BT::Profile.new(‘bpp’) do

requires PDL::xhtml

requires Service::io.bt.bpp

end

IO::BT::Profile.new(‘hcrp’) do

requires PDL::pcl

requires Service::io.bt.hcrp

end

IO::BT::Profile.new(‘spp’) do

requires PDL::pcl, :optional

requires Service::io.bt.spp

end

Service.new(‘io.bt.bpp’) do

build_objmodules %w{ obex_svr }

requires Subsystem::io.bt

end

…

Subsystem.new(‘io.bt’) do

build_objmodules %w{ bt_mgr service_lib bt_stack }

configures Subsystem::io.usbhost

def process(ctx)

configures Subsystem::io.usbhost do |usbhost|

usbhost.drv_bt = true

end

end

end

14 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

By evaluating the Owen model we get…

•A generated makefile 

•No project configuration
(other than HW
component selection)

… but we obviously have a
long way to go
−Settle on the right modeling

language & tools
−Model the whole system
−Phase it in

27 10/28/2009 Hewlett-Packard

Service::io.bt.bpp

OBJMODULES += obex_svr

Service::io.bt.hcrp

OBJMODULES += io_drv_hcrp

Service::io.bt.spp

OBJMODULES += io_drv_spp

Service::lang.pcl

OBJMODULES += pcl

OBJMODULES += jm_pcl

Subsystem::io.bt

OBJMODULES += bt_mgr

OBJMODULES += esi2_0

OBJMODULES += services_lib

Subsystem::io.usbhost

USBHC_UPCOM = FEATURE_OFF

USBHC_CDR = FEATURE_OFF

USBHC_BLUETOOTH = FEATURE_ON

…

15 October 2003 Copyright © 2006 HP corporate presentation. All rights reserved.

SPLC 2009

29 10/28/2009 Hewlett-Packard

backup

slides

SPLC 2009

30 10/28/2009 Hewlett-Packard

Key learnings on tools sharing

• Share from beginning

− Easier within single geography

− Versioning of tools – identify which
tools
• Change w/code

• Per project tool version

• Suitable for SCM inclusion

• Tools from host OS

− Method for distributing and keeping
tools up-to-date across geographies

• Examples

− Compiler version per project

− Specific version of tool not available
on OS

− Tightly coupled to code

• What we did (circa ‟04)…

− /owen/tools NFS mount
• rsync across geographies

• Separate SCM repo for tools; deploy using
rsync on commit-hook.

− /owen/tools/bin

− /owen/tools/<vnd>/<version>/…

− Build picks appropriate tools based
on project config

− Common Linux setup

• Others

− Same defect tracking & requirement
system

Pohang University of Science and Technology
(POSTECH)

SPLC 2009
August 24-28, 2009

San Francisco, CA, USA

Copyright © 2009 SE Lab., Dept. of CSE
POSTECH, Rep. of Korea

FODA: Twenty Years of Perspective FODA: Twenty Years of Perspective
on Feature on Feature ModelsModels

Kyo Chul Kang

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 2/<61>

ProloguePrologue

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 3/<61>

ProloguePrologue

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 4/<61>

ProloguePrologue

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 5/<61>

ProloguePrologue

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 6/<61>

ProloguePrologue

1533 Citations!
(August 12, 2009)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 7/<61>

ProloguePrologue

We are talking
about FODA

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 8/<61>

AgendaAgenda

Introduction

Looking Back

• Number of Citations

• Feature Model Genealogy

• Why Popular?

• Salient Features of FODA Report

Looking Forward

• Future Works

• Other Issues

Acknowledgement

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 9/<61>

AgendaAgenda

Introduction

Looking Back

• Number of Citations

• Feature Model Genealogy

• Why Popular?

• Salient Features of FODA Report

Looking Forward

• Future works

• Other Issues

Acknowledgement

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 10/<61>

IntroductionIntroduction

IntroductionIntroduction

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 11/<61>

People

William E.
Novak

James A.
Hess

A. Spencer
Peterson

Sholom G.
Cohen Kyo C.

Kang

November 1990August 2009

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 12/<61>

AgendaAgenda

Introduction

Looking Back

• Number of Citations

• Feature Model Genealogy

• Why Popular?

• Salient Features of FODA Report

Looking Forward

• Future Works

• Other Issues

Acknowledgement

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 13/<61>

ProloguePrologue

1314 Citations!
(June 06, 2009)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 14/<61>

Number of CitationsNumber of Citations
1990~2009 (June 6)
Total: 1314
Unknown/Overlapping: 442

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 15/<61>

Number of CitationsNumber of Citations
1990~2008 (June 6)
Total: 1280
Unknown/Overlapping: 442

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 16/<61>

Number of CitationsNumber of CitationsRegional Differences

529

206
113

4

6

1990~2009 (June 6)
Total: 1314
Unknown/Overlapping: 456

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 17/<61>

Number of CitationsNumber of CitationsIndustry vs. Academia

1990~2009 (June 6)
Total: 1314
Unknown/Overlapping: 467

53

714

84

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 18/<61>

Number of CitationsNumber of CitationsSource Differences

1990~2009 (June 6)
Total: 1314
Unknown/Overlapping: 425
Not-English: 81

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 19/<61>

Number of CitationsNumber of CitationsTop Conferences

SPLC: International Software Product Line Conference
ICSE: International Conference on Software Engineering
ICSR/WISR: International Conference on Software Reuse/ Annual Workshops on Institutionalizing Software Reuse
OOPSLA: International Conference on Object Oriented Programming, Systems, Languages and Applications
ECOOP: European Conference on Object-Oriented Programming
GPCE: International Conference on Generative Programming and Component Engineering
VaMoS: International Workshop on Variability Modeling of Software-intensive Systems
RE: International Requirements Engineering Conference
APSEC: Asia-Pacific Software Engineering Conference
CAiSE: International Conference on Advanced Information Systems Engineering
AOSD: International Conference on Aspect-Oriented Software Development

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 20/<61>

Number of CitationsNumber of CitationsConference Trend

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 21/<61>

Number of CitationsNumber of CitationsSubject Differences

Subject Categories

• Feature Modeling
• Feature Model

Formalization
• Feature Model Extension

• Generative Programming
• Domain-Specific Language
• Feature-Oriented

Design/Programming

• Product Configuration
• Variability Management

• Product Line Methodology
/Product Line Adoption

• Doman Analysis
/Requirements Analysis

• Domain-Specific Architecture
• Reusable Component

Development
• Refactoring/Reengineering

• Tool Development

• Business Application
• Embedded Application
• SOA

• Other

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 22/<61>

Number of CitationsNumber of CitationsSubject Differences

1990~2009 (June 6)
Total: 1314
Unknown/Overlapping: 450
Not-English: 56
Others: 51

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 23/<61>

Number of CitationsNumber of CitationsSubject Trend

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 24/<61>

Number of CitationsNumber of CitationsTop-30 People

1990~2009 (June 6)
Total: 1314
Unknown/Overlapping: 415

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 25/<61>

SurveySurveySurvey: Top-30 People

1. What are the
contributions of FODA?

2. What are the remaining
problems for FODA?

4. Anything else you would
suggest for inclusion?

3. What is your own one-sentence
definition/feeling about the feature

model?

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 26/<61>

SurveySurvey

Systematic domain analysis method used in software product
line engineering. (C Kastner, S Apel, C Lengauer)

Strongly influencing how software configuration is seen in
software product line, and popularizing the domain analysis
concept. (K Schmid)

Laying the groundwork for feature analysis and feature
modeling. (J Van Gurp)

Feature modeling :
Essential technique for defining the space of programs that

define a software product line. (D Batory)

Simple but comprehensive way to modeling commonalities
and variabilities in a domain. (H Zhang, J Lee, S Jarzabek, T Asikainen)

Easy to use and communicate between stakeholders. (C
Kastner)

Giving a name to a fundamental form of modularity in
context of product lines. (D Batory)

The Contributions of FODA:

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 27/<61>

SurveySurvey

Addressing other parts of the life cycle (Especially
application engineering). (K Schmid)

Clear mapping between features and software artifacts.
(J Van Gurp, K Schmid)

Standardization of feature model extensions; Trade-off
between expressiveness and simplicity. (C Kastner, S Apel, C
Lengauer, T Asikainen, K Schmid)

Scalability of feature model. (C Kastner, D Batory)

Managing Complexity in view of many inter-dependent
features. (J Van Gurp, S Jarzabek)

Feature model evaluation. (J Lee)

Integration with UML Model. (S Jarzabek)

Good teaching materials. (D Batory)

The Remaining Problems for FODA:

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 28/<61>

SurveySurvey
Own One-Sentence Definition/Feeling about the
Feature Model:

A model that provides the foundations of software reuse. (J Lee)

A simple means to describe the commonalities and variabilities of a
domain / product line. (S Apel, C Lengauer)

Good and easy to understand, practical and fundamental. (H Zhang)

Easy to use (management-compatible) graphical model to describe
variability. (C Kastner)

Great notation, accepted by all in the field. (S Jarzabek)

One of the useful ways to analyze requirements (required features)
as well as a means to describe given software in terms of features
(provided features). (J Van Gurp)

An idea well received by the community but still lacking content
meeting the scientific standards. (T Asikainen)

Great approach to make one understand the core idea of product
line engineering (But I’m not sure whether it is the right way of looking
at variability for the actual development). (K Schmid)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 29/<61>

Feature Model GenealogyFeature Model Genealogy

Original Feature Model
(FODA)

(KC Kang et al., 1990)

FORM Feature
Model

(KC Kang et al.,
1998)

FeatuRSEB
Feature Model
(ML Griss et al.,

1998)
Generative

Programming (GP)
Feature Model
(K Czarnecki et al.,

2000)

Hein et al. Model
(A Hein et al., 2000)

Van Gurp et al.
Feature Model

(J van Gurp et al., 2001)
Riebisch et al.
Feature Model
(M Riebisch et al.,

2002)

GP-Extended
Feature Model

(K Czarnecki et al., 2002)

Cardinality-Based
Feature Model

(K Czarnecki et al., 2004)

PLUSS Feature
Model

(M Eriksson et al.,
2005)

Benavides et al.
Feature Model
(D Benavides et al.,

2005)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 30/<61>

Feature Model GenealogyFeature Model Genealogy

Original Feature Model
(KC Kang et al., 1990)

FORM Feature
Model

(KC Kang et al.,
1998)

FeatuRSEB
Feature Model
(ML Griss et al.,

1998)
Generative

Programming (GP)
Feature Model
(K Czarnecki et al.,

2000)

Hein et al. Model
(A Hein et al., 2000)

Van Gurp et al.
Feature Model

(J van Gurp et al., 2001)
Riebisch et al.
Feature Model
(M Riebisch et al.,

2002)

GP-Extended
Feature Model

(K Czarnecki et al., 2002)

Cardinality-Based
Feature Model

(K Czarnecki et al., 2004)

PLUSS Feature
Model

(M Eriksson et al.,
2005)

Benavides et al.
Feature Model
(D Benavides et al.,

2005)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 31/<61>

Feature Model GenealogyFeature Model Genealogy
Original Feature Model

(KC Kang et al., 1990)

Feature diagram: A Graphical And/Or Hierarchy of Features
- Mandatory / Optional / Alternative Feature
- Composed-of Relationship

Composition Rules: Mutual Dependency (Requires) and Mutual Exclusion

(Mutex-with) Relationships

Issues and Decisions: Record of Trade-offs, Rationales, and Justifications

System Feature Catalogue: Record of Existing System Features

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 32/<61>

Feature Model GenealogyFeature Model Genealogy

Extensions from Original Feature Model

• Diagram Shape

• Layer

• Relationship Type

• Feature Type

• Feature Attribute

• Feature Cardinality

• Feature Group and Group Cardinality

• Constraint Notation

• Binding Time Notation

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 33/<61>

Feature Model GenealogyFeature Model Genealogy

Original Feature Model
(KC Kang et al., 1990)

FORM Feature
Model

(KC Kang et al.,
1998)

FeatuRSEB
Feature Model
(ML Griss et al.,

1998)
Generative

Programming (GP)
Feature Model
(K Czarnecki et al.,

2000)

Hein et al. Model
(A Hein et al., 2000)

Van Gurp et al.
Feature Model

(J van Gurp et al., 2001)
Riebisch et al.
Feature Model
(M Riebisch et al.,

2002)

GP-Extended
Feature Model

(K Czarnecki et al., 2002)

Cardinality-Based
Feature Model

(K Czarnecki et al., 2004)

PLUSS Feature
Model

(M Eriksson et al.,
2005)

Benavides et al.
Feature Model
(D Benavides et al.,

2005)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 34/<61>

Feature Model GenealogyFeature Model Genealogy
FORM Feature Model
(KC Kang et al., 1998)

Layer
- Capability
- Operating Environment
- Domain Technology
- Implementation Technology

Relationship Type:
- Implemented-by

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 35/<61>

Feature Model GenealogyFeature Model Genealogy

Original Feature Model
(KC Kang et al., 1990)

FORM Feature
Model

(KC Kang et al.,
1998)

FeatuRSEB
Feature Model
(ML Griss et al.,

1998)
Generative

Programming (GP)
Feature Model
(K Czarnecki et al.,

2000)

Hein et al. Model
(A Hein et al., 2000)

Van Gurp et al.
Feature Model

(J van Gurp et al., 2001)
Riebisch et al.
Feature Model
(M Riebisch et al.,

2002)

GP-Extended
Feature Model

(K Czarnecki et al., 2002)

Cardinality-Based
Feature Model

(K Czarnecki et al., 2004)

PLUSS Feature
Model

(M Eriksson et al.,
2005)

Benavides et al.
Feature Model
(D Benavides et al.,

2005)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 36/<61>

Feature Model GenealogyFeature Model Genealogy
FeatuRSEB Feature Model

(ML Griss et al., 1998)

Combine FODA and the Reuse-Driven
Software Engineering Business (RSEB)

Feature Type
- Alternative Feature
→ Variation Point Feature / Variant

Feature

Constraint Notation (with Dashed Arrow)

Bound Time Notation
- Reuse Time Bound (XORed-

disjunction)
- Use Time Bound (ORed-disjunction)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 37/<61>

Feature Model GenealogyFeature Model Genealogy
Van Gurp et al.
Feature Model

(J van Gurp et al.,
2001)

Feature Type
- External Feature
- Alternative Feature
→ OR Specialization/ XOR

Specialization

Binding Time Notation

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 38/<61>

Feature Model GenealogyFeature Model Genealogy
PLUSS Feature Model
(M Eriksson et al., 2005)

Diagram Shape
- Feature as Circle (Black, White, ‘S’, ‘M’)

Feature Type
- Alternative Feature
→ Single Adapter / Multiple Adapter

Constraint Notation

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 39/<61>

Feature Model GenealogyFeature Model Genealogy

Original Feature Model
(KC Kang et al., 1990)

FORM Feature
Model

(KC Kang et al.,
1998)

FeatuRSEB
Feature Model
(ML Griss et al.,

1998)
Generative

Programming (GP)
Feature Model
(K Czarnecki et al.,

2000)

Hein et al. Model
(A Hein et al., 2000)

Van Gurp et al.
Feature Model

(J van Gurp et al., 2001)
Riebisch et al.
Feature Model
(M Riebisch et al.,

2002)

GP-Extended
Feature Model

(K Czarnecki et al., 2002)

Cardinality-Based
Feature Model

(K Czarnecki et al., 2004)

PLUSS Feature
Model

(M Eriksson et al.,
2005)

Benavides et al.
Feature Model
(D Benavides et al.,

2005)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 40/<61>

Feature Model GenealogyFeature Model Genealogy
Hein et al.

Feature Model
(A Hein et al., 2000)

Use of UML

Relationship Type
- Arrow for Secondary Structure

<<role>>

<<compound>>

<<feature>>

<<optional compound>>

<<mandatory feature>>

<<alternative>>

<<simple>>

<<optional simple>> <<optional feature>>

<<optional alternative>>

<<alternative>>

<<alternative>>

[mutex] [mutex]

<<consists of>>

<<consists of>>

[mutex]

<<mutex>>

<<appears>>

<<requires>>

-bind-time : (compile, load, run)
-decomp-type : String

[mutex]

0..*

2..*

0..*

2..* 0..*

1..*

0..*

1..*

*

*

“f6” is “Optional
Compound” in Primary
Structure and “Alternative”
in Secondary Structure

UML Feature
Meta Model

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 41/<61>

Feature Model GenealogyFeature Model Genealogy

Original Feature Model
(KC Kang et al., 1990)

FORM Feature
Model

(KC Kang et al.,
1998)

FeatuRSEB
Feature Model
(ML Griss et al.,

1998)
Generative

Programming (GP)
Feature Model
(K Czarnecki et al.,

2000)

Hein et al. Model
(A Hein et al., 2000)

Van Gurp et al.
Feature Model

(J van Gurp et al., 2001)
Riebisch et al.
Feature Model
(M Riebisch et al.,

2002)

GP-Extended
Feature Model

(K Czarnecki et al., 2002)

Cardinality-Based
Feature Model

(K Czarnecki et al., 2004)

PLUSS Feature
Model

(M Eriksson et al.,
2005)

Benavides et al.
Feature Model
(D Benavides et al.,

2005)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 42/<61>

Feature Model GenealogyFeature Model Genealogy
Generative Programming

Feature Model
(K Czarnecki et al., 2000)

Diagram Shape
- Feature Name in a Box
- Box with Circle

: Black = Mandatory
: White = Optional

Feature Type
- OR Feature (Black Triangle)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 43/<61>

Feature Model GenealogyFeature Model Genealogy
GP Extended Feature Model

(K Czarnecki et al., 2002)
Riebisch et al. Feature Model

(M Riebisch et al., 2002)

Diagram Shape / Feature Type
- Inherit GP Feature Model

Feature Group and Group Cardinality
Constraint Notation

Diagram Shape / Feature Type
- Inherit GP Feature Model

Feature Attributes
Feature Cardinality

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 44/<61>

Feature Model GenealogyFeature Model Genealogy
Cardinality-Based Feature Model

(K Czarnecki et al., 2004)

Diagram Shape / Feature
Type

- Inherit GP Feature Model

Relationship Type
- Feature Diagram
Reference (Dashed Line)

Feature Cardinality
Feature Group and Group

Cardinality

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 45/<61>

Feature Model GenealogyFeature Model Genealogy

Original Feature Model
(KC Kang et al., 1990)

FORM Feature
Model

(KC Kang et al.,
1998)

FeatuRSEB
Feature Model
(ML Griss et al.,

1998)
Generative

Programming (GP)
Feature Model
(K Czarnecki et al.,

2000)

Hein et al. Model
(A Hein et al., 2000)

Van Gurp et al.
Feature Model

(J van Gurp et al., 2001)
Riebisch et al.
Feature Model
(M Riebisch et al.,

2002)

GP-Extended
Feature Model

(K Czarnecki et al., 2002)

Cardinality-Based
Feature Model

(K Czarnecki et al., 2004)

PLUSS Feature
Model

(M Eriksson et al.,
2005)

Benavides et al.
Feature Model
(D Benavides et al.,

2005)

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 46/<61>

Feature Model GenealogyFeature Model Genealogy
Benavides et al. Feature Model

(D Benavides et al., 2005)

Diagram Shape / Feature Type
- Inherit GP Feature Model

Relationship Type
- Attribute Relationship (with Dashed Line)

Feature Attribute

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 47/<61>

Why Popular?Why Popular?

Codification of the Most Critical Information for Reuse

• Commonality and Variability

• Medium for Identifying Variation Points and Variants

Simplicity

Understandability

• Intuitive

Practicality

Applicability

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 48/<61>

Salient Features of FODA ReportSalient Features of FODA Report

“ For example, features from the window manager domain
such as constrainedMove and zapEffect could have been specified
more precisely using a formal specification technique.”

→ Formalization

“ If the domain is well-defined and is expected to remain
stable, a preprocessor or an application generator development
technique might be appropriate to process the compile-time
features.” → Generative Programming

“ The description should also indicate whether it is a compile-
time, an activation-time, or a runtime feature.”

→ Binding time, Dynamic Product Line

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 49/<61>

Salient Features of FODA ReportSalient Features of FODA Report

“ The classification of the features can be used in the
components construction for modularization and for selection
of appropriate development techniques.”

→ Component Development

“ A record of the issues and decisions that arise in the course of the
feature analysis must be incorporated into the feature model to provide
the rationale for choosing options and selecting among several
alternatives.”

→ Configuration Decision Support

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 50/<61>

AgendaAgenda

Introduction

Looking Back

• Number of Citations

• Feature Model Genealogy

• Why Popular?

• Salient Features of FODA Report

Looking Forward

• Future Works

• Other Issues

Acknowledgement

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 51/<61>

Future WorksFuture WorksFeature Modeling and Analysis

Feature analysis for different aspects at different phases of the life-cycle

PL Contexts Design ImplementationRequirements

Market / Business

Operating Environment

Binding View

Dependency View

Configuration View

Structural View

Usage

User Profile

Legal / Social Constraint

Capability

Domain model

Use Case

Architecture

Component

Variation Point / Variants

QA Conformance Analysis
Variation Support Analysis

Binding Time Support

Connector Support

Computing Resource
/ Platform

FM‐VP Decision
Dependency Analysis

(Consistency)

View Consistency Analysis

Modules / Algorithms

Platform Conformance
Analysis

Standards

Decision Modeling (Rationales), Variability/Integrity Management

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 52/<61>

Other IssuesOther IssuesTechnology

Domain analysis
• Different domains may require different approaches
− Service analysis may be good for business applications domains
− How about goal analysis?
− “Goal -> Service->feature” as a unified method?

• Modeling mechanisms
− Feature model is popular but many extensions

› Should it be standardized?
− Formalization

• Deciding the right level of abstraction; how to structure
• Feature explosion problem
− How to model, analyze, and manage
− High level of complex dependencies among them

• Feature interaction problem

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 53/<61>

Other IssuesOther IssuesTechnology

Goal-oriented (value-based) configuration of features
• Knowledge-based configuration
• Quality attributes or user-goals

Going from domain analysis to architecture and
component design

• Designing architectures and components based on the analysis
results (commonality and variability information)
− SOA vs. agent-based vs. other architecture models

• Building variability into architectures and components
• Selecting appropriate mechanisms for the problem
• Dealing with complex dependencies between features

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 54/<61>

Other IssuesOther IssuesTechnology

Specification of models

• Reuse contexts and assumptions

Verification of quality attributes of integrated systems
• Safety, reliability, etc.
• Detecting feature interaction problems

Configuration management
• Version control of components and architectures with multi-

product nature
• Evolution of the product line itself

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 55/<61>

Other IssuesOther IssuesTechnology

PL for systems in the newly emerging computing

environments

• Service Oriented Architecture

• Ubiquitous computing environment/cloud computing
− Dynamic binding of features
− Run-time verification

• From compile-time engineering to run-time engineering
− Embedment of SE knowledge in running systems

Tools!

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 56/<61>

Other IssuesOther IssuesProcess

How to change to PL-based organization
• How to evolve: staged process model for reuse adoption
• Key process areas
− Best practices

• Metrics
− Key indicators: cost of production, time-to-market, project

completion time, etc.
− Relationship between reuse, quality, and productivity
− Relationship between reuse and ROI for sustainability of a reuse

program

Process models
• Proactive vs. reactive vs. extractive models
− Best practices

• PL process vs. agile methods

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 57/<61>

Other IssuesOther IssuesManagement

Asset management (How to make PL-based development happen in an
organization)-”Institutionalize” PL

• Who should develop assets (with variation points)
• Who should maintain assets (variability management)
• Who will be responsible for quality assurance
• Who should enforce the use of assets (policies)
• Models (best practices)

− Centralized vs. distributed

Product line engineering in the context of a business strategy
• “High option potentials”

• ROI analysis
− Estimating ROI from a reuse program
− Estimating benefits from strategic market position

Product line engineering in the global development environment
• Component development outsourcing
− Variability specification
− Variability management

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 58/<61>

Other IssuesOther IssuesEmbedment of SE Knowledge

Technical Trends

Ad-Hoc
Approach

Systematic
Approach

Context-aware
Self-adaptive
Software

Incidental
Application of
Engineering
Principles

Methods
and

Tools

Embedment of
Software

Engineering
Knowledge in
the System

Manual Automatic

Modulization
Information hiding
Encapsulation
…

Commonality and
variability analysis
Parameterization
Template framework
…

Monitor and dynamic
reconfigurator

Dynamic binding
Architecture reconfiguration
Run-time verification
…

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 59/<61>

AgendaAgenda

Introduction

Looking Back

• Number of Citations

• Feature Model Genealogy

• Why Popular?

• Salient Features of FODA Report

Looking Forward

• Future Works

• Other Issues

Acknowledgement

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 60/<61>

AcknowledgementAcknowledgement

Special thanks to my students:

Hyesun Lee
Hyunsik Choi
Daesik Ham
Yoonho Cho
Yeonho Kim

for data analysis!

POSTECH
Copyright © 2009

SE Lab., Dept. of CSE
POSTECH, Rep. of Korea 61/<61>

The EndThe End

Participants

Cost is the driver!

Speed is the driver!

Value is the driver !

Strategy is
 the driver !

The process is the driver?

Goldfish Bowl Panel
SPLC 2009:

How to maximize business return of SPL
08.09.2009 - v31

Initial

Jan Bosch, Intuit
Ken Jackson IBM
Charles Krueger, BigLever
John McGregor, Clemson University
Andy Nolan, Rolls Royce

More than 10 further goldfish in the bowl
including Dirk Muthig, Ronny Kolb, Juha
Savolainen, David Weiss, Stuart Jobbins,
Kentaro Yoshimura....

Organizers Danilo Beuche, Mark Dalgano, Isabel John,
Klaus Schmid, Christa Schwanninger

You need some deterministic factors and you
need a const model in order to count the the
business return

You must understand and quantify the
business side of your product line, then you
can start maximizing its return

If you do not define it for YOUR organisation,
then you will fail
To decide what is YOUR value, you can use
one of the standard value or cost models ,
but you should use one

There is a strong connection between dealing
with Options and Products: The faster
number of products is the thing that is visible
from your options... so for externals,
business managers, that's the thing that
counts
For some organisations, we need to take the
engineering resources out of the equations for
the cost model as they should not count
when introducing PL

Empirical data shows that after 3
products you get ROI

But a business manager is interested in
Revenues, not in ROI

There is only ONE reason for product lines:
getting products out earlier

It's not the big that eat the small, it's the fast
that eat the slow
We can never affort to slow down, because of
the market pressure
But for introducing product lines, we have to
slow down (at least a but), so the question is
not the amount of variability but it's the
duration of the stop that you have to take

Big bang does NOT work

There is no other reason (quality etc) as they
are too hard to measure and are not as
visible as number of products
It's a products matter.. you have to find
things that your customer really wants to pay
for

We have to take into account product
innovation and process innovation

PL is process innovation
Product innovation comes from business
So there is a gap

Counter example what about Iphone
vs. Nokia, there speed was not enough

Yes, that's a risk
But Iphone is not really a product line

So the initial question is: Is it worth at all?

You need some direct value that
immediately is there when you start
introducing product lines... value for later is
not the business that managers want
We need scoping as a business activity,
not as an engineering activity because
business value is the driver, not engineering
In your company YOU have to define, what is
value for you

It's not easy counting value.. so is there
something easier? Having more variability is
expensive, so is there a measure that counts
the value of your portfolio

You need an effective PL , not a valuable
one because ROI gets larger when cost gets
down. If you want to increase the value, build
a cost model
You need some direct value that
immediately is there when you start
introducing product lines... value for later is
not the business that managers want

You do not need a cost model, you need a
strategy to stay on the market and to
discover new markets

And we do not net a strategy that goes too
far on the specialisation edge, but a general
strategy for our product line

The hurdles to enter a business might
disappear in the future

So rapidly capitalzing with
a small team might be THE upcoming
business model and THE upcoming strategy

For the strategy we have to decide:
Business vs. Engineering: The
engineering people do not understand the
business that they are in (and vice versa?!?)

You need a certain maturity for starting
with product lines, so getting this maturity is
an important point
 Most of the conference is on
engineering... but better engineering is not
the best way to make money, you need
something better

Migrating to an automatic production process
can be a driver

You need an engineering process and a
product line business for good PL benefit

So one possible business driver could
be having the options: think of variabilities as
option.. as points where you have a quick
choice to react on the market

C:\Goldfish Bowl Panel SPLC 2009.mmp - 08.09.2009 - Isabel John -

SPLC 2009
Important Dates:
Submission: March 6, 2009
Notification: April 30, 2009
Camera ready: May 30, 2009

Review and Evaluation Criteria:
Submissions will be evaluated according to the
relevance, originality, and feasibility of the work. For
each paper at least one reviewer will be available at
the symposium and there will be a unique opportunity
for discussion among reviewers and participants.

Acceptance:
Accepted research abstracts will appear in the SPLC
2009 Proceedings (second volume). All submitters will
be expected to be able to meet the tight deadlines for
camera-ready submissions and to present their work
at the SPLC 2009 conference. Authors will be notified
of acceptance by April 30, 2009.

Doctoral Symposium Chair:
Eduardo Santana de Almeida
Recife Center for Advanced Studies and
	 Systems - C.E.S.A.R
Reuse in Software Engineering - RiSE

Doctoral Symposium Committee Members:
•	 David Weiss, Avaya Labs
•	 Jan Bosch, Intuit
•	 Jaejoon Lee, Lancaster University
•	 John D. McGregor, Clemson University
•	 Klaus Schmid, University of Hildesheim

Symposium Organization:
The symposium is a half-day event to be held in
conjunction with SPLC 2009. Each participant gets
the chance to present his/her work (either as full
presentation or as short presentation) and will get
feedback from the panelists and the audience. In
particular, the presenters will be provided with an
opportunity for direct discussions with the reviewers.

Please visit the conference website for all details on
deadlines, required formats, paper evaluation criteria,
and so forth.

We invite you to be part of SPLC 2009. For more
information about the venue, program, and conference
organization, please visit the conference homepage at
www.sei.cmu.edu/splc2009/.

SPLC 2009
August 24–28, 2009 • Airport Marriott, San Francisco, CA, USA

13th International Software
Product Line Conference (SPLC)

Submission Guidelines for Doctoral Symposium
Eduardo de Almeida, Cesar, Brazil, SPLC 2009 Doctoral Symposium Chair

Goal:
The goal of the SPLC Doctoral Symposium is to provide a supportive, but challenging environment that
enables students to further improve their research work leading to a Ph.D.

Students will have the opportunity to discuss their research, especially goals, methods, and preliminary
results with the main researchers in the area. Thus, it is a unique opportunity for Ph.D. students to
gather valuable expert feedback with respect to all aspects of their research work and to get into
contact with other students who are at a similar stage of the Ph.D. research. The overall aim is to
improve the quality and quantity of successful Ph.D. work in the area of software product lines.

Scope:
The event is dedicated to Ph.D. candidates (2nd year or later) with initial results that are still not mature
enough for a full paper submission. The intent is to promote fruitful discussions and provide valuable
feedback to the candidate, to be integrated into the final version of his/her thesis.

All topics that are relevant to the SPLC are also relevant to the doctoral symposium.

Submission and Evaluation:
How to Submit
Please read all of these instructions prior to submitting your paper.

To apply as a student participant in the Doctoral Symposium, you should prepare a
submission package consisting of two parts, both of which must be submitted no later than
the deadline, which is March 6, 2009.

Part I: Research Abstract
To participate, students should submit a research abstract electronically (PDF) to esa”at” rise.com.
br. The submissions must be a maximum of 8 pages in the IEEE proceedings 8.5x11-inch, Two-Column
Format. All submissions must be in English and in PDF format. To submit your abstract go to
http://cyberchairpro3.borbala.net/splcpapers/submit/.

The research abstract should cover:
•	 The technical problem to be solved with a justification of its importance.
•	 A description of the related and prior work explaining why the identified problem has not been solved.
•	 The research hypothesis or claim.
•	 A sketch of the proposed solution.
•	 The expected contributions of your thesis research.
•	 Progress in solving the stated problem.
•	 The methods you are using or will use to carry out your research.
•	 �A plan for evaluating your work and presenting credible evidence of

your results to the research community.

Students at relatively early stages of their research will have some difficulty addressing some of these
areas, but should attempt to do so the best they can. The research abstract should include the title of
your work, your name, email address, postal address, personal website, and a one paragraph short
summary in the style of an abstract for a regular paper. Submissions should contain no proprietary or
confidential material and should cite no proprietary or confidential publications.

Part II: Letter of Recommendation
Ask your thesis advisor for a letter of recommendation. This letter should include your name and a
candidate assessment of the current status of your thesis research and an expected date for thesis
submission. The letter should be in PDF, and sent to: esa” at”rise.com.br with the subject of: SPLC-
Doctoral-Symposium.

http://www.computer.org/portal/site/cscps/menuitem.02df7cde46985ea21618fc2e6bcd45f3/index.jsp?&pName=cscps_level1&path=cscps/cps&file=cps_forms.xml&xsl=generic.xsl&
http://www.computer.org/portal/site/cscps/menuitem.02df7cde46985ea21618fc2e6bcd45f3/index.jsp?&pName=cscps_level1&path=cscps/cps&file=cps_forms.xml&xsl=generic.xsl&
http://cyberchairpro3.borbala.net/splcpapers/submit/

SPLC 2009
General Chair
Dirk Muthig, Fraunhofer IESE, Germany

Program Chair
John D. McGregor, Clemson University, USA

Industry Track
Paul Jensen, Overwatch, USA
Kentaro Yoshimura, Hitachi, Japan
Michael Schumpelt, ETAS, Germany

Workshops
Jaejoon Lee, Lancaster University, UK

Demonstrations and Posters
Ronny Kolb, Honeywell, Switzerland

Doctoral Symposium
Eduardo de Almeida, Cesar, Brazil

Tutorials
Gary Chastek, Software Engineering
Institute, USA

Publicity
Pat Donohoe, Software Engineering
Institute, USA

Please visit the conference website for
all details on deadlines, required formats
and paper evaluation criteria.

We invite you to be part of SPLC 2009.
For more information about the venue,
program, and conference organization,
please visit the conference homepage at
www.sei.cmu.edu/splc2009/.

Call for Participation in SPLC 2009 Industry Track

Industry Track Co-chairs:
Paul Jensen, Overwatch, USA
Kentaro Yoshimura, Hitachi, Japan
Michael Schumpelt, ETAS, Germany

For more than a decade, organizations have been taking advantage of software product line
practices to achieve business advantages in time to market, cost, quality, and agility. These
organizations have encountered a wide range of challenges, successes, and adaptations in their
software product line experience. We are seeking contributions from industry that share those
challenges, successes, and adaptations during all stages of software product line
maturity—ranging from adoption to evolution.

Specific topics of interest are

•	 experiences in implementing a software product line
	 – �retrospectives that summarize your organization’s experience with software product lines,

including the context in which you implemented a product line, the challenges you faced, and
how those challenges were addressed

•	 tools and technologies used in implementing a software product
	 – �how your organization used or adapted tools in your software product line experience

•	 software product line architectures
	 – �summarize the architecture that was implemented to support your organization’s software

product line, emphasizing the unique attributes that made it suitable for this purpose

• production planning
	 – �summarize your organization’s experience with production planning including the tools and

methods used

•	 �issues that are not adequately addressed by researchers with respect to creating and running a
software product line

We invite you to present your perspectives to your peers in the product line community at SPLC
2009. Experience reports will be reviewed by fellow practitioners from an industry perspective.

Submissions
Submitted reports must not exceed 10 pages in the IEEE Computer Society Conference Format for
8.5x11-inch Proceedings Manuscripts. Accepted reports will be published electronically.
To submit your abstract go to http://cyberchairpro3.borbala.net/splcpapers/submit/.

Important Dates
Submission:	 March 20, 2009
Notification:	 April 28, 2009
Camera ready: 	 May 20, 2009

SPLC 2009
August 24–28, 2009 • Airport Marriott, San Francisco, CA, USA

13th International Software
Product Line Conference (SPLC)

www.sei.cmu.edu/splc2009/

http://cyberchairpro3.borbala.net/splcpapers/submit/

SPLC 2009
General Chair
Dirk Muthig, Fraunhofer IESE, Germany

Program Chair
John D. McGregor, Clemson University, USA

Industry Track
Paul Jensen, Overwatch, USA
Kentaro Yoshimura, Hitachi, Japan
Michael Schumpelt, ETAS, Germany

Workshops
Jaejoon Lee, Lancaster University, UK

Demonstrations and Posters
Ronny Kolb, Honeywell, Switzerland

Doctoral Symposium
Eduardo de Almeida, Cesar, Brazil

Tutorials
Gary Chastek, Software Engineering
Institute, USA

Publicity
Pat Donohoe, Software Engineering
Institute, USA

Please visit the conference website for
all details on deadlines, required formats
and paper evaluation criteria.

We invite you to be part of SPLC 2009.
For more information about the venue,
program, and conference organization,
please visit the conference homepage at
www.sei.cmu.edu/splc2009/.

.

SPLC 2009
August 24–28, 2009 • Airport Marriott, San Francisco, CA, USA

13th International Software
Product Line Conference (SPLC)

Call for Workshops
Jaejoon Lee (j.lee at comp.lancs.ac.uk), SPLC 2009 Workshop Chair

The Organizing Committee of SPLC 2009 invites submissions for workshop proposals.

The purpose of the workshop program is to provide a platform for bringing together
people from industry, academia, and research institutions to present and discuss
experiences and practices in the area of software product line development. Workshops
that address the specific needs of major industry sectors such as automotive, mobile
communications, and medical systems are particularly welcome.

Workshop position papers will be distributed in a flash drive at the conference site.

Workshops should be organized as full-day events, and they are expected to be arranged
on the first and second conference days, August 24th and 25th, 2009.

Proposals for workshops (max. three pages) should contain:
•	 title of the workshop
• 	 summary of the workshop including
	 -	 description of objectives in relation to the conference
	 -	 list of workshop topics
	 -	 intended audience
• 	 preliminary schedule for the workshop
• 	 preliminary dates for workshop submissions
• �	� name, postal address, phone number, and email address of main organizer

(primary contact, one person only please)
•	 name, postal address, phone number, and email address of co-organizers
• 	 references to previous workshops (e.g., websites) - if applicable
• 	 technical requirements (beamer, whiteboard etc.)

A one-page summary of each accepted workshop will be published
in the SPLC proceedings.

The summary should include a motivation, a list of workshop topics,
and references (max. three references).

All workshop proposals must conform to the IEEE proceedings
8.5x 11,” two-column format.

Please send your workshop proposals to Jaejoon Lee (j.lee at comp.lancs.ac.uk),
SPLC 2009 Workshop Chair, by March 6, 2009. You can download the proposal template at
www.sei.cmu.edu/splc2009/files/CallforWorkshops.doc.

Important Dates:
Workshop Proposal Submission: March 6, 2009
Notification of Acceptance: March 20, 2009
1-Page Workshop Summary (Camera-Ready): TBD

www.sei.cmu.edu/splc2009/

http://www.sei.cmu.edu/splc2009/files/CallforWorkshops.doc

SPLC 2009
General Chair
Dirk Muthig, Fraunhofer IESE, Germany

Program Chair
John D. McGregor, Clemson University, USA

Industry Track
Paul Jensen, Overwatch, USA
Kentaro Yoshimura, Hitachi, Japan
Michael Schumpelt, ETAS, Germany

Workshops
Jaejoon Lee, Lancaster University, UK

Demonstrations and Posters
Ronny Kolb, Honeywell, Switzerland

Doctoral Symposium
Eduardo de Almeida, Cesar, Brazil

Tutorials
Gary Chastek, Software Engineering
Institute, USA

Publicity
Pat Donohoe, Software Engineering
Institute, USA

Please visit the conference website for
all details on deadlines, required formats
and paper evaluation criteria.

We invite you to be part of SPLC 2009.
For more information about the venue,
program, and conference organization,
please visit the conference homepage at
www.sei.cmu.edu/splc2009/.

Call for Tutorial Proposals
Gary Chastek, Software Engineering Institute, SPLC 2009 Tutorials Chair

Tutorials provide a valuable opportunity for conference participants to expand their
product line knowledge and skills. Tutorials may focus on introductory product line
topics, such as how to introduce a product line approach into an organization, or on
more advanced applied topics, such as industrial product line engineering practices.

Tutorials will be held during the conference week in half-day sessions.

A tutorial proposal consists of approximately two pages describing the topic, the plan
for conducting the tutorial, and the backgrounds of the presenters and the tutorial.

•	 �The Topic section should include the title of, goals of, and intended audience for
the tutorial. The topic should be described in detail, stressing its importance and
timeliness.

•	 The Plan section should include a
	 - preliminary schedule of events including estimated times
	 - detailed description of what the tutorial will cover
	 - justification of the tutorial for a product line audience
	 -� �explanation of how the tutorial will be conducted, including sample materials to be

included in the tutorial notes

•	 �The Presenters’ Backgrounds section should include relevant biographical
information and summaries of the presenters’ technical, presentation, and tutorial
experience.

•	 �The Tutorial Background section should include a description of where and when the
tutorial has been offered previously and any evaluations that were done.

A two-page description of all accepted tutorials will be published in the conference
proceedings.

Important Dates:
Email tutorial proposals are due to gjc@sei.cmu.edu by March 16, 2009.
Acceptance notification will occur by April 17, 2009.

SPLC 2009
August 24–28, 2009 • Airport Marriott, San Francisco, CA, USA

13th International Software
Product Line Conference (SPLC)

www.sei.cmu.edu/splc2009/

mailto:gjc@sei.cmu.edu

SPLC 2009

General Chair
Dirk Muthig, Fraunhofer IESE, Germany

Program Chair
John D. McGregor, Clemson University, USA

Industry Track
Paul Jensen, Overwatch, USA
Kentaro Yoshimura, Hitachi, Japan
Michael Schumpelt, ETAS, Germany

Workshops
Jaejoon Lee, Lancaster University, UK

Demonstrations and Posters
Ronny Kolb, Honeywell, Switzerland

Doctoral Symposium
Eduardo de Almeida, Cesar, Brazil

Tutorials
Gary Chastek, Software Engineering
Institute, USA

Publicity
Pat Donohoe, Software Engineering
Institute, USA

Please visit the conference website for
all details on deadlines, required formats
and paper evaluation criteria.

We invite you to be part of SPLC 2009.
For more information about the venue,
program, and conference organization,
please visit the conference homepage at
www.sei.cmu.edu/splc2009/.

.

Call for Tool and Demonstration
Proposals
Ronny Kolb, Honeywell, SPLC 2009 Demonstrations and Posters Chair

Tools and the automation achieved through them are an important aspect of efficiently
implementing software product lines in industrial practice and further improving
productivity.

We are soliciting demonstrations of academic, open source, in-house, and commercial
tools that support and automate specific aspects of product line engineering such as
feature modeling, variant management, derivation and generation of products, product
line testing, and so forth. Demonstrations of original, novel tools for some purpose,
new versions of existing tools with a clearly identifiable new contribution, as well as
customized extensions of standard tools are welcome. Commercial tool vendors are
encouraged to demonstrate their tools together with an industrial customer using
concrete examples.

In addition to demonstrations of practically applying product line engineering using
(tailored) standard or product-line-specific tools, we are interested in
•	 approaches and results of evaluating and selecting product line tools
•	 �integration of product line tools with general software development tools
•	 integration of product line tools in existing single-system tool chains
•	 extensions of standard product line tools for specific needs
•	 integrated solutions for the whole product line life cycle

In addition to tool demonstrations, we are interested in demonstrations of industrial
practice for various activities in the product line engineering life cycle. Demonstrations
are aimed at showing state of the practice in implementing product line engineering and
exchanging practical experiences and challenges. Provided there is evidence of use in
actual practice, process definitions and/or simulations using tools such as the Eclipse
Process Framework (EPF) or IBM’s Rational Method Composer (RMC) can be presented.

All those who wish to demonstrate a product-line-related tool or industrial practice
should send their proposal of up to two pages in a free format to Ronny Kolb
(ronny.kolb@honeywell.com) by March 6, 2009. Proposals will be evaluated beginning
March 6, 2009 and will continue until the deadline for camera-ready copy. A one-page
paper about each accepted demo will be published in the conference proceedings.

www.sei.cmu.edu/splc2009/

SPLC 2009
August 24–28, 2009 • Airport Marriott, San Francisco, CA, USA

13th International Software
Product Line Conference (SPLC)

mailto:ronny.kolb@honeywell.com

© 2009 Carnegie Mellon University

2009 Workshop on Service-Oriented

Architectures and Software Product

Lines (SOAPL 2009)

Enhancing Variation

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Bob Krut & Sholom Cohen
25 August 2009
San Francisco, California, USA

2

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Agenda

8:30 - 8:45 Welcome, Agenda, and Summary of Previous Workshops

8:45 - 9:30 Invited Talk: Jaejoon Lee, Lancaster University, UK

9:30 - 10:00 Paper #1 Presentation & Discussion

10:00 - 10:30 Break

10:30 - 11:00 Paper #2 Presentation & Discussion

11:00 - 11:30 Paper #3 Presentation & Discussion

11:30 - 12:00 Context Setting for Afternoon Discussion

12:00 - 13:30 Lunch

13:30 - 14:00 Paper #4 Presentation & Discussion

14:00 - 15:00 Workshop Discussions

15:00 - 15:30 Break

15:30 - 16:30 Workshop Discussions Continued

16:30 - 17:00 Conclusion: Goals Addressed, Topics for SOAPL 2010, Future Work

3

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Workshop Organizers

Sholom Cohen, Software Engineering Institute, USA
David Benavides, University of Seville, Spain
Dragan Gasevic, Athabasca University, Canada
Andreas Helferich, Universität Stuttgart, Germany
Robert Krut, Software Engineering Institute, USA
Grace Lewis, Software Engineering Institute, USA
Dennis Smith, Software Engineering Institute, USA
Christoph Wienands, Siemens Corporate Research, USA
Peter Dolog, Aalborg University, Denmark

4

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

The First Workshop on Service-Oriented
Architectures and Product Lines (SOAPL 2007)

Part of the 2007 Software Product Line Conference (SPLC 2007),
10 September 2007, Kyoto, Japan.

Service Oriented Architectures and Product Lines - What is the Connection?
(http://splc.net/prev-conferences/soapl-2007.pdf)
SOAPL 2007 explored the connections from two perspectives:

1. Can services support product lines using a service-oriented architecture?
2. How can use of product line practices support services and service-oriented
architectures?

Proceedings of the First Workshop on Service-Oriented Architectures and Product Lines
(CMU/SEI-2008-SR-006).

http://www.sei.cmu.edu/publications/documents/08.reports/08sr006.html

http://splc.net/prev-conferences/soapl-2007.pdf
http://www.sei.cmu.edu/publications/documents/08.reports/08sr006.html

5

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

The Second Workshop on Service-Oriented
Architectures and Product Lines (SOAPL 2008)

Part of the 2008 Software Product Line Conference (SPLC 2008),
8 September 2008, Limerick, Ireland

Service Oriented Architectures and Product Lines - Putting Both Together
(http://splc.net/prev-conferences/soapl-2008.pdf)
SOAPL 2008 explores experiences in integrating SOA and SPL:

1. How web services have been used to support product lines using a service-oriented
architecture?
2. How product line practices have been used to support web services and service-
oriented architectures?

Workshop papers are published in the
Proceedings of the 12th International Software Product Lines Conference (SPLC 2008),

Second Volume. Limerick, Ireland, September 8-12, 2008. University of Limerick,
Ireland: Lero International Science Centre, 2008 (ISBN 978-1-905952-06-9).

The outcome of SOAPL 2008 discussion will be the basis of today’s workshop.

http://splc.net/prev-conferences/soapl-2008.pdf

6

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

The Third Workshop on Service-Oriented
Architectures and Product Lines (SOAPL 2009)

Service-Oriented Architectures and Software Product Lines - Enhancing Variation
(http://www.sei.cmu.edu/splc2009/soapl.html)

SOAPL 2009 will explore how service-oriented architectures and software product lines can
benefit from each other, specifically

1. how service-oriented systems can benefit from software product lines' variation
management approaches to identify and design services targeted to multiple
service-oriented systems

2. how software product lines can benefit from service-oriented architectures by
employing services as a mechanism for variation within a product line

Four position papers were accepted.

7

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Accepted Papers

1) “Service-Oriented Architecture (SOA) and Software Product Lines: Pre-
Implementation Decisions”

Dennis Smith, Grace Lewis

2) “Semantic Variability Modeling for Multi-staged Service Composition”
Bardia Mohabbati, Nima Kaviani, Dragan Gasevic

3) “Managing SOA System Variation through Business Process Lines and Process
Oriented Development”
Nicola Boffoli, Marta Cimitile, Fabrizio Maria Maggi, Giuseppe Visaggio

4) “Towards an Approach for Service-Oriented Product Line Architectures”
Flávio Mota Medeiros, Eduardo Santana de Almeida, Silvio Romero de Lemos
Meira

Papers are available at http://www.sei.cmu.edu/splc2009/soapl.html

8

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Workshop Theme

The two major themes addressed from the accepted SOAPL 2008 papers were:
1. Variability and variability mechanisms
2. Product composition

The aspects of scope, design approach, source of variation, application target,
composition elements, and technical approach were the focus of discussion during the
workshop.
These discussions lead to four principles for SOA and PL variation:

1. recognizing the commonality and variants across the scope of a product line or
across some group of service-oriented systems within the enterprise

2. leveraging the recognized commonality by building core assets, including services,
across the variants with established points of variation

3. recognizing the enterprise integration needs that service-oriented systems must
address

4. addressing end user needs for variation within service-oriented systems

9

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Workshop Theme (cont.)

For SOAPL 2009, we would like to address these four principles by focusing on
1. Scope - identifies those entities with which products in the product line will interact (that is, the product line

context), and it also establishes the commonality and sets limits on the variability of the products in the product
line. [Northrop, L. & Clements, P. A Framework for Software Product Line Practice, Version 5.0
<http://www.sei.cmu.edu/productlines/framework.html> (2009).]

2. Source of variation – What is the source of variation within a scope or across products that define a new
product line? Do SOA methods help identify new services and their variations?

3. Variation management - comprises all activities to explicitly model, manage, and document those parts, which
vary among the products of a product line. [John, I.; Pech, D. Scalable Variability Instantiation Strategies.
Scalable Modeling Techniques for Software Product Lines (SCALE 2009) Workshop, SPLC 2009.]

4. Variation mechanisms - a mechanism to support the creation and/or selection of variants that are compliant with
the constraints for a variable part of a core asset . [Bachmann, F. & Clements, P. Variability in Software Product
Lines (CMU/SEI-2005-TR-012, ADA450337). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2005.]

And from this years papers

1. Ontology's, semantic variability modeling
2. Business process variation

What other approaches do people use to address these four principles?

http://www.sei.cmu.edu/productlines/framework.html

10

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Invited Speaker

Dr. Jaejoon Lee
Lecturer
Computing Department
Lancaster University, UK

Main Research Areas:
• Product Line Software Engineering
• Software Architecture
• Service-oriented Software Systems

Presentation Title: “A Negotiation Framework for Service-Oriented Product Line
Development”

11

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Paper Presentation

Presenter: Dennis Smith
Senior Member of Technical Staff
Software Engineering Institute
Carnegie Mellon University

Main Research Areas:
• Migrating Legacy Systems to SOA Environments
• Integration of Software-Intensive Systems
• Service-oriented Architectures
• Software Product Lines

Presentation Title: “Service-Oriented Architecture (SOA) and Software Product Lines: Pre-
Implementation Decisions”

Authors: Dennis Smith, Grace Lewis

12

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Paper Presentation

Presenter: Bardia Mohabbati
Ph.D Student
Simon Fraser University
Laboratory for Ontological Research

Main Research Areas:
• Semantic Web Techniques in Software Engineering
• Software Language Engineering
• Business Process Modeling
• Software Product Line
• Service-oriented Architecture

Presentation Title: “Semantic Variability Modeling for Multi-staged Service Composition”
Authors: Bardia Mohabbati, Nima Kaviani, Dragan Gasevic

13

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Paper Presentation

Presenter: Nicola Boffoli

PresentationTitle: “Managing SOA System Variation through Business Process Lines and
Process Oriented Development”

Authors: Nicola Boffoli, Marta Cimitile, Fabrizio Maria Maggi, Giuseppe Visaggio

14

SOAPL 2009

Bob Krut & Sholom Cohen

25 August 2009

© 2009 Carnegie Mellon University

Paper Presentation

Presenter: Flávio Mota Medeiros

Presentation Title: “Towards an Approach for Service-Oriented Product Line Architectures”
Authors: Flávio Mota Medeiros, Eduardo Santana de Almeida, Silvio Romero de Lemos

Meira

© 2009 Carnegie Mellon University

Context Setting for this

Afternoon

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Author: Sholom Cohen
Date: August 24, 2009

2
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Goals

Use case study approach
• Identify commonality and variation within case study context
• Analyze C&V and consider variation mechanisms

Use case study as a starting point on an example product line
• define meaning of variation in scope, service features, others
• identify variation mechanisms, requirements for business process variation
• provide example product ontologies
• other topics covered in the various position papers.

Highlight means to construct a product line solution within case study
context using SOA and PL approaches

Other goals:

3
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

How

Hear example application based on SOA and Product Line approaches
• “Towards an Approach for Service-Oriented Product Line Architectures”

Flavio Mota Medeiros, Eduardo Santana de Almeida,Silvio Romero de Lemos
Meira

• Listen for ways to use this example to
– Highlight variations at several levels (scope, architecture, component)
– Apply variation mechanisms to deal with these variations (feature, service

or component)
– Explore ontologies, business process variation, and other themes

Product: Create enhanced version of example application to illustrate
bringing SOA and SPL approaches together.

4
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Use SOA design as a pattern for multiple
product lines

Case study is directed at the conference paper review process
• provides a pattern for scoping other potential product lines that involve

– Submitting a data item for review
– Comment on data item
– Reporting result and suggesting follow up

• examples
– medical record review and reporting
– trouble report submission and tracking
– item order tracking system

Think of other product lines as we further develop the pattern
• Consider infrastructure and other services they might share.
• What specific services would they require?

Product
• a sketch of common and specific services used within each product line
• unique services to support the specific target market

5
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Example – Medical Related Services

Create scenarios
• Examples: a patient registers, a patient submits an insurance card, a clinician

selects an report for review, a clinician submits a diagnosis, …

• Expand scenarios using activity diagrams
Identify and highlight commonality and variations
• in activity diagrams
• as tasks and patterns
• in feature model

Create use cases with extensions
• Identify actors
• Create use cases and dhow variations in use case dialogs
• Recognize patterns and model (e.g., context diagram)

Identify services and select service mechanisms

6
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

A Medical Story – Chapter 1

A patient with some history of cardiac problems decides to see his
primary care physician
Call to doctor’s office

• “If you are otherwise all right, we can see you next week.”

7
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Build an Activity Diagram

Patient PCP

8
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

A Medical Story – Chapter 2

The patient checks in
• presents insurance card
• makes co-payment (relevant outside United States?)
• taken to exam room with medical chart

Assistant performs preliminaries and records in (paper/electronic) chart
• weight, vitals, etc.
• reason for visit

Doctor examines patient (ontology support to build this?)
• patient overweight
• blood pressure marginal risk
• family history risk
• records report
• prescribes EKG, blood work, stress echocardiogram

Patient takes prescriptions and proceeds to hospital lab

9
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Activity - Office Visit

Patient PCP Insurance

10
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

A Medical Story – Chapter 3

The patient checks into lab
• presents insurance card
• makes co-payment (not that good)
• taken to exam phlebotomy room with medical chart requisition

Assistant Technician performs preliminaries and records in paper chart
system
• weight, vitals, etc. name, id, etc.
• reason for visit
• Takes required blood samples

Lab sends samples to analyzer
Patient takes prescriptions and proceeds to hospital radiology
department ENT

11
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Activity - Labs

Patient InsurancePhlebotomyPCP

12
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

A Medical Story – Chapter 4 (Cardiologist)

The patient checks in
• presents insurance card
• makes co-payment
• taken to exam room with medical chart Presents labs report

Assistant performs preliminaries and records in paper/electronic chart
• weight, vitals, etc.
• reason for visit

Doctor examines patient
• Conducts general examination
• prescribes reviews labs
• sends patient for echo cardiogram
• Records report in chart

Moderate cardiovascular risk. Further treatment required

13
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Activity - ENT

14
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Tasks

Scheduling

(PCP & ENT)

Registering

Maintaining

Medical Record

(all)

Patterns

Processing

Insurance

(all)

Examination

(all)

Managing

Medical Record?

Report referral

(labs and

Cardio)

Tasks

Scheduling

(PCP & Cardio)

Registering

Maintaining

Medical Record

(all)

15
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Example Feature Model

Healthcare

Medical Tests

Test types
[1..n]

Blood

Radiology
(x-ray, CT,

MRI, ultrasound)

Biopsy

Test set Assignment Diagnosis Modes Recipients

[1..2]

SMS Email

[1..]

Patient Medical
staff

Cardiac ...
Risk

Profile

[1..n]

16
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Schedule Event Use Case

Scenario for Laboratory Schedule Patient

Actor System

Patient requests exam

Option: Lab performs
pre-exam activity

Technician performs
exam

Optional: Patient
provides time

Analysis accepts
reminder. Submits
analysis

System places patient
in queue for that exam
category (variations for
pediatric, neo-natal,
etc.). Schedules
technician work flow.

Updates record with
pre-exam results

Updates record with
exam results

Optional: Schedule
clinical consultation

Send reminder to
clinician to follow up
with PCP. Optional:
consultation.

Forwards report

Optional: Schedule next
reminder to patient

17
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Pattern: Managing Medical Record

Actors – PCP, Cardiology, Labs, Medical Record system, medical
information exchange
Integration across use cases:
• Registering
• Scheduling
• Reporting
• Record keeping

Integration may be modeled as linking use cases with extensions for
variations depending on organizational constraints
Variations for medical practice area: Radiology, cardiology, etc.

18
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Medical Record Management Context

19
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Medical Record Workflow Sequence

Next Steps

1. Use sequence to elaborate

services, objects, workflow

2. Develop UIs

3. Refine data schema (XML)

20
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Characteristics of Systematic Reuse

Not about extracting a legacy component and wrapping as a service for
use in a single, new system
Systematic reuse is about:
• Creating a family of products, or software product line, whose members vary

while sharing many common features
• Identifying and differentiating those features that remain constant across

those products versus those that vary
• Defining service functionality and implementation characteristics within

context of targeted systems
• Building variations into services and select among the variants to create a

unique product
• Examples

– Medical record management systems
– Scheduling systems

21
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

What is a Product Line

A set of software-intensive systems that share a common, managed set
of features satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in
a prescribed way.

Aspects SPL definition element Definition of a service-oriented product line

Scope A set of software-
intensive systems

Medical information management systems

Source of
variation

that share a common,
managed set of features

Authentication services, medical treatment
record services, physician directed services,
patient management services, billing record
services

Application satisfying the specific
needs of a particular
market segment or
mission

Electronic medical record services for the
healthcare industry including hospitals, clinics,
medical offices, patient home (self-directed)

Compositional
elements

and that are developed
from a common set of
core assets

Services, scope definition, feature model, SOA-
based product line architecture, etc.

Technical
approach

in a prescribed way

Architecture and production plan to guide building
of applications using SOA infrastructure.

22
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Evolutionary Approach

Understand potential scope of applicability of the core asset base of
services
Develop the core asset base in stages while planning from the
beginning to develop a product line.
• Develop part of the core asset base, including the architecture and some of

the services for multiple applications
• Develop one or more applications or products.
• Develop part of the rest of the core asset base.
• Develop more products.
• Evolve more of the core asset base.

23
SEI Presentation (Basic)

Author, Date

© 2009 Carnegie Mellon University

Feature Model

1

Service Oriented Product Line EngineeringService Oriented Product Line EngineeringService Oriented Product Line EngineeringService Oriented Product Line Engineering
(A Negotiation Framework for Service(A Negotiation Framework for Service(A Negotiation Framework for Service(A Negotiation Framework for Service----Oriented Product Line Oriented Product Line Oriented Product Line Oriented Product Line

Development)Development)Development)Development)

Jaejoon Lee

Computing Department

Lancaster University

Copyright © Jaejoon Lee 2008

Context Context Context Context –––– “Virtual Office of the Future”“Virtual Office of the Future”“Virtual Office of the Future”“Virtual Office of the Future”

• General definition: virtual office

- A type of telecommuting in which workers are equipped with the tools,
technology and skills to perform their jobs from anywhere the person
has to be – home, office or customer's location.

• Research areas

- Document management (i.e., efficient management of heterogeneous
document types)

- Workflow modeling (i.e., capturing and optimizing office workflows)

- Workflow management (i.e., tool support for workflow artifacts)

- (Product Line) Software Engineering Methods(Product Line) Software Engineering Methods(Product Line) Software Engineering Methods(Product Line) Software Engineering Methods

� Efficient generation of solutions supporting diverse organizations, roles, and Efficient generation of solutions supporting diverse organizations, roles, and Efficient generation of solutions supporting diverse organizations, roles, and Efficient generation of solutions supporting diverse organizations, roles, and
infrastructuresinfrastructuresinfrastructuresinfrastructures

� Ensure system dependabilityEnsure system dependabilityEnsure system dependabilityEnsure system dependability

- Anywhere => Focus: Anywhere => Focus: Anywhere => Focus: Anywhere => Focus: AdaptivityAdaptivityAdaptivityAdaptivity, , , ,

- Anytime => Focus: AvailabilityAnytime => Focus: AvailabilityAnytime => Focus: AvailabilityAnytime => Focus: Availability

2

Copyright © Jaejoon Lee 2008

• “Service-oriented architecture (SOA)” is an emerging concept for the development of
information systems

- Not for a statically configured system

- Service providers/consumers may join in and leave from a system dynamically
(i.e., at run time)

- Some examples include Web services, ebXML, etc.

• One of the challenges for the development of SOA based systems is the dynamic
management of services such as:

- Deployment of a new service

- Modification of current service behaviors

- Removal of an unavailable service

- Management of available resources

How to provide

dynamic adaptability

of services

with high dependability?

Project ContextProject ContextProject ContextProject Context

Copyright © Jaejoon Lee 2008

▶ Prototype

Development

Virtual` Office

▶ Reference

Architecture Design

Architecture

EvaluationService
Manager 1

Service
Manager 2

Computational
Component 1

Data
Repository

Mode
Manager

Computational
Component 2

Computational
Component m

Service
Manager n

Architecture

Model

▶Workflow

based

Behavior

Specifications

Component Model

Driving Controller
<DrivingService>

Door Controller
<Moving Method>
Motor Controller

Door Device

<Scheduling Method>
Scheduler

Message Queue
<Communication

Method>

Component Model

Driving Controller
<DrivingService>

Door Controller
<Moving Method>
Motor Controller

Door Device

<Scheduling Method>
Scheduler

Message QueueMessage Queue
<Communication

Method>

Workflow

framework

Highly Dependable Architecture-
Centric Service Composition

▶ Feature based Analysis

for Service Oriented

Information System

Feature Model

Edit Image
Printing

setting

Copier

Page

Numbering

Erase

border
mirror

Erase

centerImage

repeat

…

Approach Approach Approach Approach – OverviewOverviewOverviewOverview

3

(Standard) Feature Model of VOF(Standard) Feature Model of VOF(Standard) Feature Model of VOF(Standard) Feature Model of VOF

Follow-Me

User

Authentification

Device

Allocation

Strategy

Manual

Log-onAuto

Log-on

Distance-

based
Device

Attribute-

based

Smart

Fax

Virtual

Printer

On-line

Fax Send

Recipient

Recognition

Recipient

Notification

Email

SMS

Virtual Office of the Future (VOF)

…

User

Positioning

Method

Resource

Manager

RFID-based

Method

Access Point

based Method

Recipient Notification requires

Recipient Recognition.

Optional Alternative

Composed-of relationship

Generalization relationship

Implemented-by relationship

Legend

Composition Rules

……

Binding unit

Feature Biding

Unit Name
NAME

…

Copyright © Jaejoon Lee 2008

Approach Approach Approach Approach –––– Key ConceptsKey ConceptsKey ConceptsKey Concepts

• Molecular Service (MS) Identification as for a Unit of Orchestration

- Self-contained (control + computation)

- Stateless from service user’s point of view
- Pre/post conditions and invariants for each MS

- Representative of a domain-specific service

• Quality of Service for each MS

- Quality attributes in terms of features

- Contextual information to determine one of the attributes (who makes
the decision? what factors affect the decision?)

• Workflow based Service Behavior Specification

- Dependable orchestration of molecular services

- Pre/post conditions and invariants for each workflow

- Connection to operational context for the selection of QoS attributes at
runtime

4

…

Follow-Me

Environment

Visualization

User

Authentification

Device

Allocation

Strategy

Manual

Log-on
Automatic

Log-on
Distance-

based

Device

Attribute-

based

Smart

Meeting

Organizer

Smart FaxVirtual

Printer

On-line

Fax Send

Recipient

Recognition

On-line

Fax Receive

VOF

…

User

Localizer

Office

Device

Manager

RFID-based

localization
AP-based

localization

Business

Trip

Planner

… …

Molecular Service IdentificationMolecular Service IdentificationMolecular Service IdentificationMolecular Service Identification

Maintain

Connectivity

Recipient

Notification

EmailSMS

Molecular Service Layer

Service Orchestration Layer

FOLLOW ME

ALLOCATE

DEVICE

RECOGNIZE

RECEIVER NOTIFY

Optional Alternative

Composed-of relationship

Generalization relationship

Legend

Molecular

Service

Molecular Service NameNAME

Parameters of

Molecular Service

r VOF

m

o o

o

o

VIRTUAL

PRINTER

ALLOCATE

DEVICE

SMART

FAX

NOTIFYFOLLOW ME

Feature binding unit

Legend

Static binding relation

Dynamic binding relation

…

Addressing Integrity –

Molecular Services Specification

molecular service FOLLOW ME (user User)

inv user.employmentStatus == true

pre user.authentification == logged_in

post none;

option Environment Visualization

binding time run time

pre user.device == desktop ∨∨∨∨ notebook

post none;

option Automatic Log-on

binding time run time

pre user.rank == director ∨∨∨∨manager and

RFID bases user location method == available

post user.access == granted ∨∨∨∨ rejected;

molecular service ALLOCATE DEVICE (user User)

inv user. employmentStatus == true

pre user.authentification == logged_in

post user.device_allocation == success ∨∨∨∨ failure ;

option Attribute based Device Allocation

binding time installation time

pre user.rank == director ∨∨∨∨manager

post none;

molecular service NOTIFY (sender User, receiver User)

inv sender. employmentStatus == true

pre sender.authentification == logged_in

receiver.email ≠ null

post none;

option SMS

binding time run time

pre sender.cell_phone_number ≠ null and

sender.message ≠ null and

receiver.cell_phone_number ≠ null

post sender.message == null

o

BUSINESS

TRIP PLANNER

o

SMART MEETING

ORGANIZER

…

r: root
m: mandatory
o: optional

…

5

Copyright © Jaejoon Lee 2008

<<Start State>>

Start

<<Task>>

Collect

trip data

<<Decision>>

All data

collected?

No

No

<<Decision>>

Visa required?

<<Task>>

Reservations

(as: assisting staff)

<<Task>>

Visa process

(c: country name)

Yes

<<Task>>

Approval

(ds: deciding staff)

<<Decision>>

Approved?

Yes

Yes

<<Task>>

Postmortem report

(c: country name)

<<End State>>

End

No

Workflow Specification: Dependable Orchestration of Molecular Services

Example of Business Trip Planner

workflow BUSINESS TRIP Planner (trip:Trip, t:Traveler, c:Country Name)

Inv t.IemployeeStatus == True && trip.validity ≠ Canceled

pre t.authetification == Logged_in

post trip. postmortemReport == Submitted

<<Task>>

Local task support

<<Fork>>

<<Join>>

<<Start State>>

Start

<<Task>>

Collect

trip data

<<Decision>>

All data

collected?

No

No

<<Decision>>

Visa required?

<<Task>>

Reservations

(as: assisting staff)

<<Task>>

Visa process

(c: country name)

Yes

<<Task>>

Approval

(ds: deciding staff)

<<Decision>>

Approved?

Yes

Yes

<<Task>>

Postmortem report

(c: country name)

<<End State>>

End

No

Identification of Localities of Tasks from a WF Specification

Example of Business Trip Planner

<<Task>>

Local task support

<<Fork>>

<<Join>>

Travel Requester

Deciding Staff

Secretary

Travel

Requester

Legend

Local work flow

Global work flow

6

Copyright © Jaejoon Lee 2008

Design Goals Design Goals Design Goals Design Goals – Product Line ArchitectureProduct Line ArchitectureProduct Line ArchitectureProduct Line Architecture

• Service orientation

- Network based service request, query, and provision

- Scalability over the Internet

• Context awareness

- Recognition of current operational/locational context of users

- Maintain connectivity to service providers

• Product line variations

- Control of product line variation before/after deployment

- Product customization for each user

- Dynamic product reconfiguration to provide context relevant
services

Copyright © Jaejoon Lee 2008

Architecture Style Architecture Style Architecture Style Architecture Style – HEART HEART HEART HEART (HeHeHeHeterogeneous-style-based ArArArArchitectttture)

Information

Broker

Service

Consumer
1..* 0..*

Service

Provider

0..* 1..*

service

query

11..*

service request

resource provide

1..*1

service

register

0..*
1

trust

Service-oriented Style Meta-Model

VOF Service Architecture View

<<Information Broker>>

A Domain

<< Service Consumer>>

Guest

<< Service Consumer>>

Scientist

<< Service Consumer>>

Director<<Information Broker>>

B Domain

<< Service Provider>>

Guest

Printer

<<Service Provider>>

Color

Printer

<< Service Provider>>

Default

Printer

<< Service Provider>>

Global

Workflow

7

Copyright © Jaejoon Lee 2008

Communicating Process Style Meta-Model

MetaMetaMetaMeta----Models of the HEARTModels of the HEARTModels of the HEARTModels of the HEART

<< Service Consumer>>

Director

Communicating Process Architecture View

of Manager Service Consumer

<<Process>>

Consumer

Agent

<<Process>>

Service

Manager

<<Process>>

Context

Analyzer

RPC

RPC RPC

<<Process>>

User Interface

RPC

Process

Service

Consumer

1..*

1

Communication

Path * 2..*

communicate

over

1

*

Copyright © Jaejoon Lee 2008

Component

Bus

Connector

Top

Port

Bottom

Role

Bottom

Port

Top

Role

1..*

0..1

1..*

0..1

0..1 0..1

C2 Style Meta-Model1

ProcessComponent
Bus

Connector1..* 1..*

Adapted from the paper: ‘Integrating C2 with the Unified Modeling Language,’ Jason E. Robbins, David F. Redmiles,
and David S. Rosenblum., Proceedings of the 1997 California Software Symposium (Irvine, CA), UCI Irvine Research
Unit in Software, Irvine, CA, November 7, 1997, pp. 11-18.

Brick Configurator

MetaMetaMetaMeta----Models of the HEARTModels of the HEARTModels of the HEARTModels of the HEART

Workflow

Brick

Molecular

Service Brick

<<Brick>>

Mode Manager

<<Workflow Brick>>

Virtual

Printer

<<Workflow Brick>>

Smart Trip

Planner

<<Workflow Brick>>

Meeting

Organizer

<<Configurator>>

Master

Configurator

<<Molecular Service

Brick>>

Printing Proxy

<<Molecular Service

Brick>>

Workflow Proxy

<<Molecular Service

Brick>>

Follow Me

Proxy

C2 Architecture View of Service Manager Process

<<Process>>

Service Manager

8

HEART (HEART (HEART (HEART (HeHeHeHeterogeneous Style based ArArArArchittttecture) Model:) Model:) Model:) Model:
A multiple architecture style based solution for developing core assets of SO systemsA multiple architecture style based solution for developing core assets of SO systemsA multiple architecture style based solution for developing core assets of SO systemsA multiple architecture style based solution for developing core assets of SO systems

Communicating processes Style
decomposition

<<Service Consumer>>

Director

<<Process>>

Consumer

Agent

<<Process>>

Service Manager

<<Process>>

Context

Analyzer

<<Process>>

User Interface

RPC

RPC RPC

RPC

C2 Style

decomposition

<<Brick>>

Mode Manager

<<Workflow Brick>>

Virtual Printer
<<Workflow Brick>>

Smart Trip Planner

<<Workflow Brick>>

Meeting Organizer

<<Configurator>>

Master Configurator

<<Molecular Service Brick>>

Printing Proxy

<<Molecular Service Brick>>

Workflow Proxy
<<Molecular Service Brick>>

Follow Me Proxy

<<Process>>

Service Manager

Service-oriented Style

<<Information Broker>>

A Domain

<< Service Consumer>>

Director

<< Service Consumer>>

Scientist

<< Service Consumer>>

Guest<<Information Broker>>

B Domain

<<Service Provider>>

Guest

Printer

<< Service Provider>>

Color

Printer

<< Service Provider>>

Default

Printer

Copyright © Jaejoon Lee 2008

Summary of the ApproachSummary of the ApproachSummary of the ApproachSummary of the Approach

• Feature based identification of molecular services and their quality

attributes

• Extension of workflow specifications with pre/post conditions and

invariants for dependable service orchestration

• Architecture model for the systematic integration of multidisciplinary

design paradigms: dependability, adaptivity (dynamic variations), and

service orientation

• Prototype development to demonstrate the feasibility of proposed

approach

9

Copyright © Jaejoon Lee 2008

More IssuesMore IssuesMore IssuesMore Issues

• Service-oriented architecture (SOA) supports dynamic

composition and reconfiguration of software systems

• Current quality management schemes predict system

properties based on the static properties of its components

- The dynamic nature of a service-oriented system requires a dynamic runtime

approach which is able to detect and respond to emergent problems

- Lastly, current quality schemes offer the consumer only limited control over

the quality of a service and therefore the system

Copyright © Jaejoon Lee 2008

Problems with current quality management frameworks for serviceProblems with current quality management frameworks for serviceProblems with current quality management frameworks for serviceProblems with current quality management frameworks for service----
oriented systems…oriented systems…oriented systems…oriented systems…

• Offer the consumer only limited control over service quality

- The third-party nature of software services means that a consumer has little control over
the quality of services outside the static Service Level Agreement (SLA)

• Provide poor support for runtime quality support

- Monitoring by itself is inadequate for ensuring runtime quality

• Poor support for resource-restricted systems

- Quality assurance is particularly challenging for systems that operate in resource-
restricted environments

10

Copyright © Jaejoon Lee 2008

Negotiation FrameworkNegotiation FrameworkNegotiation FrameworkNegotiation Framework

• Provides a structural framework for:

- Integrating different methods of negotiation and provider reputation rating

- Supporting the requirements of automated service negotiation and renegotiation in SOA

Copyright © Jaejoon Lee 2008

Current StatusCurrent StatusCurrent StatusCurrent Status

• Effective runtime quality assurance must combine monitoring with effective

recovery and self-management strategies

• A consumer-centered quality assurance framework:

- Enables consumers to negotiate service agreements which are closer to their
requirements, and compensates providers accordingly

- Allows consumers to specify quality-weighted services and to associate these with
consumer strategies

• We are currently investigating improvements to the framework to support

dynamic strategies, forecasting and runtime quality more efficiently in

resource-constrained system environments

11

Copyright © Jaejoon Lee 2008

SPLE

Analysis

Commonality/Variability

PL Requirements

Services (Ontology)

Orchestration

Workflow

Design
Deployment/

Maintenance

SOA

Product line

architecture/

Variation points

SOA

(Information broker,

Service provider/

consumer.

QoS)

Product

Requirements

(Feature selection)

Provider/

consumer,

registration

Systematic

Reuse of

Core Assets

Runtime

Flexibility/

Scalability

Over the

Internet

Concluding Remark: SPLE vs. SOAConcluding Remark: SPLE vs. SOAConcluding Remark: SPLE vs. SOAConcluding Remark: SPLE vs. SOA

Copyright © Jaejoon Lee 2008

Contact

Dr. Jaejoon Lee: j.lee@comp.lancs.ac.uk

Computing Department: http://www.comp.lancs.ac.uk

Lancaster University: http://www.lancs.ac.uk

Questions,

Comments, …

mailto:j.lee@comp.lancs.ac.uk
http://www.comp.lancs.ac.uk
http://www.lancs.ac.uk

Managing SOA System Variation through
Business Process Lines and Process Oriented Development
Nicola Boffoli, Marta Cimitile, Fabrizio Maria Maggi, Giuseppe Visaggio

Department of Informatics - University of Bari - Via E. Orabona 4 - 70126 - Bari - Italy
{boffoli, cimitile, maggi, visaggio}@di.uniba.it

Abstract

Software Product Lines (SPL) and Service-Oriented

Architectures (SOA) are two emerging approaches to the
software development currently receiving great attention
both in research and in practice.

Our work suggests an approach to transfer the main
peculiarities of the SPL (i.e. asset reuse and variation
mechanisms) to the SOA systems development, in order to
realize a SOA systems line. In this way we provide a
method to easily adapt a SOA application to different
customer needs in changeable environments.

All this is realized using the Business Process Lines
(BPL) concept together with the Process Oriented
Development (POD) paradigm. A BPL realizes process
models suitable to different customers or market segments
needs. The POD paradigm allows to transform a process
model into a SOA system.

Finally we show an application of our proposal in a
research project that involve several industrial and
academic organization. In the project a set of BPL is
realized and implemented using the MIT process
handbook.

1. Introduction

Software Product Lines (SPL) [1] and Service

Oriented Architectures (SOA) [2] aim to develop software
systems through two common perspectives: software
reuse and flexibility [3]. Using these approaches,
enterprises can implement software systems for different
customers reusing software resources rather than
developing the same software capabilities again. In this
way they gain in productivity, software quality and time
to market.

A SPL is a set of software-intensive systems sharing
common features. In particular a SPL aims to satisfy the
specific needs of a market segment using a common set of
core assets in a prescribed way.
In general, the SPL paradigm is characterized by two
different concepts:
� Asset Reuse: management of the “Core Asset” i.e.

collection, organization and systematic refinement
of the invariant or variant assets representing
respectively the SPL Commonality and Variability.

� Variation Mechanisms: automatic building of the
products based on the systematic reuse of the “Core
Assets”. Each asset is a software component with
fixed specifications allowing to:
� Configure the products through asset

integration procedures;
� Specialize the assets through the specification

of their parametric parts.
A SOA is a software architecture able to orchestrate

web services to guarantee the integration of
heterogeneous systems in a business process. A SOA is
made up of components and interconnections stressing
interoperability and location transparency.

Early research works, concerning the comparison
between SPL and SOA, are just appearing in the software
engineering research community [4]. In particular a
crucial research question is: how can SOA systems
benefit from SPL good practices (i.e. reuse and variation
management approaches)? Or in other words what is the
core asset and how can we implement the variation
mechanisms in the SOA system context?

Figure 1: SPL concepts in SOA context

In this paper we answer these questions through the

approach illustrated in Figure 2. In particular, we propose
transferring advantages from SPL to SOA operating on
business processes and using two specific instruments:

1. Business Process Line (BPL). A BPL according to
the SPL practices is able to model an appropriate
business process, process variant, suitable for
specific customer needs.

2. Process Oriented Development (POD). POD is
able to transform a process variant into an
executable SOA system through successive
transformations aimed at making the process
model understandable by an execution engine.

Figure 2: Schema of the Proposal

The resulting SOA system line automates the

underlying business processes; so, if we adapt the
business processes to new customer needs using the
underlying BPL and then we generate from it the
corresponding SOA system, it will result in its turn
suitable to the specific customer requirements.

 Moreover since the SOA system results from the
translation of the former process models, it will be in
compliance with the underlying business processes
without misalignments between models and their
implementation.

The remainder of the paper is structured as follows:
section 2 presents the overview of the proposal and
discusses in detail the BPL and POD approaches; in
section 3 is described the application of the approach in a
research project; section 4 completes the paper providing
some conclusive insights and final remarks showing
prospective works.

2. Proposed Approach

The proposed approach is synthesized in Figure 2. It

consists in two main phases using respectively the
Business Process Lines concept and the Process Oriented
Development paradigm.

In the first phase, starting from the current customer
needs, a BPL allows to realize a process variant specific
for the given requirements. In the second phase, starting
from this model, POD allows to automate this model and
transforms it into a SOA system. These phases are
detailed in the following paragraphs.

2.1 Business Process Lines (BPL)

In [5, 6, 7] the authors transfer the main SPL concept to
the business processes field.

According to these works a BPL could be considered a
set of similar business processes sharing a common part
(commonality) and characterized by a variant part
(variability) depending on the specific context where the
process will be applied (more details in [8]). In particular
a BPL works integrating a set of process assets, i.e.
atomic reusable parts of a business process (one or more
activities with their IN/OUT). Commonality is a set of
invariant assets and variability is a set of variant assets
selected according to a fixed context profile.

Commonality and variability are then integrated in
order to obtain a process variant to be applied in the given
context. The assets integration rules are driven by their
IN/OUT artifacts allowing to establish the succession of
the process assets: the outputs of the previous asset are the
inputs of the successive one.

The details of this phase are represented in Figure3.

1.1 BPL

Identification

1.2 Variant

Assets Selection

1.3 Assets

Specialization

Customer

Needs
Invariant Assets

Candidate

Variant Assets

Selected Variant

Assets

Process Variant

Context Profile

Figure 3: Business Process Lines Approach

When a BPL is selected the invariant assets and all the

candidate variant assets are specified. The BPL is selected
on the basis of the customer specific needs: for example if
we are interested to the process “Selling” we will use a
“Selling BPL”. The invariant assets of the “Selling BPL”
could be for example “Obtain Order”, “Deliver product”
and “Receive Payment”. Each of these process assets is
composed by the basic activities, inputs and outputs
necessary within the “Selling” process. Afterwards to
identify a specific process variant, the variant assets have
to be selected among the candidate ones on the basis of a
specific context. For example if we want to sell via

electronic store an asset “Organize the web site” has to be
selected. Process assets (variant or invariant) have to be
then specialized on the basis of the context itself. The
specialization aims to specify the behavior of each
process asset using specializing actions. In particular an
asset could be specialized adding IN/OUT artifacts to an
activity, specializing an artifact, specializing an activity,
adding an attribute to an artifact (size, compilation
guideline, quality standards etc.), adding an attribute to an
activity (required skills, tools, hardware or software
resources etc.). For example if we want to sell via
electronic store, the activity “Receive Payment” could be
specialized in “Receive online Payment”. Finally the
process assets selected and specialized are integrated into
the required process variant.

2.1.1 BPL Logical Model

To choose the suitable process variant of a BPL to be
applied in a specific context profile, we need a function
associating to a specific context profile the process variant
specific for the given context:

f: CP � S (1)

where

� CP is the set of all the possible context profiles. An

element cp∈CP is represented as a vector of
instantiated diversity factors DFi i=1, …, r. Each
DFi is a factor characterizing a particular aspect of
the environment and has a definition domain
[DFi]={df i1, dfi2, …, dfiq} where each dfij j=1,...q is
an instance of DFi. So we can say that the set CP is:
CP= [DF1] x [DF2] x x [DFr].

� S is the set of all the possible process variants of the
considered BPL.

f can be detailed in this way:

f (cp)= Φ(σ(cp, K), σ(cp, χ(cp))) (2)

If A is the set of all the process assets associated to the
BPL, in (2):
� K = {ia1,ia2…..ian} ⊆ A is the set of invariant assets

realizing the commonality;
� χ: CP� CVA=A-K is the function referred to the

activity 1.2 in Figure 3 associating to each fixed
cp∈CP the set of variant assets
{va1,va2…..vam} ⊆CVA realizing the process
variability according to the fixed context cp.
CVA=A-K is the set of the candidate variant assets
associated to the BPL;

� σ is the function referred to the activity 1.3 in
Figure 3 including the assets specialization rules on

the basis of the context profile cp. It associates to a
set of assets another set of assets specialized
according to the fixed context profile. In particular
σ(cp, {asset1,asset2…..assetp}) = { σ1(cp,asset1),
σ2(cp,asset2),…, σn(cp,assetp)}, where σ1, σ2,..., σp
are transformations specializing respectively the
assets asset1, asset2,..., assetp according to the
context profile cp.

� Φ includes the integration rules useful to compose
the commonality to the variability specialized
according to the context profile cp.

So, f(cp) = Φ(σ(cp, K), σ(cp, χ(cp))) =
Φ(σ(cp, {ia1,ia2…,ian}), σ(cp, {va1,va2..,vam})) =
Φ({σ1(cp, ia1), σ2(cp, ia2), ..., σn(cp,ian)},
{σn+1(cp, va1), ..., σn+m(cp,vam)}) identifies the process
variant suitable for the context profile cp.

2.1.2 BPL Operative Model

The functions χ and σ defined in the logical model
could be implemented through a decision tables system
(more details in [9, 10, 11, 12]).

A Variability Selection table implements the function
χ of the logical model. It allows to select the suitable
variant assets composing the variability, characteristic of
a specified context profile. So this kind of decision table
is structured as follows (Figure4):
� the CONDITION quadrant contains the diversity

factors DFi i=1,...r driving the variant assets
selection;

� the CONDITIONAL STATE quadrant contains the
possible value of each diversity factor: [DFi]={df i1,
dfi2, …, dfiq};

� the ACTION quadrant contains all the candidate
variant assets (∈CVA) that can be selected to
realize the process variability;

� the RULE quadrant identifies the relationships
between each context profile and the variant assets
to realize the corresponding process variability.

Figure 4: Variability Selection table

An Asset Specialization table implements a function σi
of the logical model. It allows to specialize a process asset
(variant or invariant) on the basis of specified context
profile, executing a set of specializing actions. So this
kind of decision table is structured as follows (Figure5):
� the CONDITION quadrant contains the diversity

factors DFi i=1,...r driving the asset specialization;
� the CONDITIONAL STATE quadrant contains the

possible values of each diversity factor: [DFi]={df i1,
dfi2, …, dfiq};

� the ACTION quadrant contains the actions to
specialize the asset according to the specified
context profile;

� the RULE quadrant identifies the relationships
between each context profile and the specializing
actions to be applied.

Figure 5: Asset Specialization table

2.2 Process Oriented Development (POD)

Starting from the process variant identified through a

BPL, a SOA system can be implemented using the POD
paradigm. In particular the process model is made
understandable by an execution engine through successive
transformations. In this way the POD allows to implement
in a SOA system the changeable process requirements
captured using a BPL, so a SOA systems line is actually
realized. Referring to Figure 2, POD implements a SOA
system starting from the process variant that is the output
of the BPL.

Figure 6 illustrates in details the sequence of activities
to realize this implementation. The abstract process
model, formally described through a Process Modeling
Language, is enriched with implementative details
realizing a new intermediate model called Detailed
Process Model (DPM). Finally a BPEL workflow is
created as the last and most specific model.

Referring to Figure 6, in the Specification activity the
process variant is translated into the corresponding DPM.
As described above, the DPM will be realized enriching
the process variant through implementative details
making it understandable by an automatic translator. In
particular a process model describes how activities are
carried out exchanging artifacts. So in the DPM each
artifact is mapped with a BPEL variable. Each variable

has a specific type. This variable type should be traceable
with the characteristic of the artifact. The information
about an artifact in a process model are not enough to
translate the artifact in a BPEL variable, that’s why this
association requires the pre-specification defined in the
DPM. Moreover the DPM contains the mapping between
the activities of the process model and the different
services implementing them.

Figure 6: Process Oriented Development Approach

We want to highlight that real processes could provide

the occurrence of human activities as well. So to
implement the process activities executed by human
agent, an extension of BPEL, BPEL4People, is used. In
particular in the DPM the URL of the services carrying
out the automatic activities and the e-mails of the agents
carrying out the human activities should be specified. In
this way the BPEL workflow will invoke the suitable
software application to execute the automatic activities
and will inform by e-mail the suitable agent to execute the
human activities. The Web Services Specification
produced by the Specification phase is useful to identify
the services implementing the automatic activities (Web
Services Selection/Development).

Starting from the information specified in the DPM the
translator is able to generate an executable BPEL
workflow (Workflow Development) implementing the
underlying business process using the specified web
services (Integration). For reasons of brevity we don’t
explain in details the translation algorithm but we can

sketch the mapping between the elements of a business
process and the corresponding BPEL objects. Table 1
shows the mapping between the process elements and the
BPEL objects translating them. In the workflow BPEL the
connectors linking all these elements are translated using
the BPEL tag <link>.

Table 1: DPM-BPEL mapping

Process Element BPEL object
Start Node <Receive>
End Node <Reply>
Activity <Invoke>
Decision Node It could be translated as a tag BPEL

<if>, <while> or <repeat until> on
the basis of the specific control flow

In particular an activity is translated using the BPEL tag
<Invoke>. In a process model activities could be atomic
or composite. The process model could be seen as a tree
where atomic activities are the leaf-nodes. The translation
algorithm starting from the leaf-nodes of the tree cover
recursively the whole process model. Each atomic activity
corresponds to a web service invocation. Each composite
activity corresponds to the invocation of a BPEL
workflow orchestrating the web services implementing its
sub-activities that could be atomic or in their turn
composite.

3. Case Study: a Selling SOA systems line

The proposed approach has been adopted in a research

project. In Puglia some industrial and research
organizations are working on it. They are collaborating to
implement SOA systems so that business processes of
different customers in the local agricultural and food
market can be automated. Within this project there are
different providers offering a number of software services
that could be reused and adapted in each different
business contexts according to the customer needs. That’s
why the project represents a field of interest for the
proposed approach application.

The application of the proposed approach in the project
has been realized through three main steps:
� BPL definition
� BPL application
� POD application

The BPL definition step consists in the extraction of a set
of BPL aiming to model different kinds of business
processes.
The BPL application consists to apply, starting from the
defined BPL, the approach proposed in Figure 3.
Finally the POD application consists in the application of
the approach proposed in Figure 6 to the process variant
obtained in the BPL application step.

3.1 BPL Definition

Starting from the analysis of MIT library [13] we have

achieved the information useful to obtain a BPL Library
(we will deepen these outcomes in a future work). The
MIT library represents a collection of more than 5000
business activities related in several business processes.
These activities and processes have been used to obtain a
set of BPL allowing to model several kinds of business
processes.

In particular we describe in this session, the definition
of a Selling BPL obtained using the MIT Selling
processes.

Table 2: Invariant assets
ia1 Obtain order
ia2 Deliver product or service
ia3 Receive payment

Starting from MIT Selling processes we have

identified, through their common parts, the invariant
assets realizing the Selling BPL commonality (Table 2).
Each process asset is represented as one or more activities
and their IN/OUT: for instance the asset ia1=“Obtain
Order” is represented as in Figure 7.

ad Work Flow System

:
Requested_Solution

Obtain order
:Order

Figure 7: “Obtain Order” asset

Afterwards using the information about the different
application contexts where the MIT processes are applied
we have been able to define a number of diversity factors
and their possible values (Table 3) to specify the
conditions of the variability selection table.

Table 3: Diversity factors
Diversity Factors Values
Sell How Sell via physical store

Sell via electronic store
Sell via face-to-face
Sell via direct mail
Sell via email/fax
Sell via television direct response
marketing
Sell via telemarketing

Sell What Service, Product, Process
Auction Y, N
Advance Payment Y, N
Quality control Y, N
Selling
Suggestions

Y, N

Finally using the variable parts of the MIT Selling
processes, we have identified the candidate variant assets
(Table 4) to specify the actions of the variability selection
table.
Using this information, we have been able to realize the
variability selection table (Figure 8). It encloses the rules
to associate to each possible context profile the related
variant assets. These have to be composed with the BPL
invariant assets to obtain the process variant specific for
the specified context profile.

Table 4: Candidate variant assets
va1 Share out goods
va2 Register Seller s
va3 Register Alternative Products
va4 Arrange store displays
va5 Auction
va6 Check quality
va7 Register Auction Result
va8 Identify potential customers need
va9 Identify potential customers
va10 Inform potential customers
va11 Manage customer relationships

Figure 8: Variability selection table

For instance, considering the column 5 of the table, we
have that for the context profile cp*= (Sell via physical
store, Product, Y, N, Y, Y) the variant assets to select are:
va1=“Share out goods”, va2=”Register Seller”,
va3=”Suggest Alternative Products”, va4=”Arrange store
displays”, va5=”Auction”, va6=”Check Quality”,

va7=”Register Auction Result”, va8=“Identify potential
customer needs”, va9=“Identify potential customers”,
va10=“Inform potential customers”. So to obtain the
process variant specific for the given context profile we
have to compose these assets with the invariant assets of
the commonality.

Figure 9: Assets Specialization table

Moreover to define the asset specialization tables for
each process asset we have identified the specializing
actions corresponding to each possible context profile.
Since the conditions are the same for each process asset,
we can incorporate all the asset specialization tables
corresponding to the functions σi in only one table
(corresponding to the function σ of the logical model).
The resulting table (Figure 9) encloses the rules to
associate to each context profile, the actions to be
executed to specialize the behavior of all the assets related
to the considered BPL.

 For instance, according to the context profile cp*
considered before (column 5), we need to specialize the
activities: “Deliver” in “Deliver product”, “Receive
Payment” in “Receive Payment at register”. Moreover we
have to specialize the artifact “Advertising initiatives” in
“Physical Store advertising”. Finally we have to add the
input “Auction Sticker” and “Shipping paper”
respectively to “Receive Payment” and “Deliver Product
activities”.

3.2 BPL Application

The obtained BPL could be used to model different

process variants of the Selling process.
During the research project this BPL has been used to
model different process variants to fulfill different
customers involved in the project. In particular, in this
work we describe the application of the Selling BPL to
automate the Selling process of a fish consortium in
Puglia. The consortium was interested to sell via auction
the fish caught by the ship-owner members boats. In
particular the organization needed to model its Selling
process and automate it in a SOA system integrating the
services of different providers.
In this scenario the BPL has allowed to model the
customer Selling process easily.
According to the first activity of Figure 3, for the
customer was necessary to model a Selling process. In
this case we have been able to use the BPL defined in the
paragraph 3.1. For this BPL, the invariant assets are listed
in table 1 and the candidate variant assets are listed in
table 3.

Afterwards the variability selection table has been
executed. Customer requirements have allowed to specify
the context profile cp* corresponding to column 5 in
Figure 6. In this way we have obtained the corresponding
list of variant assets.

Finally the assets specialization activity has been
performed using the Specialization Table shown in Figure
7. We have identified the list of specialization actions (see
column 5 of the Specialization table). So each asset has
been specialized through a set of specialization actions.
Finally, all the specialized assets have been integrated
considering their IN/OUT.

The obtained process model is shown in Figure 10.

ad Work Flow System

:
Entry_Document

2. Register
Seller

:
Entry_Document_Template

:Fish

1. Share out
goods

:
Shared_Out_Equipment

:
Shared_Out_Goods

4. Arrange
store displays

:
Numbered_Shared_Out_Goods

5. Auction

:
Platform

:
Arranged_Goods

:
Auction_Winner

7. Register
Auction Result

:
Auction_Sticker

:
Shipping_Paper

9. Receiv e
payment at

register:
Payment_Notification

6. Check Quality

:
Quality_Certification

8. Deliv er
Product

:
Deliv ered_Goods

:Order

12. Identify
potential

customer's
needs

:
Potential_Customer_Needs

:
Mining_Parameter

11. Inform
potential

customers

:
Phisical_Store_Adv erising

3. Suggest
Alternativ e

Products

:
Suggestions

:
Market_Research_Report 10. Identify

potential
customers

Figure10: Fish Consortium Selling process

3.3 POD Application

According to the POD paradigm (Figure 6) we have

realized the DPM starting from the process variant
identified through the BPL. This new model has been
obtained enriching the process model with
implementative details. For this purpose we have
implemented an application, ExportBPEL to support the
DPM generation. This application has been realized as
add-in of Enterprise Architect (EA), a graphical UML
design and business analysis tool for modeling,
documenting, building and maintaining object-oriented
software systems.

In Figure 11 a screenshot of the application is shown.
Here the implementation details related to the activity 7.
Register_Auction_Result are defined. In particular the
developer has to specify the variable types implementing
the input and output artifacts of the activity and the
method implementing the activity itself. In this way all
the specifications to realize the BPEL workflow are

identified. In this case the activity must be implemented
through the method method_7_Register_Auction_Result
providing two input variables: Entry_Document_ID
(String) and Auction_Winner_Username (String). The
output variable must be a complex type composed by
Auction_Sticker_ID (String) and Shipping_Paper_ID
(String).

On the other hand Software Specification to realize the
web services implementing the different activity have
been realized. The different services provider have used
these specifications to develop the suitable web services.
Starting from the DPM previously created ExportBPEL
allows to realize automatically the Workflow BPEL
implementing the underlying business process. Finally the
BPEL workflow has been completed specifying the URL
of the web services implemented by the different
providers.

Figure11: Export BPEL application

4. Conclusions

This work represents a contribution to transfer the good
practices of SPL (asset reuse and variation mechanisms)
to SOA system development. The adoption of BPL and
POD approaches permits to select the suitable process
variant and to implement the appropriate SOA system for
one or more customers.

In particular in this work we refer to the automation of
the Selling process in a fish consortium. In this scenario
we have evaluated some advantages deriving from the
adoption of the proposed approach:
� it facilitates the selection of the suitable process

model according to the customer requirements
reducing its time and effort of 80%;

� it facilitates the implementation of the selected
business process reducing its time and effort of
30%.

These values are qualitative evaluations on the basis of
the feedbacks of the experts involved in the project. They
compare time and effort for the modeling and
implementation steps using our approach with the
corresponding data obtained in similar cases performed
with traditional approaches.
The described research project is not yet concluded. BPL
and POD will apply in other business processes in the
same research project to confirm and deepen these results.

References

[1] P. Clements and L. Northrop. “Software Product Lines:
Practices and Patterns.” SEI Series in Software Engineering.
Addison–Wesley, August 2001.
[2] T. Erl. “Service-Oriented Architecture: A Field Guide to
Integrating Xml and Web Services”. Prentice Hall, 2004
[3] C. Wienands. “Studying the Common Problems with
Service-Oriented Architecture and Software Product Lines”
Service-Oriented Architecture (SOA) & Web Services
Conference. Atlanta, GA, October 2006
[4] S.Cohen, R.Krut. “Proceedings of the First Workshop on
Service-Oriented Architectures and Software Product Lines”,
SPECIAL REPORT CMU/SEI-2008-SR-006, May 2008
[5] A. Schnieders and F. Puhlmann. “Variability mechanisms in
e-business process families”. 9th International Conference on
Business Information Systems, Klagenfurt (Austria), June 2006.
[6] J. Bayer, M. Kose, A. Ocampo. “Improving the Development
of e-Business Systems by Introducing Process-Based Software
Product Lines”. 7th International Conference on Product Focused
Software Process Improvement (PROFES), Amsterdam
(Holland), June 2006.
[7] A. Schnieders. “Variability Mechanism Centric Process
Family Architectures”. 13th Annual IEEE International
Conference on the Engineering of Computer Based Systems
ECBS 2006, pp. 289-298, IEEE Computer Society Press, 2006.
[8] N. Boffoli, M. Cimitile, F.M. Maggi. “Managing Business
Process Flexibility and Reuse through Business Process Lines”,
4th Conference on Software and Data Technologies (ICSOFT),
July 2009.
[9] J. Vanthienen, C. Mues, G. Wets, K. Delaere. “A tool-
supported approach to inter-tabular verification, Expert Systems
with Applications”, 15, pp. 277-285, 1998
[10] R. Maes, J.E.M. Van Dijk. “On the Role of Ambiguity and
Incompleteness in the Design of Decision Tables and Rule-
Based Systems”, The Computer Journal, 31(6), 1988
[11] T.B. Ho, D. Cheung, and H. Liu. “Advances in Knowledge
Discovery and Data Mining”, 9th Pacific-Asia Conference,
Vietnam, 2005.
[12] A. Bar-Or, D. Keren, A. Schuster, R. Wolff. “Hierarchical
Decision Tree Induction in Distributed Genomic Databases”,
IEEE Transactions on Knowledge and Data Engineering,
Vol.17, 2005.
[13] T.W. Malone, K. Crowston, G.A. Herman, Organizing
Business Knowledge-The MIT Process Handbook, MIT Press
Cambridge, 2003.

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Invited Speaker

Dr. Nicola Boffoli

Software Engineering LABoratory (SERLAB)

University of Bari, Italy

 Research Interests:

 software processes, business processes, software
product lines, service oriented architectures

 Presentation Title

 Managing SOA System Variation through Business
Process Lines and Process Oriented Development

DIB 1

SOAPL 2009
S.Francisco, 25th August

Managing SOA System Variation through
Business Process Lines

and Process Oriented Development

Nicola Boffoli, Marta Cimitile,
Fabrizio Maria Maggi, Giuseppe Visaggio

SERLAB - Department of Informatics
University of Bari - Italy

{boffoli, cimitile, maggi, visaggio}@di.uniba.it

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Outline

3DIB

• Peculiarities and Comparison

• Research Question
SPL & SOA

• Business Process Lines

• Process Oriented Development

• Case Study: a Selling SOA-System Line
Proposal

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

SPL & SOA

 Two common perspectives

 Software reuse and flexibility

• implementing new software systems reusing existing
software resources

• allowing to adapt the systems to the different customers of
a whole market segment

 However…

 SPL focuses on the commonality and variability to build
a set of software products

 SOA allows to compose, orchestrate and maintain
solutions based on services, implementing business
processes

DIB 4

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Research Question

 How can SOA systems benefit from SPL good
practices?

 reuse and variation management approaches

 In the SOA system context

 what is the core asset?

 how can we implement
the variation mechanisms?

DIB 5

Assets Reuse

commonalities

variabilities

Variation Mechanisms

configuration

specialization

SOA System

Customer Needs

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Our Proposal

DIB 6

Assets Reuse

commonalities

variabilities

Variation Mechanisms

configuration

specialization

SOA System

Customer Needs

according to the SPL practices is
able to model the process variant,
suitable for specific customer needs

is able to transform a process
variant into an executable SOA
system

Case Study: a selling SOA system line

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Business Process Lines (1/3)

 A BPL is a set of similar business processes
 sharing a common part (commonality)

 characterized by a variant part (variability) depending on the
specific context where the process will be applied

 A BPL works integrating a set of process assets
 i.e. atomic reusable parts of a business process

(one or more activities with their IN/OUT)

DIB 7

PROCESS
ASSET

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Business Process Lines (2/3)

 A BPL consists in:

 a set of invariant assets (commonality)

 a set of variant assets (variability)

• each process of the BPL requires a different subset of the variant
assets chosen according to the specific context

 a set of rules: to build automatically the appropriate process
model (the “process variant”)

• Variability Selection

– Variant assets are selected among the candidate ones on the basis of
the specific context

• Assets Specialization

– Each asset (variant or invariant) is specialized modifying its
characteristics according to the specified context

DIB 8

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Business Process Lines (3/3)

DIB 9

Decision Tables Decision Tables

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Process Oriented Development

DIB 10

Process
Element

BPEL object

Start Node <Receive>

End Node <Reply>

Activity <Invoke>

Decision Node
It could be translated as a tag BPEL
<if>, <while> or <repeat until> on
the basis of the specific control flow

Implementative details,
mapping between:
 process artifacts – BPEL variables
 process activities – serivices or BPEL WkF

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

- Case Study -
a Selling SOA System Line

DIB 11

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Case Study: overview

DIB 12

Our proposal has been adopted in a
research project
 collaboration with industrial organizations

from Puglia

 SOA systems implementation to
automate business processes in the field
of local agricultural and food

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Case Study: overview

DIB 13

3 main steps
1. BPL definition

2. BPL application

3. POD application

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Step1: BPL Definition (1/4)

 Analysis of MIT library (2003, Malone et Al.)

 information useful to obtain a set of BPL

(allowing to model several kinds of business processes)

 in this session the definition of a Selling BPL

(obtained using the MIT Selling processes)

 Results

DIB 14

Invariant Assets

ia1 Obtain order

ia2 Deliver product or service

ia3 Receive payment

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Step1: BPL Definition (2/4)

DIB 15

Diversity
Factors

Values

Sell How

Sell via physical store
Sell via electronic store
Sell via face-to-face
Sell via direct mail
Sell via email/fax
Sell via television direct
response marketing
Sell via telemarketing

Sell What Service, Product, Process

Auction Y, N

Advance
Payment

Y, N

Quality control Y, N

Selling
Suggestions

Y, N

Candidate Variant Asset

va1 Share out goods

va2 Register Sellers

va3 Register Alternative Products

va4 Arrange store displays

va5 Auction

va6 Check quality

va7 Register Auction Result

va8

Identify potential customers
need

va9 Identify potential customers

va10 Inform potential customers

va11

Manage customer
relationships

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Step1: BPL Definition (3/4)

DIB 16

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Step1: BPL Definition (4/4)

DIB 17

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Step2: BPL Application (1/3)

 The obtained BPL could be used to model
different process variants of the Selling process

 In this work

 we describe the application of the Selling BPL to
automate the selling process of a fish consortium in
Manfredonia (Puglia)

DIB 18

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Step2: BPL Application (2/3)

DIB 19

 Context Profile =(“Sell via physical store”, “Product”, “Y”, “N”, “Y”, “Y”)

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Step2: BPL Application (3/3)

 Context Profile =(“Sell via physical store”, “Product”, “Y”, “N”, “Y”, “Y”)

DIB 20

Fish Consortium
Selling Process

file:///C:/Documents and Settings/BoffoliN/Desktop/Conferenze - Papers/SOAPL2009/presentazione/Fish Consortium Selling Process.pdf

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Step3: POD Application

 According to the POD

 Process Variant  Detailed Process Model (DPM)

 For this purpose: ExportBPEL

 an application to support the DPM generation

 add-in of Enterprise Architect (EA)
• a graphical UML tool for modeling, documenting, building object-oriented

software systems

 Activity7: Register_Auction_Result (of the Process Variant)

 1 method: method_7_Register_Auction_Result

 2 input variables: Entry_Document_ID (String) and
Auction_Winner_Username (String)

 1 output variable: a complex type composed by
Auction_Sticker_ID (String) and Shipping_Paper_ID (String)

DIB 21

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Conclusions and Future Works (1/2)

 This work proposes to apply the good practices of
SPL to SOA, the authors introduce

 the BPL permits to select the suitable process variant

 the POD permits to implement the appropriate SOA

 Case study: selling process in a fish consortium

 - 80% in selection of the suitable process model
according to the customer requirements

 - 30% in implementation of the selected business

 These values are qualitative evaluations on the basis of
the feedbacks of the experts involved in the project

DIB 22

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Conclusions and Future Works (2/2)

 Variation Mechanisms

 business processes modeling: the BPL support the most
of typical variation of SOA system

 services development: the variations are addressable to
the traditional SPL approaches

 Future Works

 BPL perspective
• tailoring/adopting specific SPL techniques: features model,

aspects, …

 SPL perspective
• SOA system is a software product  SPL generating SOA product

too

DIB 23

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

DIB 24

Questions?

Thank You!

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Decision Table Formalism

DIB 25

 A decision table (DT) is divided in four quadrants:
conditions (Cond), conditional states (S), actions (Act) and
rules (x)

 The table is defined so that each combination of conditions
and conditional states corresponds to a set of actions to
carry out

- Compact overview
- Modular knowledge organization
- Evaluation of consistency,
completeness and redundancy

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Variability Selection DT

 For each BPL a Variability Selection DT is built to select the
variant assets characteristic of a specific context among the
candidate variant assets
 the CONDITION quadrant contains the diversity factors DFi i=1,...r

driving the variant assets selection

 the CONDITIONAL STATE quadrant contains the possible values of each
factor: [DFi]={dfi1, dfi2, …, dfiq}

 the ACTION quadrant contains all the candidate variant assets that can
be selected to realize the process variability

 the RULE quadrant identifies
the relationships between each
context profile and the variant
assets

DIB 26

Managing SOA System Variation through
Business Process Lines and Process Oriented Development

Asset Specialization DT

 For each asset, variant or invariant, an Asset Specialization
DT is built as follows

 the CONDITION quadrant contains the diversity factors DFi

i=1,...r driving the asset specialization

 the CONDITIONAL STATE quadrant contains the possible
values of each diversity factor: [DFi]={dfi1, dfi2, …, dfiq}

 the ACTION quadrant contains the specializing actions to
characterize the asset according to the specified context profile

 the RULE quadrant identifies the relationships between each
context profile and the specializing actions to be applied

DIB 27

Towards an Approach for Service-Oriented Product Line Architectures

Flávio Mota Medeiros1,2 Eduardo Santana de Almeida2,3

Silvio Romero de Lemos Meira1,2,3

Federal University of Pernambuco (UFPE)1

Reuse in Software Engineering (RiSE)2

Recife Center for Advanced Studies and Systems (C.E.S.A.R.)3

{fmm2,srlm}@cin.ufpe.br esa@rise.com.br

Abstract

Service-Oriented Architecture (SOA) has appeared as
an emergent approach for developing distributed appli-
cations as a set of self-contained and business-aligned
services. SOA aids solving integration and interoperability
problems and provides a better Information Technology
(IT) and business alignment, giving more flexibility for the
enterprises. However, SOA does not provide support for
high customization and systematic planned reuse to develop
applications that fit customer individual needs. In this
paper, we propose an approach in which SOA applications
are developed as Software Product Lines (SPLs). Thus,
the term Service-Oriented Product Line is used for service-
oriented applications that share common parts and vary in
a regular and identifiable manner. In this context, high
customization and systematic planned reuse are achieved
through managed variability and the use of a two life-cycle
model as in SPL engineering: core assets and product
development. We conclude the paper with an initial case
study in the conference management domain explaining the
steps of our approach.

1. Introduction

In software development, there is an essential need to
reduce costs, effort, and time to market of software products
[1]. It is crucial to develop flexible systems able to adapt
to market changes quickly [2]. In addition, there are lots
of different technologies appearing, and enterprises need
to integrate their software investments (legacy systems)
with these new technologies [3]. However, the complexity
and size of systems are increasing, and products must fit
customer or market segment needs [4].

In this context, SOA is an emergent approach to solve
integration and interoperability problems [5, 6], align IT
and business goals, and increase business flexibility [2].

However, SOA lacks on support for high customization and
systematic planned reuse. In other words, despite of the
natural way of achieving customization in service-oriented
applications, changing service order or even the partici-
pants of service compositions, services are not designed
with variability to be highly customizable and reusable
in specific contexts. In addition, service artifacts, e.g.,
specifications and models, are not designed with variability
as well. Hence, these artifacts cannot be easily reused by a
family of service-oriented applications [7].

Thus, SPL engineering, which has the principles of
variability, customization and systematic planned reuse in
its heart, can be used to aid SOA to achieve these benefits.
In this path, service-oriented applications that support a
particular set of business processes can be developed as
SPLs [8, 9]. The motivation for it is to achieve desired
benefits such as productivity gains, decreased development
costs and effort, improved time to market, applications
customized to specific customers or market segment needs,
and competitive advantage [4, 10].

In this paper, we propose an approach for service-
oriented product line architectures that combines SPL and
SOA concepts and techniques to achieve high customiza-
tion, systematic planned reuse and the desired benefits
mentioned before.

Hence, the concept of managed variability and system-
atic planned reuse were introduced into service-oriented
development activities. In order to deal with these concepts,
the development process was divided in two life cycles as in
SPL engineering [4, 11]. The first, core assets development,
produces generic artifacts with variability to establish a
production capability for applications. The second, product
development, resolves the variation points of the generic
artifacts produced in core asset development and creates ap-
plications customized to specific customers. Management
at the technical and organizational levels during core assets
and product development must be strongly committed to the
success of the product line [12].

mailto:@cin.ufpe.br
mailto:esa@rise.com.br

The reminder of this paper is organized as follows.
Section 2 presents an overview of the approach for service-
oriented product line architectures, and Section 3 describes
its inputs, outputs and activities in details. A case study on
the conference management domain is presented in Section
4. Related work is discussed in Section 5, and, Section 6
presents some concluding remarks and directions for future
work.

2. Approach Overview

In this section, an overview of the approach for service-
oriented product line architectures is presented. It is a
top-down approach for the systematic identification, and
documentation of service-oriented core assets supporting
the non-opportunistic reuse of SOA.

The approach is based on the architectural style shown in
Figure 1. This architectural style was adapted from [13, 14],
which present a complete list of layers commonly used in
SOA development. As mentioned, the architectural style is
divided into layers, each of them with specific purposes as
described next.

Components

Services

Service
Orchestrations

Graphical User
Interfaces (GUI)

Legend: DependencyOptional Variation Point

Figure 1. Architectural Style.

The interface layer is composed of Graphical User Inter-
faces (GUI) components. This layer may be used only by
service-oriented product lines that require visual interfaces
to interact with services and service orchestrations. The
orchestration service layer consists of composite services,
which implement coarse-grained business activities, or even
an entire business process, that need the participation and
interaction of several fine-grained services. The service
layer is composed of self-contained and business-aligned
services, which implement fine-grained business activities.
Finally, the component layer, which consists of a set
of components that provide functionality for the services
exposed in the service layer and maintain their Quality of
Service (QoS).

Note that the architectural elements (components, ser-
vices, service orchestrations and user interface components)
of these layers are developed with variability, and they can
be mandatory, optional or alternative.

As mentioned previously, the approach is divided in
two life cycles as in software product line engineering

[4, 11]: core assets and product development. The core
assets development aims to provide guidelines and steps
to identify, document and implement generic architectural
elements with variability. During product development,
these architectural elements are specialized to a particular
context according to specific customer requirements or
market segments needs.

In this paper, we focus on the core assets development.
In particular, on the design of domain specific architectures
for service-oriented product lines. Thus, we provide guide-
lines and steps for the identification and documentation
of components, services, service orchestrations and their
flows using a top-down approach. In other words, the
identification of architectural elements from existing legacy
systems, the bottom-up approach, is not considered in this
work. The following section presents the inputs, outputs
and activities of the approach for service-oriented product
line architectures in more details.

3. The Approach

The approach for service-oriented product line architec-
tures starts with an identification phase. It receives the
feature model and the business process models as manda-
tory inputs, and produces a list of possible components,
service candidates and service orchestration candidates for
the product line architecture. Thus, these architectural
elements can be reused in all products of the line. This
phase is separated in component identification and service
identification activities.

Subsequently, there is a variability analysis activity.
It receives the list of components and services identified
previously, and defines and documents key architectural
decisions regarding variability. In this activity, it is defined
how the variability will be implemented within the services
and components.

Architecture specification activity concludes the ap-
proach. In this activity, the architecture is documented using
different views in order to represent the concerns of the
different stakeholders involved in the project [15].

Figure 2 shows the inputs, outputs and activities of the
approach for service-oriented product line architectures.

Component
Identification

Service

Identification

Architecture
Specification

Architecture
Document

Feature
Model

Component
List

Business
Process
Models Service

List

Architectural
Decisions

OutputInputLegend:

Variability
Analysis

Figure 2. Activities of the Approach.

The next sections present the activities of the approach in
more details. An initial case study clarifying and explaining
these activities with examples is presented in Section 4.

3.1 Component Identification

In this activity, the components of the service-oriented
product line will be identified. We consider a software
component as a self-contained artifact with well-defined
interfaces and subject to third-party compositions [16].

This activity starts with an analysis of the feature
model to identify architectural component candidates. The
purpose of this activity is to put features into modules
(components) in order to design an architecture where com-
ponents can be added or removed to generate customized
products. Each of the modules identified in this activity will
be an architectural component candidate for the service-
oriented product line architecture.

In order to clarify this activity, we will use an alternative
feature with two variants as example. In this case, each
variant will be placed in a different component. Thus, the
behavior of each variant can be put in a product by adding
or removing one of the components. Since the features
are alternative, only one of the components will be present
in a product. However, in some cases, depending on the
variability granularity, it may be appropriated to put both
features in a unique component and add internal variability.
This issue will be discussed in variability analysis activity
in Section 3.3.

The components identified in this activity will maintain
the quality of the services in the product line. Thus,
identify components considering quality attributes, e.g.,
modifiability and reusability, is appropriated. However,
some quality attributes, e.g., security and performance, will
be responsibility of the service platform selected as well
[17].

Existing software components can be considered for
integration in this activity to increase reuse. The next
section presents the service identification activity, which
provides some guidelines and steps to identify service and
service orchestration candidates.

3.2 Service Identification

The identification of service candidates is a challenging
task of service-oriented computing [18, 19]. In the context
of service-oriented product lines, service identification
activity is even harder due to concerns with commonalities
and variability.

In the service identification activity, a set of service and
service orchestration candidates that support the business
processes are identified. Thus, as the services are supposed
to support the business processes, it is reasonable to identify
them from the business process models [3, 5, 20].

This activity starts with an analysis of the business
process models. In this analysis, the processes themselves,
their sub-processes and business process activities are

considered as service or service orchestration candidates,
it depends on their granularity. Concurrently, key business
entities are identified, and service candidates are created
to implement their life cycle methods, e.g., create, delete,
update and retrieve [3]. Finally, service candidates are
defined to implement utility functionalities that support the
services and service orchestrations identified previously,
e.g., logging, monitoring and data transformation, when
necessary.

We present a top-down approach for service identifi-
cation, but it does not exclude existing services to be
considered for integration during this activity. The service
identification activity provides a service portfolio with all
the service candidates identified as output. The next section
presents the variability analysis activity.

3.3 Variability Analysis

According to [21], variability is the ability to change
or customize software systems. Improving variability in
a system implies making it easier to do certain kinds of
customizations. Moreover, it is possible to anticipate some
types of variability and construct a system in such a way
that it is prepared for inserting predetermined changes.

At this point, the possible components, and the service
and service orchestration candidates of the service-oriented
product line have been identified. During the variability
analysis activity, it is defined and documented essential
architectural decisions about how the variability presented
in the feature model and business processes will be imple-
mented within services and components.

The variability analysis activity starts with an analysis
of the component and service candidates identified. The
similarities and differences among services should be
analyzed with the purpose of reduce the number of service
candidates. The similarity analysis consists of comparing
the functionality of services in order to join similar services
that implement fine-grained variability, e.g., variability
that can be implemented by changing a class attribute or
method. In this case, services will be joined in a single
service with internal variability. The same analysis is
realized among the component candidates. At this point, the
services and components are no longer candidates anymore.

Subsequently, it is analyzed how the variation points will
be implemented within the components. Component-Based
Development (CBD) can be used as an implementation
technique, i.e., each variant is implemented in a different
component. Alternatively, well known variability imple-
mentation techniques can be used to implement component
internal variability, e.g., aspect-oriented programming, con-
ditional compilation, configuration files and design patterns
[22]. The same thing occurs with the services. In this
case, service orientation can be used as a technique to

implement variability, i.e., each variant can be implemented
in a service. It is the way the current service-oriented
applications are customized, changing service order or even
the participants of service compositions to implement vari-
ability. However, depending on the variability granularity it
may be insufficient. A variation point can be implemented
changing a class attribute, or a class, a method or even
an entire component or service. Thus, in some cases it is
necessary to introduce service internal variability.

In order to implement service internal variability, i.e.,
a unique service that can be customized to different
purposes, the service interface, in some cases, must re-
flect the underlying variability the service contains in its
components and classes. Thus, conditional compilation
and parameterization can be used with the purpose of
change service interfaces or modify the service behavior
according to specific customer requirements. The use of
code transformation tools is used in [17] to implement
service interface variability.

Variability analysis activity produces as output a set
of architectural decisions regarding variability that will be
specified during architecture specification activity, which is
presented in the next section.

3.4 Architecture Specification

In the architecture specification activity, the components,
services, service orchestrations and their flows will be
specified, i.e., the architecture will be specified. In this
activity, the models and specification are produced with
variability as all the artifacts of core assets development.
Architecture specification requires notations with support
for variability representation.

Software architectures are complex entities that cannot
be represented in a simple one-dimensional fashion [15].
Since there are different stakeholders involved in a project
with particular concerns about the system, it is important to
represent the architecture upon different views.

During architecture specification, the first step is the
definition of component and service interfaces. Subse-
quently, different architectural views can be produced:
structural view, layer view, interaction view, dependency
view, concurrency view and physical view. Each view is
described in detail next.

The structural view represents the architecture static
structure. This view shows the components, services
and service orchestrations of the architecture. The layer
view presents the services organized in their layers. The
interaction view shows how the services and components
communicate to realize a specific functionality. The
dependency view presents dependence information among
services and components. The concurrency view shows par-
allel communication among services and components, but it

can be represented in the interaction view as well. Finally,
the physical view shows how the services and components
are distributed and the protocol of communication.

Some UML diagrams with stereotypes and variability
extensions, such as [23, 24], can be used to create these
views. As examples, the component diagram can be used
to represent the structural view and dependency view of
components, the interaction and concurrency view can be
represented with sequence diagrams, and the dependency
view of services can be created with interfaces, stereotypes
and dependency arrows in class diagrams.

The next section presents a case study on the conference
management domain using the approach.

4. Case Study

In this section, we introduce an initial case study on
the conference management domain in order to clarify and
explain our approach. The case study consists of a service-
oriented product line that intends to produce customized
service-oriented applications for the management of differ-
ent conferences.

Part of the feature model of the service-oriented product
line is presented in Figure 3, and its features are described
next.

Conference

Submission Review

Accept / Reject

Notification

Complete Partial Result NewsIndication

Automatic Manual

Assignment

[1..1]

[1..2]

Legend: Alternative [min..max] Numberof VariantsOptional

Confirmation

Figure 3. Feature Model.

• Submission: authors can submit their complete papers
or, first submit the abstract, followed by the complete
version. Complete and partial submissions are alterna-
tive features.

• Review: the indication of papers to reviewers can be
made automatically and/or manually. Reviewers can
also accept or reject paper indications. Automatic and
manual indications are not exclusive, they can work
together.

• Notification: the system can send information to
reviewers about paper assignments. It can send
acceptance or rejection (result) information to authors.
It can also send event news, e.g., deadlines, and con-
firmation messages, e.g., paper or review submitted, to
authors and reviewers. Event news notification is an

optional feature. Assignments, confirmation and result
notifications are mandatory.

Applying the technique for component identification,
we finish with the following component candidates: com-
plete submission, partial submission, review management,
automatic indication, manual indication, and assignment,
result, confirmation and news notification components.
The complete and partial submission components were
separated because they are alternative features, and only one
of them will be bound to an application. The same thing for
the automatic and manual indication components, which are
an alternative non-exclusive choice, only one, or both will
be present in an application. The variants and mandatory
sub-features of the notification feature were also put each
one in a different component. There are other components,
e.g., access control, user management that were excluded
from the paper due to space limitations.

Figure 4 shows the simplified paper submission business
process. It starts with two optional activities, authors
submit the abstract of the paper and receive a confirmation.
Afterward, the authors submit the complete version of the
paper and receive a confirmation again. Finally, after the
reviews finish, the authors receive the result (acceptance and
rejection) messages.

Figure 5 shows the simplified review business process.
First, the system indicates papers to reviewers automatically
and/or manually (chair indication). The reviewers receive
the notification about the papers to review. They can reject
or accept the reviews, and next, they receive a confirmation
about the action they have performed. Finally, the reviewers
submit their reviews and receive a confirmation again.

From these business processes, the following service
candidates were identified: abstract submission, paper sub-
mission, review management, notification and orchestration
services (submit process, review process) for the whole
processes. The components of access control and user
management mentioned above do not need to be exposed
as services because they do not bring any business value to
these business processes.

Submit Abstract Confirmation Submit Paper Confirmation Result

MandatoryOptionalLegend:

Figure 4. Submission Business Process.

Assigment Accept / Reject Confirmation Submit Review Confirmation

Figure 5. Review Business Process.

After the identification of the components and services
candidates, we try to reduce the number of candidates

defining how the variability will be implemented. For
instance, the abstract submission and paper submission
service candidates can be reduced to only one service.
However, variability is introduced to the service interface
in order to reflect that the service operation submit paper
abstract is optional. The automatic and manual indication
components, which assign papers to reviewers can be
implemented in a unique component, but the variability
should be introduced internally using SPL variability tech-
niques, e.g., design patterns. In the case of the notification
feature, its sub-features (assignment, results, confirmation
and news) were put all in a unique component with internal
variability because the variability granularity of these sub-
features was low. We also use only one service with internal
variability to exposed the notification component, however,
this service also required interface variability in order to
reflect that the news notification feature is optional.

During architecture specification, the architectural views
are created. Figure 6 shows a dependency view of the
orchestration service for the submission business process.
As it can be seen, the submission service contains a variable
operation in order to reflect the variability implemented
in the partial and complete submission components. The
same thing for the notification service, which has an
optional operation as well to reflect that the news feature
is optional. As another architectural view example, Figure
7 shows the interaction view of the submission process.
The steps related with partial submission (submit abstract
and its confirmation message) will be removed of the
documentation when the feature complete submission is
selected.

+<<optional>> submitAbstract()
+submitCompletePaper()

«service»

Submission

«alternative»

Partial Submission
«alternative»

Complete Submission
Notification

+sendConfirmation()
+sendAssignment()

+<<optional>> sendNews()

«service»

Notification

«service»

Paper Submission Orchestration

+sendResult()

Figure 6. Dependency View.

5. Related Work

Two different approaches for business process modeling
based on product line principles exploiting commonalities
and variability through domain engineering are presented
in [8, 9]. Both works realize processes able to adapt
themselves to different customers or market segment needs.
Thus, the resulting SOA systems that automate them will be

«service»

Notification

«service»

Submission

<<optional>> submitAbstract ()

<<optional>> sendConfirmation()

<<optional>> confirmation

<<optional>> confirmation

Top Package::Author

submitPaper ()

sendConfirmation()

confirmation

confirmation

resultConfirmation

Author

Figure 7. Interaction View.

suitable to different customer needs as the underlying pro-
cesses. However, none of them concerns the identification
of services candidates or gives information about the com-
ponents that realize the service implementation. In addition,
the work is not concerned with architecture specification
and documentation, and focus on web service technologies
such as BPEL. We solve these gaps in our work providing
information on how to identify and specify services and
components regarding variability issues. Moreover, our
approach does not focus on any specific technology.

An approach for developing service-oriented product
lines is presented in [18, 25]. It proposes a service
identification method based on the feature binding analysis
technique [26]. However, it does not consider the business
processes and it may identify service candidates that are not
aligned with the business goals. The service identification
technique of our approach is based on the techniques used
in service-oriented development [3, 20]. Thus, we identify
services from an analysis of the business processes.

In [17], a development process for web services is
proposed. It analyzes a particular software product line
development process and compares it with the service-
oriented product line process proposed. It concludes the
paper with an example for a service-oriented product line
web store that basically uses a code tranformation tool to
implement service interface variability. In our work, we
suggest some techniques for the implementation of service
interface variability, not only the use of code transformation
tools, but also well known techniques used in SPL, e.g.,
conditional compilation and parametrization.

6. Conclusions and Future Work

This work presents a contribution to the combination of
SOA and SPL concepts. In particular, how these concepts
can be used together to achieve desired benefits such as
improved reuse, decreased development costs and time to
market, and production of flexible applications customized
to specific customers or market segment needs.

In order to achieve these goals, we presented an ap-

proach for service-oriented product line architectures that
introduces the concepts of managed variability into service-
oriented world and uses a two life-cycle model as in SPL
engineering, however, only core assets development is
considered in this work. These concepts were introduced
in order to provide support for high customization and
systematic planned reuse during service-oriented develop-
ment. In this context, services are developed to be reused
in specific contexts and service-oriented applications can
be developed rapidly and customized according to specific
customer requirements. We also present a case study on the
conference management domain clarifying and explaining
the activities of the approach.

As a future work, we are planning to apply this service-
oriented product line architecture approach to others do-
mains and validate the real benefits of the combination
of SOA and SPL that we have used in this work. In
addition, we are performing a case study using different
technologies and techniques for service internal variability
implementation in order to identify the real differences,
if they exists, from object-oriented and component-based
variability implementation.

Acknowledgements

This work was partially supported by the National
Institute of Science and Technology for Software En-
gineering (INES1), funded by CNPq and FACEPE,
grants 573964/2008-4 and APQ-1037-1.03/08 and Brazil-
ian Agency (CNPq process number 475743/2007-5).

References

[1] F. J. v. d. Linden, K. Schmid, and E. Rommes,
Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2007.

[2] S. Carter, The New Language of Business: SOA & Web
2.0. IBM Press, 2007.

[3] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah,
S. Ganapathy, and K. Holley, “SOMA: A method for
developing service-oriented solutions,” IBM System
Journal, vol. 47, no. 3, pp. 377–396, 2008.

[4] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[5] T. Erl, Service-Oriented Architecture: Concepts, Tech-
nology, and Design. Upper Saddle River, NJ, USA:
Prentice Hall, 2005.

1INES - http://www.ines.org.br

http://www.ines.org.br

[6] M. P. Papazoglou and W.-J. V. D. Heuvel, “Service-
oriented design and development methodology,” Inter-
national Journal of Web Engineering and Technology
(IJWET), vol. 2, no. 4, pp. 412–442, 2006.

[7] A. Helferich, G. Herzwurm, and S. Jesse, “Software
product lines and service-oriented architecture: A
systematic comparison of two concepts,” in SPLC ’07:
11th International Software Product Line Conference,
IEEE Computer Society, 2007.

[8] N. Boffoli, D. Caivano, D. Castelluccia, F. M. Maggi,
and G. Visaggio, “Business process lines to develop
service-oriented architectures through the software
product lines paradigm,” in SPLC ’08: 12th Inter-
national Software Product Line Conference, pp. 143–
147, 2008.

[9] E. Ye, M. Moon, Y. Kim, and K. Yeom, “An approach
to designing service-oriented product-line architecture
for business process families,” in ICACT ’07: 9th
International conference on Advanced Computing
Technologies, pp. 999–1002, 2007.

[10] S. Cohen and R. Krut, eds., Proceedings of the
First Workshop on Service-Oriented Architectures and
Software Product Lines, 11th International Software
Product Line Conference, 2007.

[11] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles
and Techniques. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[12] L. Northrop, “Sei’s software product line tenets,”
IEEE Software, vol. 19, pp. 32–40, July 2002.

[13] A. Arsanjani, “Service-oriented modeling and archi-
tecture,” tech. rep., Service-Oriented Architecture and
Web services Center of Excellence, IBM, 2004.

[14] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam,
and K. Channabasavaiah, “S3: A service-oriented
reference architecture,” IT Professional, vol. 9, no. 3,
pp. 10–17, 2007.

[15] L. Bass, P. Clements, and R. Kazman, Software Ar-
chitecture in Practices. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[16] C. Szyperski, “Component technology: what, where,
and how?,” in ICSE ’03: 25th International Confer-
ence on Software Engineering, pp. 684–693, IEEE
Computer Society, 2003.

[17] S. Günther and T. Berger, “Service-oriented product
lines: Towards a development process and feature

management model for web services,” in SPLC ’08:
12th International Software Product Line Conference,
pp. 131–136, 2008.

[18] J. Lee, D. Muthig, and M. Naab, “An approach
for developing service oriented product lines,” in
SPLC ’08: 12th International Software Product Line
Conference, pp. 275–284, IEEE Computer Society,
2008.

[19] D. Kang, C. yang Song, and D.-K. Baik, “A method
of service identification for product line,” in ICCIT
’08: 3rd International Conference on Convergence
and Hybrid Information Technology, vol. 2, pp. 1040–
1045, 2008.

[20] A. Erradi, S. Anand, and N. Kulkarni, “Soaf: An
architectural framework for service definition and
realization,” in SCC ’06: Proceedings of the IEEE
International Conference on Services Computing,
pp. 151–158, IEEE Computer Society, 2006.

[21] J. V. Gurp, J. Bosch, and M. Svahnberg, “On the
notion of variability in software product lines,” in
WICSA ’01: 2nd Working IEEE/IFIP Conference on
Software Architecture, p. 45, 2001.

[22] C. Gacek and M. Anastasopoules, “Implementing
product line variabilities,” SSR ’01: Symposium on
Software Reusability, vol. 26, no. 3, pp. 109–117,
2001.

[23] H. Gomaa, Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. Addison Wesley, 2004.

[24] M. Razavian and R. Khosravi, “Modeling variability
in business process models using uml,” in ITNG
’08: 5th International Conference on Information
Technology - New Generations, pp. 82–87, 2008.

[25] J. Lee, D. Muthig, and M. Naab, “Identifying and
specifying reusable services of service centric sys-
tems through product line technology,” in SPLC ’07:
11th International Software Product Line Conference,
IEEE Computer Society, 2007.

[26] J. Lee and K. C. Kang, “Feature binding analysis
for product line component development,” in PFE
’03: 5th International Workshop on Software Product-
Family Engineering, pp. 250–260, 2003.

DO MORE
w w w . r i s e . c o m . b r

9/23/2009 2

Towards an Approach for Service-

Oriented Product Line

Architectures

Flávio Mota Medeiros

Eduardo Santana de Almeida

Silvio Romero de Lemos Meira

9/23/2009 3

Outline

• Introduction
• Variability Levels and Mechanisms
• Case Study
• Reuse Across Product Lines
• Conclusions and Future Work

Introduction

• Service-Oriented Architecture (SOA) [1]
» Develop distributed applications
» Self-contained, reusable and loosely coupled

• SOA Highlights [2]
» Align IT and business goals
» Increase reusability
» Flexibility to change (business agility)

General Scenario

• Systematic planned reuse
» SOA reuse is not planned and systematic as in SPL [3]
» Ad-hoc reuse strategy

• Artifacts reuse
» Services are the reusable entities [4]
» Diagrams and business process models

• High customization
» Through variability [5]

Research Goal

• Develop SPL with SOA
» Explore commonality and variability
» Domain-specific service reuse
» Artifacts with variability

• Raise reuse level
» Increase productivity
» Decrease development costs and time

• Service-oriented applications
» Systematic planned reuse
» High customization
» Customers or market segments needs

Outline

• Introduction
• Variability Levels and Mechanisms
• Case Study
• Reuse Across Product Lines
• Conclusions and Future Work

Variability Levels [6] [7]

• Configuration variability
» Select services or components
» Architecture variability
» High granularity

–Different classes

• Customization variability
» Introduce internal variability
» Customize component and services
» Low granularity

–Class attributes or methods

Variability Mechanisms

• Configuration Variability [8] [9]
» Dependency injection
» Parameters
» Configuration files
» Aspect orientation

If (condition) {
//Binding Component B
//Call service B

} else {
//Binding Component C
//Call service C

}

Variability Mechanisms

• Customization variability [10]
» Design patterns
» Configuration files
» Parameters
» Aspect orientation

Variability Mechanisms

• Configuration and customization variability together
» Select component B or C
» Component B and C with different interfaces
» Service A exposes different interfaces
» Aspect orientation public aspect ComponentB {

public void ServiceA.operationB(){
// Implementation

}
}

public aspect ComponentC {
public void ServiceA.operationC(){

// Implementation
}

}

Outline

• Introduction
• Variability Levels and Mechanisms
• Case Study
• Reuse Across Product Lines
• Conclusions and Future Work

Case Study

• Conference management
» Service-oriented product line
» Explore commonality and variability

–Cyber chair, easy chair, IS Technology journal, etc
» Customized according to the requirements

• SPL project
» Full product line version
» Reduced scope in the context of SOAPL

Scope

Submission Business Process

• Partial or complete submission
» Alternative feature

Review Business Process

» Event news notification (optional)
» Manual or automatic assignments (OR)

Where we’re going

• Generate scenarios for users (submitter, reviewer,
admin)

• Identify possible services
• Identify variations
• Enhance feature model
• Layer by services and workflows

Services

• Registration (author, reviewer, email confirmation/reregister)
• Scheduling (submission cut off, review cut off, reminders)
• Bidding/Selection/Assignment
• Submissions (abstracts, papers, reviews)

» Uploads (browse)
» Withdraw submission
» Conflicts

• Notification (paper, review summary, conflict, Reviews complete)
• Format (administrator)

» Paper (keywords, file, size, cycles (review, revise, final)
» Review form
» Review (criteria, levels, numbers of reviewers)
» Knowledge areas

Services - 2

• Review summary
» Accept/reject criteria
» Conflict resolution criteria

• Storage/retrieval (papers, reviews, names)
» tracking

Submission
• Submit (alt: abstracts, papers, reviews, response by author to comments)

– Medical tests
• Meta data

» Conference identification
» Author anonymity (option)
» Conflicts

– Patient, insurance,
• Uploads (opt: browse)

» Word  .pdf
– .pdf, images, audio, video

» Submission window (cut and paste into window)
» Protocols (ftp, web,

– Secure protocols, auditing
» Format verifier, pages, words in abstract, file size, combine words/graphics in

word count
» Format preview
» Via email

• Withdraw submission
• For review, as revised or final submission

Workflow -

• So far
» Author identifies paper (Clinic identifies)
» Submits paper (Clinic submits)
» System stores

• Next
» Provide summaries to reviewers  bidding service
» Place in queue for reviewer  start clock on review submissions

–Place medical record in queue for reviewer
» Allow for withdraws/updates

Architectural Elements

Outline

• Introduction
• Variability Levels and Mechanisms
• Case Study
• Reuse Across Product Lines
• Conclusions and Future Work

Services for Different SPLs

• Domains
» Paper submission
» Medical record review
» Trouble or Bug report
» Item order report

Outline

• Introduction
• Variability Levels and Mechanisms
• Case Study
• Reuse Across Product Lines
• Conclusions and Future Work

Conclusions

• SPL principles can be used in service environments
» Systematic reuse
» High customization (variability)

• Service internal variability
» Useful in some cases
» Variability granularity is low

• Variability mechanism work in service environment
» Design patterns, aspects and configuration files
» Dependency injection and parameters

Future Work

• Evolve the case study
» Analyze more variability mechanisms
» Analyze different binding times

• Extend the SPL to Different domains
» Bug report

Thank you!

Any questions or suggestions?

References I

• [1] Thomas Erl. “Service-Oriented Architecture: Concepts,
Technology, and Design”, 2005.

• [2] Ali Arsanjani. “Service-Oriented Modeling and Architecture”, 2004.

• [3] Clements and Northrop. “Software Product Lines: Practices and
Patterns”, 2001.

• [4] Mikko Raatikainen, Varvana Myllärniemi and Tomi Männistö.
“Comparison of Service and Software Product Family Modeling”,

2007.

References II

• [5] Klaus Pohl et al. “Software Product Line Engineering:
Foundations, Principles and Techniques”, 2005.

• [6] Eunsuk Ye, Mikyeong Moon, Youngbong Kim and Keunhyuk
Yeom. “An Approach to Designing Service-Oriented Product-Line
Architecture for Business Process Families”, 2007.

• [7] Nicola Boffoli, Danilo Caivano, Daniella Castelluccia, Fabrizio
Maria Maggi and Giuseppe Visaggio. “Business Process Lines to
Develop Service-Oriented Architectures through Software Product
Lines Paradigm”, 2008.

References III

• [8] Mikael Svahnberg, Jilles van Gurp and Jan Bosch. “A taxonomy of
Variability Realization Techniques”, 2005.

• [9] Sergio Segura, David Benavides, Antonio Ruiz-Cortés and Pablo
Trinidad. “A Taxonomy of Variability in Web Service Flows”, 2007.

• [10] Cristina Gacek and Michalis Anastasopoulos. “Implementing
Product Line Variabilities”, 2001.

Semantic Variability Modeling for Multi-staged Service Composition

Bardia Mohabbati1,3, Nima Kaviani2, Dragan Gašević3

 1Simon Fraser University, 2University of British Columbia, 3Athabasca University, Canada
 mohabbati@sfu.ca, nimak@ece.ubc.ca, dgaseavic@acm.org

Abstract
Feature models as the main modeling metaphors for
software product line conceptualization are not ex-
pressive enough to cover all the variability needed to
support adaptive engineering of service-oriented sys-
tems in highly dynamic environments. In particular,
feature models lack required semantics to incorporate
non-functional requirements (NFRs) and enable rea-
soning over the set of possible products in order to de-
rive the best configurations. Ontology languages, as
easily expandable semantically enriched conceptuali-
zation methodologies, can be used as the underlying
languages for expressing feature models. This would
allow augmentation of feature models with NFRs and
would add the possibility for inference and reasoning
to feature models. In this paper, we show how trans-
formation of feature models to ontologies coupled with
constraints over configuring products can help with
reasoning over a product family and creating adaptive
service compositions in an exemplified ubicomp appli-
cation.

1. Introduction

The emergence of highly dynamic environments such
as mobile systems and ubiquitous computing subsum-
ing wide range of heterogeneous computing devices
(e.g. handheld computers, PDAs, and smart phones),
call for more flexible and adaptive development of
software-intensive systems. Those systems now need
to be composed, configured and delivered based on
capabilities and resource constraints of the deployment
platform of the target users. Accordingly, we require
support to configure final software products, which
provide the utmost functionality and satisfy non-
functional requirements (NFRs) derived from the tar-
get deployment platforms.

Service-oriented Architectures (SOAs) come to the
scene as a promising software architecture style for
addressing the on-going challenges of the development
of ubiquitous computing systems. In particular, plat-

form independence, interoperability, loose-coupling,
reusability, discoverability, composablity and dynamic
binding are significant traits [2] for this context. How-
ever, to be able to software systems based on the SOA
principles in the provided ubiquitous computing con-
text, we need to equip developers with appropriate
software methodologies, which can allow for effective
software development process. This process involves
the development throughout different abstraction lay-
ers comprising such as those already identified in the
literature business process, service composition, ser-
vice interface, and service implementation layers
 [1] [3] [4]. While each of the abovementioned layers
calls for a lot of dedicated research, in this paper we
focus on one key problem: How to develop service-
oriented systems by considering the specificities of dif-
ferent target deployment platforms. That is, more con-
cretely, how can we consider different device capabili-
ties in the service-oriented development process? Giv-
en a proven track record of Software Product Line En-
gineering (SPLE) in the domain of mobile computing
(e.g., Nokia as one of the most known examples), the
idea of the use of software product line principles
seems to be a first natural option for the problem under
study. The SPLE discipline provides methods for man-
aging variability and commonalities of core software
assets in order to facilitate the development of families
of software-intensive products. Here, software families
are characterized by a set of features shared by each
individual product of a family. At the same time, each
specific product may have certain specificities coming
from particular requirements of the product at hand.
While in general we may have various different
sources of variability, in this paper, we exclusively fo-
cus on the problem of variability coming from the dif-
ferent delivery platforms of service oriented systems.
For example, two different types of mobile devices
might support different connectivity or security proto-
cols. This may directly impact a decision on which
payment service to use in a concrete service-oriented
system under development.

mailto:mohabbati@sfu.ca
mailto:nimak@ece.ubc.ca
mailto:dgaseavic@acm.org

As it is reflected in the previously-mentioned four
layers of abstraction reflects, the prevailing approach
to developing service oriented architectures is based on
business processes modeling. Once defined, business
process models guide the process of service composi-
tion. This is the exact place where we take in to ac-
count of applying SPLE principles. In particular, we
exploit feature modeling, which allows for identifying
and managing the existing services and components in
terms of common and variable features of a system in a
product line. Furthermore, feature models provide
structural management scheme of variability derived
from NFRs of domain assets and to approach semi-
automatic configuration and generation of products in
response to the specific requirements for different
products of the same service-oriented product family.

Aiming to provide a methodology, we propose a
multi-staged specialization process of feature models
 [5]. In this process, we model service compositions by
using feature modeling diagrams, which are then anno-
tated with the NFRs, which each deployment platform
needs to satisfy. In this process, we make use of the
Ontology Web Language (OWL) and Semantic Web
Rule Language (SWRL) [6] [7]. These languages are
used to represent feature models formally, so that we
can automatically detect a set of allowed feature model
specialization of a given target device. In addition,
through using expandability and annotation capabili-
ties of ontologies, NFRs of service in product lines can
be formally incorporated into the ontological specifica-
tion of feature models, expanded over time, or aug-
mented with additional non-functional ontologies. In
other words, the variability derivation points derived
from NFRs of services is catered by the specification
of the relevant declarative elements (device ontologies,
service descriptions). Description Logic as the under-
lying logic for ontologies renders non-functional re-
quirements to be formally introduced into the feature
model ontologies. Furthermore, ontology-based se-
mantics support logical reasoning over semantic de-
scriptions, which in turn helps with validating (non-)
functional requirements, intelligent product configura-
tion, and product consistency check.

2. Motivation Example

Dealing with diverse services offered by various ser-
vice vendors requires a proper mechanism to select ap-
propriate services whose composition can lead to a de-
sired functional system. The architectural structure for
developing a system is thus influenced by possibilities
in choosing the appropriate set of services from the list
of existing ones. An adaptable design hence, should
lay out all different possibilities for composing servic-

es in order to enable a system detect, find, and replace
its set of services when needed. Consider an applica-
tion developed to be launched on a large display at an
airport to enable passengers look for information about
flight schedules, stores at the airport, the city, etc. In an
ideal ubiquitous environment, the application should
enable passengers to connect to the application seam-
lessly and utilize its functionalities.

A common method of interaction would be through
using cell phones carried by passengers. The applica-
tion should enable every passerby to use his or her cell
phone to connect to the application regardless of the
type of phone s/he carries. Interaction and communica-
tion with the application on the large displays can hap-
pen through different communication protocols (e.g.,
WiFi, Bluetooth, IrDA), and different message ex-
change protocols (e.g., Http over TCP, Sockets, Chan-
nels, etc.). Consequently, the large display application
needs to be able to adapt its communication and inte-
raction protocols to the type of phone requesting a
connection. Furthermore, the content delivered to the
phone should also be adjusted to the physical specifi-
cations of the device (e.g., the display size, the resolu-
tion, etc.). The problem gets more complicated if part
of the presentation or logic for the application needs to
be delivered to the mobile phone. Adaptability be-
comes an important issue, since the application needs
to incorporate different modules depending on the in-
frastructure for the mobile phone, while keeping the
functionality consistent from phone to phone. Being
able to properly lay out a design architecture that
brings all these diversities in selecting components un-
der a unified model, would facilitate selection of com-
ponents through reasoning and would enable proper
adaptation of the software with respect to the diversi-
ties imposed by joining and leaving mobile devices.
We believe the support for specifying variabilities and
commonalities provides proper modeling requirements
to deal with the dynamicity required in ubiquitous en-
vironments.

3. Proposed Approach

As indicated in the introduction, the goal of this paper
is to propose a methodology for developing families of
service-oriented systems based on a multi-staged spe-
cialization of feature models. Figure 1 illustrates the
overview of the overall development process. The first
two stages adapt the existing feature-oriented domain
analysis and design approaches (i.e., Domain Analysis
and Design). Besides their adaptation of the service-
oriented context, this stage also specifies NFRs related
to the capabilities of the target deployment platforms.
Once defined, the next step is to provide a specializa-

tion of the feature model first based on the target dep-
loyment platforms and second based on user prefe-
rences (i.e., Service Adaptation in Figure 1).

Analysis Design

Software Service
Product Specialization

Configuration
Validation

Device
Ontology

Instantiation

Service Oriented Product Configuration

Domain Analysis
Product Family

Feature Extraction

Representing
Variability by Feature

Modeling

Feature
Model
Ontology

Feature
Model

Annotation

Annotated
Feature Model

Request
Specification

Device
Specification

User’s Requests and

Preferences

Soft
Constraint

Hard
Constraint

Service Adaptation

Feature Model
Specialization

Figure 1. The overview of the steps of the multi-
staged specialization of service compositions

In this paper, we only focus on the first step, where we
are considering the characteristics of the target dep-
loyment platform. In the overall process, we make use
of the semantic Web languages for rules and ontolo-
gies (OWL) and SWRL to automate the process of
specialization process and obtain a set of feature model
specializations for a given set of the requirements (i.e.,
Service-oriented Product Configuration). The rest of
the section describes the proposed approach in detail.

3.1. Analysis and Design

The purpose of analysis and domain engineering is to
develop domain assets, aka features, to identify and ex-
tract a set of reusable features involved in the process
of service-oriented product family. There have been
many methodologies established to perform domain
analysis. These methodologies could be opted in the
engineering of reusable architectures and components
(e.g. Feature-Oriented Domain analysis (FODA) [10],
Feature-Oriented Reuse Method (FORM) [11], Fea-
tuRSEB [12]). An appropriate comprehensive feature
model should be designed to represent the system va-
riability and commonality through the result of domain
analysis. We employ an ontology-based approach to
incorporate the NFRs of a system into the specification of
features by transforming the feature model of a software
system and constructing its feature model ontology. The
annotation processes is performed to enrich feature mod-
els by associating semantic metadata though using NFR
ontologies; which yields how features can contribute to
the satisfaction of high-level abstract objectives of the
problem domain. In our use cases, feature models are an-
notated using the device ontology; which contributes to

finding a set of configurations of software services sup-
ported by the device capabilities.

3.1.1. Feature Models for Variability Modeling

Software Product Lines (SPL) provides an effective
approach for modeling variability. SPL empowers the
derivation of different product family applications by
reusing the realized product family assets often known
as core assets. A key principle of SPL is maintaining
the variation points and dependencies in order to facili-
tate the exploitation of commonality and the manage-
ment of variability among software features. SPL prac-
tices can be utilized to support service-oriented appli-
cations to promote the reusability and adaptation of
services in product families of software services. Con-
sequently, SOA’s promise of bringing reusability and
loose coupling can be further augmented using SPL
engineering. The features in SPL subsume generic ar-
chitecture and components which are tightly coupled,
whereas services in SOA are reusable loosely coupled
units [4]. Treating service units in SOA as core assets
of SPL allows both perspectives on reuse to be incor-
porated synergistically into an integrated approach.
Feature modeling in SPL is a well-defined approach to
capture variability and commonality of the features and
allows for expressing the permissible variants and con-
figurations of software product family. Accordingly,
the large set of existing services and their shared com-
monalities (particularly in the domain of ubiquitous
computing) makes it possible to take advantage of
SOA and feature modeling in SPL engineering for
modeling variability of services.

a) Feature Model
As alluded to above, the feature modeling technique is
opted to represent and describe the possible configura-
tions of system and variants in terms of features
representing system functionality units. In general,
there are four types of relationships related to variabili-
ty concepts in the feature model. They can be classi-
fied as: Mandatory (Required), Optional, Alternative
and Or feature group. Mandatory features must be in-
cluded in the description of their parent features and
presented to function as intended. Optional features
may or may not be included for the basic product to
function. Alternative features indicate that only one of
the features from the feature groups can be used to
provide that the proper feature functionality. Figure 2
depicts the graphical representation of feature models,
known as feature diagram, as well as common feature
diagram notation [18] [5]. The sample feature model
diagram, in a three-like graph structure where primi-
tive features are leaves and compound features are in-
terior nodes, introduces parts of the system that require

selecting and composing appropriate services for deli-
vering particular contents based on users’ require-
ments, functionalities of the system, and capabilities of
end-point devices. The system, through conducting
service adaptation, should be able to identify the capa-
bilities of the required device, adjust the content ac-
cording to device features, and select appropriate ser-
vices by looking into the feature model and extracting
those that have matching functionalities. Such kinds
of scenarios clearly illustrate the use of SPLE in the
SOA development, especially in the domain of ubi-
quitous computing.

Figure 2. Feature model diagram

Feature models explicitly demonstrate different

ways in which features could be composed. A valid
composition of features is called a configuration which
in turn is a valid software service product specializa-
tion. Since different applications employ features in
different non-functional context, feature models help
to segregate the NFRs of services from functional re-
quirements in SOA which results in the increasing reu-
sability of services by defining constraints among
NFRs [9].Feature models enable the management of
variabilities and commonalities for the set of existing
services and components. Extending feature models to
support non-functional or extra-functional require-
ments allows QoS/NFRs-driven service selection and
composition. These requirements can be checked and
verified against the non-functional properties inter-
laced with service specifications corresponding to the
underlying components. In the following sections we
discuss how ontologies can be exploited to extend fea-
ture models with NFRs and enable configuration of de-
sired services based on user requests.

b) Semantic Feature Model
Current feature models mainly consider the modeling
of functional features, and there is a lack of precise
modeling artifacts dealing with NFRs. For instance,
despite existence of several proposed approaches that
bring SPL into the domain of pervasive and ubiquitous
computing [13] [14], most of them lack a clear specifi-
cation of NFRs for service level agreement (SLA),
QoS, and device capabilities [15]. Furthermore, they
hardly provide possibilities for consistency check of
the NFRs extended feature models, or logical reason-
ing over feature models which enable intelligent confi-
guration and selection of services for product instantia-
tion. Moreover, due to the lack of formal semantics
and descriptions in a feature model, relations, depen-
dencies and constraints of features are not specified
comprehensibly through the model. Accordingly, we
have employed an ontology based approach aiming at
creating semantically-enabled feature models. We be-
lieve ontologies provide the appropriate means to ad-
dress the aforementioned issues.

3.1.2. The Feature Model Ontology

An ontology is defined as a formal specification of a
conceptualization and utilizes the representation of
knowledge contained in feature models. The Feature
Model Ontology (FMO) provides the semantic repre-
sentation of features and relations and dependencies as
well as feature constrains, which express another form
of relations among features, in one model entirely. We
used the approach introduced by Wang et al. [7] [8] for
mapping feature models to ontologies using the Web
Ontology Language (OWL) [6]. The transformation of
a feature model is performed through constructing mu-
tual disjoint classes corresponding to defined nodes in
the feature model and assigning a class rule con-
structed for individual classes created in the FMO. In
other words, each class rule is associated to its corres-
ponding feature node declaring an existential restric-
tion and is used to define the bindings of the node’s
child features or to define the constraints. In our OWL
model of FM, an object property is created whose as-
serted range is the respective feature class for the fea-
ture node. Assuming that there are i nodes in the fea-
ture model (FM), the Description Logic (DL) presenta-
tion of the above modeling can be expressed as fol-
lows:

Fi ⊑ ⊤
FMiRule ⊑ ⊤
hasFi ⊑ ObjectProperty
FMiRule ≡ ∃ hasFi. Fi
Fi ⊑ ¬Fj , for 1 ≤ 1, j ≤ n ∧ i≠j

Going back to the scenario of Section 2, let us
model the need for supporting Bluetooth communica-
tion for the large display application. The DL presenta-
tion of for including Bluetooth into the feature model
for our product family can be defined as follows:

Bluetooth ⊑⊤
BluetoothRule ⊑⊤
BluetoothRule ≡ ∃ has Bluetooth.Bluetooth,
hasBluetooth ⊑ ObjectProperty
3.1.3. Feature Model Annotation

Representation of a feature model as an ontology
enables us to take advantages of ontology annotation
capabilities in order to enrich the definition of domain
assets with the constraints concerning the non-
functional requirements of a domain. Through using
expandability property of ontologies, NFRs can be
formally incorporated into the ontological specification
of feature models, expanded over time, or augmented
with additional NFR ontologies. For a feature model to
explicitly integrate NFRs to the possible set of confi-
gurations, at the design stage, it would be possible to
annotate the feature model with an ontology
representing NFRs of interest. That is, the ontology of
service quality can be used to annotate features in the
feature model with attributes such as precision, robust-
ness, reliability, or any other relevant NFRs. We ex-
tend the FMO by defining AnnotationProperties (ANs)
as part of our model so as to annotate the feature mod-
el using external ontologies. In essence, the ANs have
feature classes as their domains and their ranges refer
to the concepts (i.e., classes) in the NFRs or QoS on-
tologies, For the sake of the detailed analysis of the
ubiquitous domain and the paper’s research objective,
we will use device capability ontology as a sample for
describing the NFR ontology. An example of such an
ontology is the W3C’s Delivery Context Ontology
 [23]. This process and assertion of ANs’ range is per-
formed during designing the system and the existing
services. The attributes are added to the feature model
as part of the requirements for each feature and its cor-
responding service interface. Considering that we refer
to the classes in FMO as FMm and the classes in device
capability ontology as DCn, annotating FMO with the
device capability ontology using an OWL object prop-
erty, detonated as AN, is carried out as demonstrated
in Figure 3 which shows annotation of the feature
model using derived device ontology following the DL
syntax as below:

AN ⊑ ObjectProperty
AN ⊑FMm, domain(FMm)
⊤ ⊑∀ AN.DCn, range (DCn)

 Considering the Bluetooth communication exam-
ple, in order to relate the Bluetooth concept in the FM
with the Bluetooth communication device provided by
a mobile phone, the following DL associations are
used:

hasBluetooth_AN ⊑ ObjectProperty
hasBluetooth_AN ⊑ Bluetooth,
domain(BluetoothRule)
⊤ ⊑∀ has Bluetooth_AN.BluetoothDevice,
range (BluetoothDevice)

Due to space limits and the large collection of
mappings between the device capability ontology and
the feature model, we do not include a complete repre-
sentation of these mappings. Every configuration in-
stance generated from the feature model also inherits
these ontology attributes with asserted values specify-
ing the set of potential capabilities for an NFR to be
satisfied.

[FM Annotation]

…

F1 F2 F3

Fn

… … `

Feature Model Feature Model Ontology (FMO) Device Ontology(DCO)

[FM Mapping]

Figure 3. Feature Model Mapping and Annotation
by NFRs Ontology

3.2. Service Requirement Specification

The process of selecting appropriate features for a con-
figuration of service-oriented products is influenced by
the requests specification, which encompasses re-
quirements for a product configuration. In particular,
we start from the definition of the hard NFRs. The
NFRs are embedded into the requirements specifica-
tion which in this case are catered by the capabilities of
the target deployment platforms such as mobile devic-
es. For example, hard NFRs describe characteristics of
the device capabilities for video streaming and multi-
media processing in the target deployment platform. In
our approach, these hard NFP are added into an OWL
knowledge base as instances of the device ontology of
choice. The following ontology fragment expresses
specification of a concrete delivery platform. The defi-
nition requires a particular characteristic supported by
the target device display. For example, an instance of
the device should be equipped with a display feature
which supports specific values (i.e., x and y) for the

width and height of the display along with the compo-
nent of the requested aspect ratio.

Device⊑⊤
Hardware ⊑⊤
hasHardware ⊑ Device,
⊤ ⊑∀ hasHardware.Device
Display ⊑ Hardware
⊤ ⊑∀ hasDisplay.Display
AspectRatio ⊑ Display
⊤ ⊑∀ displayAspectRation.AspectRatio
aspectRatioHeightComponent ⊑ AspectRatio
aspectRatioWidthComponent ⊑ AspectRatio
⊤ ⊑∀ aspectRatioWidthComponent.int  x
⊤ ⊑∀ aspectRatioWidthComponent.int  y
 NFRH ≥ x , NFRW ≥ y

In our overall process, which is not discussed fur-
ther in this paper, we also anticipate the place for the
possible preference of users defined as soft require-
ments. Examples include cases like preference towards
services with textual services vs. multi-media service
or precision of retrieval services vs. speed of retrieval
services. Soft requirements represent user preferences
unlike hard requirements, which must always hold.

3.3. Software Service Products Configuration

Ontology-based modeling of the target device reflects
all the capabilities of the target device. In other words,
device ontology instances reflect all the NFRs as hard
constraints which exclude and include the selection of
services in annotated feature models. So in the process
of configuration, a subset of services is selected based
on hard constraints specified by device capabilities,
known as software service product specialization. In
the process of configuration, the model of the target
device requires to be compliant with the annotated fea-
ture model. The features which do not satisfy the NFRs
of target device are discarded pruning the feature mod-
el into a new feature model whose set of possible con-
figurations is a subset of the original feature model.
This derived feature model is referred to as a speciali-
zation of the feature model and the staged refinement
process which constitutes staged configuration [17]. In
terms of the OWL-based reasoning, our goal is to de-
termine if instances of the NFRs ontology (i.e., in our
case device capabilities) are consistent with respect to
the annotation properties defined in the feature model.
The DL-based ontology that we have discussed in our
scenario comprises two knowledge bases, Feature
Model Ontology (FMO) and Device Capability Ontol-
ogy (DCO); which is denoted as O = FMO ⊔ DCO.
Our rule knowledge base is a quadruple K = (O, T, A,
R), where T is a set of concept axioms (TBox), A is a

set of assertional axioms (Abox), and R is a set of
rules written as inclusion axioms. Lets us provide some
definition to build the ground of the feature model spe-
cialization process.

DEFINITION 1 Let d ∈ DCO be an instance of a de-
vice which has n capabilities. Each capability for de-
vice d is an instance (ik) of a concept (Ck) from DCO
such that A⊨Ck(ik) (1≤k≤n). Sdc = {C1,..,Cn}, represents
the set of all concepts Ck from DCO that d supports.

DEFINITION 2 Let SAF ⊑ FMO be a set consisting of
concepts CFi such that ∀CFi.⊤| ∃ANi ⊑ CFi ⊓
∃ANi.Ck where Ck ∈ DCO.

The following Algorithm is introduced to special-
ize features from annotated feature set w.r.t hard con-
straints. The algorithm initially checks if each feature
from SAF has an annotation property ANj (I) whose
range is a class from Sdc (II). Those features whose
properties do satisfy this condition are removed from
the feature model specialization set (SFA). Each fea-
ture which satisfies the above conditions is further
checked to see if there is at least one consistent instan-
tiation of it in the FMO taking the value from Ci(i) ∈
DCO through using the annotation properties (III).
Otherwise they are also removed from SFA.

Algorithm 3.1: Feature Model Specialization

 ANj ⊑ ObjectProperty

 SFA=
n

i

iCF
1

 for each Ck ∈Sdc
 for each CFi ∈ SAF

 if (∃ANj.Cj ⊓ ANj ⊑ CFi and Cj ∈ DCO) (I)
 if (Cj ∈ Sdc) (II)

 if (A ⊭ CFi(ii)) (III)
 SFA ← SFA - {CFi(ii)}

else
 SFA ← SFA - {CFi(ii)}

 return (SFA)

Having the set of compatible features remained in
the feature model; the process of composition proper
of services proceeds to derive a set of suitable software
service products for the requesting devices. Consisten-
cy checking and validation of a given software service
configuration results from the feature model speciali-
zation and the process of the staged refinement is re-
quired to be performed in order to validate the configu-
ration against the feature model constraints. During the
process of the configuration validation, model con-

straints are checked against the derived configuration
to provide proper assurance in terms of correct exclu-
sion and inclusion of optional and mandatory features.
To perform consistency checking and analysis over the
OWL representation of an annotated feature model, we
employ RacerPro2 as one of the widely accepted
OWL-DL reasoning engines, which supports auto-
mated class subsumption, consistency reasoning and
detection of possible inconsistencies in the specialized
feature model. Since some inconsistencies, derived
from mutually exclusive properties (require and ex-
clude), could not be represented by relying solely on
OWL DL, due to expressivity limitations, we formu-
late and define a list of SWRL rules to represent all
invalid states and detect conflicts or inconsistencies in
the model.

3.4. Service Discovery and Specialization

The result of consistency checking in the previous
step can be two folded. If the result is an inconsistent
ontology (i.e., NFRs filtered out some mandatory fea-
tures), we need to return to the feature analysis stage
and design and refine our family of compositions to sa-
tisfy the discovered inconsistencies. Otherwise, if the
result of this step is a consistent feature model specia-
lization, we enter the process of further specialization
and service discovery. The service specialization can
be based on soft requirements (e.g., preferences to-
wards certain features) of the stakeholder. Analyzing
soft requirements can also be done through a similar
specialization process as we have proposed for hard
requirements. However, in this process, we are also
considering the use of fuzzy logic [24]. Once the final
configuration is obtained in which all the variability is
resolved, we start the process for the final generation
and deployment of the service-oriented system. We use
the Web Service Modeling Ontology framework. More
specifically, for the obtained feature configuration, we
generate a complete description of the WSMO service
compositions. This transformation is done by follow-
ing the mapping rules between the feature models and
abstract state machines defined in [25], while a com-
plete implementation of the transformation is available
in [26]. In our transformation, we generate all elements
of the WSMO specification including, capabilities,
pre- and post-conditions, transition, choreographies
(along with state signature and transition rules) and or-
chestrations. In fact, during our project on transforma-
tions between WSMO services and feature models, we
realized that in order to be able to generate complete
WSMO service compositions, we need information
about non-functional properties and information about

2 http://www.racer-systems.com/

ontological grounding of each feature. Therefore, our
process of feature annotations, presented in this paper,
perfectly complements the process of generation of
complete WSMO service descriptions, We have dep-
loyed and tested the obtained services with the WSMX
toolkit for discovery, mediation and composition of
WSMO services [1].

4. Related Work

Wang et. al [8] provide a methodological approach
to verify feature models using the Web Ontology Lan-
guage. They transform feature models to ontologies by
converting features to pairs of concept and rule classes
with each pair presenting a feature in the feature
model. This transformation coupled with constraints
over the relations between the class nodes enables rea-
soning over the consistency of the ontology, and con-
sequently helps with verifying the validity of the fea-
ture model and the instantiated products. Weis [19]
considers pervasive applications as features that can be
customized based on personal preferences. Users de-
fine configuration of applications using a graphical
language with support for detailed customization at the
price of increased complexity in using the language.
Their approach provides a coarse approach to service
composition in Pervasive environments.

One of the main issues with respect to feature mod-
els is constraining and controlling the variability of
features. This is typically done by placing constraints
across the feature hierarchies. These features may be
represented in the form of propositional logic [18] or
richer formalisms such as first order predicate logic
 [20] and its variants. Object Constraint Language
(OCL) [21] is also used when feature models are rep-
resented in UML diagrams. Forfamel uses Weight
Constraint Rule Language (WCRL) [22] to constrain
the representation of features in its ontology. As a
whole, the constraints over the variability enable rea-
soning and resolution of features depending on the
configurations required for each product member or
each customer of a product line.

Lee et al. [27] propose a feature-oriented product
line approach for SOA which guides developers
through the composition of services in a feature model.
An approach to the generation of business process
models in BPMN from feature models is introduced in
 [25]. This work inspired our transformation between
feature models and WSMO service compositions.

5. Conclusions and Future works

In this paper, we have proposed a framework for de-
velopment of service-oriented architectures based on
the principles of multi-staged feature model specializa-

http://www.racer-systems.com/

tion. The key part of the proposed approach is the use
of ontologies as an underlying formalism for represen-
tation of feature models of families of service compo-
sitions. Once created, such ontology-based feature
models can be easily annotated with the non-functional
properties. The critical role of ontology-based reason-
ing takes place in the process of specialization of the
annotated feature models through a set of specific re-
quirements, which must hold in a particular service-
oriented application at hand. In our concrete case, we
experimented with the non-functional requirements,
which specify the capabilities of the target platform for
executing service compositions. The ontology-based
consistency checking approach combined with the in-
tegrity constraints defined in the Semantic Web Rule
Language are used in this step to discover a feature
model specialization satisfying the requirements for
the final system to be built (in our case those are de-
vice capabilities). Once a requested feature specializa-
tion is obtained, we go through an interactive process
where further, stakeholder soft requirements (i.e., pre-
ferences) are used to obtain a feature specialization
without variability. Such a specialization is then trans-
lated to a composition represented in WSMO, where
the use of ontologies again plays a critical role.

In our future work, we are going to conduct an ex-
tensive experimental study to measure the effective-
ness of our proposed methodology. Also, we will fur-
ther explain our approach for the use of soft require-
ments in the process, once the hard requirements are
satisfied in the service composition process. Finally,
we will fully explain the process of deployment to the
WSMO SOA framework.

Acknowledgement. This research was in part sup-
ported by Alberta Ingenuity through the New Faculty
Award program and by Athabasca University’s Mis-
sion Critical Research Fund.

6. Reference

[1] A. Haller, et al., “WSMX - a semantic service-oriented
architecture,” ICWS 2005., pp. 321-328 vol.1.

[2] M. P. Papazoglou, et al., “Service-Oriented Computing:
State of the Art and Research Challenges,” IEEE Com-
puter, 11, 2007.

[3] P. Krogdahl, G. Luef, and C. Steindl, “Service-oriented
agility: an initial analysis for the use of agile methods for
SOA development,” IEEE Int’l Conf. on Services Com-
puting, 2005, pp. 93-100 vol.2.

[4] S. Ho Chang , et al., “A Variability Modeling Method for
Adaptable Services in Service-Oriented Computing,” In
Proc. of the 11th Int’l Software Product Line Conf.,
2007, pp. 261-268.

[5] K. Czarnecki, et al., “Staged configuration using feature
models,” In Proc. of Software Product-Line Conf. 2004,
pp. 266-283.

[6] OWL, http://www.w3.org/TR/owl-features/
[7] I.Horrocks, et al., “SWRL: A Semantic Web Rule Lan-

guage Combining OWL and RuleML,” W3C, May 21,
2004. http://www.w3.org/Submission/SWRL

[8] H.H. Wang, et al., “Verifying feature models using
OWL,” Web Semantics: Science, Services and Agents on
the World Wide Web, vol. 5, 2007, pp. 117-129.

[9] H. Wada, J. et al, “A Feature Modeling Support for Non-
Functional Constraints in Service Oriented Architecture,”
IEEE International Conference on Services Computing,
2007, pp. 187-195.

[10] K.C. Kang, et al., “Feature-oriented domain analysis
(FODA) feasibility study,” Carnegie Mellon University,
SEI 1990.

[11] K.C Kang, et al., “FORM: A feature-;oriented reuse me-
thod with domain-specific reference architectures,” An-
nals of Software Eng., vol. 5, Jan. 1998, pp. 143-168.

[12] M.L. Griss, J. Favaro, and M. d’Alessandro, “Integrat-
ing feature modeling with the RSEB,” Proc. of the 5th
Int’l Conf. on Software Reuse, 1998, pp. 76-85.

[13] W.Zhang, K. M.Hensen, “Synergy Between Software
Product Line and Intelligent Mobile Middleware,” In
Intelligent Pervasive Computing, 2007 pp. 515-520.

[14] M. Anastasopoulos, “Software Product Lines for Perva-
sive Computing,” IESE-Report No. 044.04/E 2005.

[15] J.White, and D. C. Schmidt, “Model-Driven Product-
Line Architectures for Mobile Devices,” In Proc. of the
17th Ann. Conf. Int’l Fed. of Automatic Control,2008.

[16] D. Roman: Web Service Modeling Ontology. Applied
Ontology, 2005, 1(1), 77–106.

[17] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged
configuration using feature models,” Lecture notes in
computer science, 2004, pp. 266-283.

[18] D.Batory, “Feature models, grammars, and proposi-
tional formulas,” In Software Product Lines Conference,
LNCS 3714, pages 7–20, 2005.

[19] T. Weis, et.al, “Customizable pervasive applications,”
Pervasive Computing and Communications, 2006.

[20] K.Czarnecki, C.Kim, K.Kalleberg,“Feature Models are
Views on Ontologies,” SPLC 2006, 41-51.

[21] P.Simons.,I. Niemelä, and T.Soininen, “Extending and
Implementing the Stable Model Semantics,” Artificial
Intelligence, 138, 2002, pp. 181-234.

[22] J.Warmer and A. Kleppe, 1999 The Object Constraint
Language: Precise Modeling with UML. Addison-
Wesley Longman Publishing Co., Inc.

[23] Delivery Context Ontology, W3C Working Draft, 2009,
http://www.w3.org/TR/dcontology/

[24] E.Bagheri, D.Gasevic, “Feature Model Configuration
using Fuzzy Propositional,” to be submitted to IEEE
Trans. on SMC, Part C (2009).

[25] I. Montero, J. Pena, A. Ruiz-Cortez, “From feature
models to business processes,” In Proc. of the 2008
IEEE Int'l Conf. on Services Computing. pp. 605-608.

[26] J.Rusk, “Transforming between WSMO services and
Feature Models with ATL transformation language,”
http://io.acad.athabascau.ca/~jeffr/webdoc.html

[27] J. Lee, D. Muthig, M. Naab, “An approach for develop-
ing service oriented product lines,” In Proc of the 12th
Int'l Software Product Lines Conf. 275-284. 2008.

http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/SWRL
http://www.w3.org/TR/dcontology/
http://io.acad.athabascau.ca/~jeffr/webdoc.html

SPLC – SOAPL 2009

Software Engineering Institute | Carnegie Mellon

SOAPL 2009
Bardia Mohabbati,
25 August 2009

Semantic Variability Modeling

for Multi-staged Service Composition

Bardia Mohabbati1, Nima Kaviani2, Dragan Gašević3

1Simon Fraser University, 2University of British Columbia, 3Athabasca University, Canada
mohabbati@sfu.ca, nimak@ece.ubc.ca, dgaseavic@acm.org

mailto:mohabbati@sfu.ca
mailto:nimak@ece.ubc.ca
mailto:dgaseavic@acm.org

Outline

• Objectives and Introduction

• Motivating Scenario

• Overview
• Analysis and Design

• Feature Model and Variability Modeling

• Service Requirements Specification

• Software Service Products Configuration

• Service Discovery and Specialization

• Semantic Variability Modeling
• Feature Model Ontology

• Feature Model Annotation

• Feature Model Specialization

• Conclusion
29/23/2009

 Adaptive development of software-intensive systems for mobile and
ubiquitous Computing

Pervasive/Ubiquitous computing (ubicomp) is about providing

services and computing capabilities in heterogeneous environments

Heterogeneous computing device

Resource constraints of deployment platform

 Utmost functionality and satisfying non-functionality requirements
(NFRs) in final product

 Service-Oriented Software Development and SPL

Objectives

39/23/2009

We exclusively focus variability coming from the different delivery
platform of service oriented architecture

Objectives

Business Process Layer

Unit Service Layer

Service Interface Layer

Service Component Layer

Component

Workflow
Variability

Composition
Variability

Interface
Variability

Logic
Variability

Alternative and
Optional Unit

Service

Matching Unit Service
Interface and Web services
Interface published in UDDI

Different Web services for
a unit services according

to NFR rather than FR

Changing part of
functionality of Unit Service

by adapting service
component

... ...

... ...

... ...

... ...

Business
Process

Business
Process

Business
Process

Business
Process

Unit
Service

Unit
Service

Unit
Service

Unit
Service

Service
Interface

Service
Interface

Service
Interface

Service
Interface

S. Ho Chang et al

Component Component Component

4

Motivating Scenario

59/23/2009

Airport Large Screen Display

…

Mobile Devices

Ubiquitous Information Service

Service Provider

Remote Service
(Web services)

Overview

69/23/2009

Analysis Design

Software Service Product
Specialization

Configuration
Validation

Device Ontology
Instantiation

Service Oriented Product Configuration

Domain Analysis
Product Family

Feature Extraction

Representing Variability by
Feature Modeling

Feature Model
Ontology

Feature Model
Annotation

Annotated Feature
Model

Soft
Constraint

Hard
Constraint

Service Adaptation

Feature Model
Specialization

Request
Specification

Device Specification
User’s Requests and

Preferences

Feature Model & Variability Modeling

79/23/2009

Functional Requirements
•Core Services in the system
•Carry the objectives of the system

Non-functional Requirements
Replaceable or alterable services
Quality of Service (QoS) requirements
Security requirements

Ontology is defined as a formal specification of a conceptualization and
utilizes the representation of knowledge contained in feature models.

Semantic representation of features :

 Relations and dependencies

 feature constrains

Transformation :
o Using the Web Ontology Language (OWL)

o Constructing mutual disjoint classes

Feature Model Ontology (FMO)

Semantic Feature Model

89/23/2009

…
F1 F2 F3

Fn

…

Feature Model Feature Model Ontology

[FM Mapping]

Fi ⊑ ⊤
FMiRule ⊑ ⊤
hasFi ⊑ ObjectProperty

FMiRule ≡ ∃ hasFi. Fi

Fi ⊑ ¬Fj , for i ≤ 1, j ≤ n ∧ i≠j

Feature Model Ontology enables us to take advantages of ontology
annotation capabilities in order to enrich the definition of domain assets with
the constraints concerning the non-functional requirements of a domain

Feature Model Annotation

99/23/2009

[FM Annotation]

…

F1 F2 F3

Fn

… … `

Feature Model Feature Model Ontology (FMO) Device Ontology(DCO)

[FM Mapping]

AN ⊑ ObjectProperty

AN ⊑FMm, domain(FMm)

⊤ ⊑∀ AN.DCn , range (DCn)

hasBluetooth_AN ⊑ ObjectProperty

hasBluetooth_AN ⊑ Bluetooth,

domain(BluetoothRule)

⊤ ⊑∀ has Bluetooth_AN.BluetoothDevice,

 Device Ontology model reflect device capability (NFRs)

 NFRs as Integrity Constraints (IC)- which include and exclude the selection of
services in annotated feature model

 Feature Model Specialization : Stage refinement process which constitute
staged configuration

 Specialization: The features don’t satisfy the NFRs of target deployment
platform are discarded and pruning feature model

 Ontology-based reasoning : consistency checking and verification
o If instances of NFRs ontology are consistent with respect to the annotation properties

defined in feature model

Software Service Products Configuration

109/23/2009

Software Service Products Configuration

119/23/2009

Design Time Run Time

1. Creating the feature model

2. Incorporating NFRs into
designing the feature model

3. Binding Services to the NFR
ontology

4. Platform Deployment
Capability analysis

5. Feature selection

6. Service composition

7. Validation and Deployment

Software Service Products Configuration
Feature Model Specialization

129/23/2009

FMO : Feature Model Ontology

DCO: Device Capability Ontology

K = (O, T, A, R)

T : set of concept axioms (TBox)

A : set of assertional axioms (Abox)

R : set of rules written as inclusion axioms

DEFINITION 1 Let d ∈ DCO be an instance of a device which has n capabilities. Each

capability for device d is an instance (ik) of a concept (Ck) from DCO such that A⊨Ck(ik)

(1≤k≤n). Sdc = {C1,..,Cn}, represents the set of all concepts Ck from DCO that d supports.

DEFINITION 2 Let SAF ⊑ FMO be a set consisting of concepts CFi such that ∀CFi.⊤|
∃ANi⊑ CFi ⊓ ∃ANi.Ck where Ck ∈ DCO.

Software Service Products Configuration
Feature Model Specialization

139/23/2009

ANj ⊑ ObjectProperty

SFA= CFi

for each Ck ∈Sdc
for each CFi ∈ SAF

if (∃ANj.Cj ⊓ ANj ⊑ CFi and Cj ∈ DCO)
if (Cj ∈ Sdc)

if (A ⊭ CFi(ii))
SFA ← SFA - {CFi(ii)}

else
SFA ← SFA - {CFi(ii)}

return (SFA)


n

i 1

ANj

DCO

During the process of the configuration validation, model constraints are checked against
the derived configuration to provide proper assurance in terms of correct exclusion and
inclusion of optional and mandatory features.

OWL-DL reasoning engines: To support automated class subsumption, consistency
reasoning and detection of possible inconsistencies in the specialized feature.

Consistency and conflicts detection : Formulate and define a list of Semantic Web Rule
Language (SWRL) rules to represent all invalid states

Feature Model Specialization
Model Verification

149/23/2009

The result of consistency checking in the previous step can be two folded :
 Inconsistent ontology Design Stage - family composition refinement

 Consistent ontology Service Specialization based on soft constraints

Deployment of the service-oriented system:
 Web Service Modeling Ontology framework (WSMO)

 Transformation feature model to WSMO service (with ATL transformation language)

 Web service Execution Environment (WSMX)

(the reference implementation for WSMO)

Service Discovery and Specialization

159/23/2009

Analysis Design

Software Service
Product

Specialization

Configuration
Validation

Device
Ontology

Instantiation

Service Oriented Product Configuration

Domain Analysis
Product Family

Feature Extraction

Representing
Variability by

Feature Modeling

Feature
Model

Ontology

Feature
Model

Annotation

Annotated
Feature Model

Soft
Constraint

Hard
Constraint

Service Adaptation

Feature Model
Specialization

Request
Specification

Device
Specification

User’s Requests
and

Preferences

Ontologies as an underlying formalism for representation of feature models to
enrich Feature Model with semantics

Ontology-based approach for feature model annotation with NFRs ontologies

Inference and Ontological Reasoning Over Feature Model

validating (non-) functional requirements

 Semi-automatic Product configuration

 Product consistency check

Conclusion

169/23/2009

17

Thank you 

Service-Oriented Architecture (SOA) and Software Product Lines: Pre-

Implementation Decisions

Dennis Smith and Grace Lewis

Software Engineering Institute, Carnegie Mellon University

Pittsburgh, PA, USA

{dbs,glewis}@sei.cmu.edu

Abstract

This paper examines the use of Service-Oriented

Architecture (SOA) services as core assets in a

Software product Line (SPL). After a brief introduction

to the main concepts of SOA and SPL, the paper

identifies a small set of decisions that are required

before implementation of SOA-SPL systems. These

decisions have to do with 1) the mapping of SOA

concepts to the SPL framework, and 2) an initial set of

potential variation mechanisms. The paper also

identifies future work to more completely address

SOA-SPL implementation planning.

1. Introduction

 A Software Product Line (SPL) is a set of software-

intensive systems that share a common, managed set of

features satisfying the specific needs of a particular

market segment or mission and that are developed

from a common set of core assets in a prescribed way

[1]. Successful products lines have enabled

organizations to capitalize on systematic reuse to

achieve business goals and desired software benefits

such as productivity gains, decreased development

costs, improved time to market, higher reliability, and

competitive advantage [1, 2].

 Service Oriented Architecture (SOA) is a way of

designing, developing, deploying and managing

systems, in which

 Services provide reusable business functionality.

 Applications or other service consumers are built

using functionality from available services.

 Service interface definitions are first-class

artifacts.

 An SOA infrastructure enables discovery,

composition, and invocation of services.

 Protocols are predominantly, but not exclusively,

message-based document exchanges [3].

 The business case for both SPL and SOA emphasize

efficiencies and cost savings through reuse. SPL

focuses on the use of a common, managed set of core

assets for rapidly producing multiple products or

systems, according to a centrally managed production

plan. An SOA implementation exposes standard

interfaces to make services available for authorized

service consumers to use in a variety of ways. These

consumers of services are not necessarily anticipated

by service providers, or controlled by a central

authority.

 A number of authors have suggested a relationship

between SPL and SOA [4, 5, 6, 7, 8]. These works

focus primarily on the use of services as core assets in

SPL in which the services handle variability, and they

address the relationship between SPL and SOA from a

conceptual level but do not go into details about

implementation. The goal of this paper is to identify an

initial set of decisions that have to be made before

going into implementation. These decisions are based

on 1) the mapping of SOA concepts to the SPL

framework and 2) an initial set of potential variation

mechanisms.

 The paper is organized as follows. Section 2 briefly

outlines SPL concepts and identifies a set of specific

SPL practice areas to be addressed. Section 3 outlines

key SOA concepts that are relevant for using services

at SPL core assets. Section 4 identifies a set of pre-

implementation decisions. Section 4.1 outlines

decisions that map to a selected set of SPL practice

areas. Because variation points are central to a

successful SPL implementation, Section 4.2 identifies

an initial set of potential variation mechanisms for

services. Finally, Section 5 provides a summary,

conclusions and next steps.

2. Software Product Line Concepts

 The SPL framework identifies three essential

product line activities: core asset development, product

development and management. The framework also

defines a set of practice areas that are essential for

carrying out these three essential product line

activities. A practice area is a body of work or a

collection of activities that an organization must master

to successfully carry out the essential work of a

product line. Practice areas help to make the essential

activities more achievable by defining activities that

are smaller and more tractable than a broad imperative

such as "develop core assets" [2].

 Because this paper addresses the use of services as

core assets, the SPL activity of most immediate

concern is that of core asset development. While a

number of SPL practice areas are relevant, we identify

a set of pre-implementation decisions that need to be

made in the practice areas of:

• Architecture definition

• Using externally available software

• Mining existing assets

• Testing

 After these decision points are identified, some

potential mechanisms for using services as core assets

are outlined.

3. Service-Oriented Architecture Concepts

 This section identifies key SOA concepts that are

relevant for using services as SPL core assets.

 At a high level, as shown in Figure 1, there are three

major components of service-oriented systems:

services, service consumers and SOA infrastructure.

Figure 1. High-Level Representation of a Service-

Oriented System

 Services are reusable components that represent

business tasks, such as customer lookup, weather,

account lookup, or credit card validation and that

can be globally distributed across organizations

and reconfigured to support new business

processes. A distinguishing factor is that service

interface definitions are standardized, well-

defined, first-class artifacts, available in some

form of service registry so that services can be

discovered by service consumers.

 Service consumers are clients for the functionality

provided by the services. Examples of service

consumers are end-user applications, portals,

internal and external systems, or other services in

the context of composite services. A product in a

product line could be a consumer of a service.

 SOA infrastructure connects service consumers to

services. It usually implements a loosely coupled,

message-based communication model. The

infrastructure often contains elements to support

service discovery, security, data transformation

and other operations. A common SOA

infrastructure is an Enterprise Service Bus (ESB)

to support Web Service environments [9].

 Service-oriented systems support three main types of

operations: service discovery, service composition, and

service invocation.

 Service discovery: Service providers place

information about their services in a service

registry and service consumers query this registry

for services with desired characteristics.

 Service composition: Applications and other

service consumers compose functionality provided

by services to fulfill their goals. Languages such

as the Business Process Execution Language

(BPEL) support the orchestration of services in a

Web Services environment [10].

 Service invocation: There are two common

patterns for service invocation

o a simple invocation pattern where service

consumers directly invoke services over a

network, typically via synchronous, direct,

request-reply connections

o a richer invocation pattern where service

consumers invoke services via a middleware

component that supports SOA environments,

such as an Enterprise Service Bus (ESB) [9]

 These basic SOA components and activities are

addressed in the decision points that follow.

4. Pre-Implementation Decisions for SOA-

SPL Systems

 As mentioned earlier, this paper focuses on pre-

implementation decisions for systems that use as SPL

core assets available as services. Subsection 4.1

outlines decisions in four SPL practice areas:

Architecture Definition, Using Externally Available

Software, Mining Existing Assets, and Testing.

Subsection 4.2 identifies decisions to make on

potential variation mechanisms.

End User

Application

Service

A

SOA Infrastructure

Enterprise

Information System

Portal

Internet

External

System

Service

B

Service

C

Service

D

Internal Users

DiscoverySecurity
Development

Tools

Legacy or New

Service Code

Internal

System

Service Consumers

Infrastructure

Service
Implementation

Service Interfaces

External

Consumer

4.1 SPL Practice Area Decisions

Architecture Definition

 The software architecture of a program or computing

system is the structure or structures of the system,

which comprise software elements, the externally

visible properties of those elements, and the

relationships among them. [11]. If core assets are to be

made available as services, decisions include:

 Decisions on the specific sets of SOA standards,

interfaces and technologies for implementation

and how will these will interoperate with the rest

of the product line architecture.

o The first choice concerns the standards to use.

The most common SOA standards are web

services. Alternative SOA standards may be

used, such as REST. Decisions on standards

require an analysis of both Quality of Service

(QoS) needs and functionality. Web service

standards have greater support for QoS needs

such as security, availability, and

performance. REST is more flexible and

easier to compose, but has less support for

most of the standard QoS needs. It is more

appropriate for read-only functionality, typical

of mashups, where there are minimal QoS

requirements and concerns.

o Once standards are chosen, the next decisions

focus on specific standards and tools required

for specific SPL QoS needs. In the case of

web services, a large number of choices are

available—approximately 250 WS-* web

service standards. Each standard in turn may

have a number of different versions and tool

support. Many of these decisions will have

architectural implications.

 Decisions on how discovery, composition and

invocation are to be accomplished. A number of

options can be considered, such as building a SOA

infrastructure that supports these operations,

buying an ESB product or embedding these

operations within the context of a broader product

line architecture. Each of these basic operations

requires a set of decisions.

o Discovery. In most literature that discusses

the relationship between SOA and SPL, there

is an expressed need for discovery to take

place at runtime. However, the current state of

the practice only supports design-time

discovery. Decisions need to be made on the

specific mechanisms for discovery and for

interacting with a service registry. If some

type of runtime discovery is required, there

may need to be some form of user

intervention to choose an appropriate service

or the non-trivial implementation of a service

broker. Decisions in the former case include

how to handle user intervention and in the

latter case how the broker is to be

implemented and used by SOA-SPL

developers.

o Composition. Policies for composing services

and allowed usage of services need to be

established. These policies need to be made

explicit and enforcement mechanisms need to

be established. Decisions include specific

mechanisms for performing composition, such

as WS-BPEL, and where to implement

composition, such as in the infrastructure.

o Invocation. In most cases the infrastructure

will support the invocation of services. In this

case decisions need to be made on the type of

functionality to be handled by the middleware

(e.g., routing, mediation, process

orchestration, complex event processing). On

the other hand, if services are to be invoked

directly by the service consumer, decisions

need to be made on how this will be

accomplished.

 Services may be accessed via an Intranet or the

Internet. Decisions need to be made on the scope

of access, firewalls, permissions, and control of

services. If the Internet is to be used, performance

and availability metrics need to be identified,

measured and tracked; sources of bottlenecks need

to be identified; and satisfaction of service level

agreements (SLAs) needs to be monitored.

Using Externally Available Software

 There is a growing market of externally developed

services that can be purchased or licensed. In addition,

ERP vendors are making significant investments to add

service interfaces to their existing ERP solutions to be

used by custom applications. Common business

services, such as check credit, customer lookup and

check inventory are strong candidates for core assets if

they are relevant for the product line.

 Decisions required for the use of externally available

services include:

 How are the services to be accessed, what

standards do they support, what outputs do they

return, and in what form?

 Do the external services meet the functionality and

quality of service requirements of the SPL?

 What type of testing has been performed on the

services, at what level, and what are the results?

 How appropriate and effective is the SLA attached

to the service?

 What types of mechanisms are built into the

services to handle variations?

 Do the external services have an option to

establish variability points?

 Can variability be handled by the infrastructure or

by consumers of services?

Mining Existing Assets

 If services are to be mined from existing assets, an

important pre-implementation decision concerns the

viability of exposing services from existing assets. This

decision requires per-system answers to a set of

questions, including:

 Does it make sense to migrate the legacy system to

an SOA environment?

 What services make sense to develop?

 What legacy system components can be used to

implement these services?

 What changes to components are needed to

accomplish the migration?

 What migration strategies are most appropriate?

 What are the preliminary estimates of cost and

risk?

 What is an ideal pilot project that can help address

some of these risks?

 The Service Reuse and Migration Technique

(SMART) [12] provides one systematic method for

answering these questions and making decisions.

SMART addresses both general migration issues as

well as those that are relevant to a specific situation. In

the case of using services as part of a product line,

specific points to be addressed include variation points,

relationship to other core assets, composition strategies

and SLAs.

Testing

 Issues with testing SPL core assets implemented as

services need to be addressed from both the service

provider and service consumer perspectives.

 From a service provider perspective, systems that

expose functionality as services usually have "day

jobs‖. This means that the system operates in a

"business as usual" manner and also provides service

interfaces so that other systems (internal and/or

external to the organization) have access to a subset of

functionality that exists in the system. This requires

decisions for how to address testing challenges.

 Regression tests cover both conventional

interfaces as well as service interfaces to make

sure that changes made for one set of users do not

affect the other set of users

 Functional tests consider potentially unknown

users and uses of the functionality provided by the

service. Functional testing needs to cover both

current as well as potential usage scenarios.

 Exposing system functionality as services creates

the potential for having a greater number of

consumers of system functionality. This requires

additional security testing, stress testing and load

testing.

 Regression testing needs to verify whether existing

service-level agreements (SLAs) are affected.

 Some service providers have test instances of their

services to allow service consumers to perform

end-to-end testing. As a result service providers

have to maintain separate instances of their service

interfaces as well as their service implementation

so that test data does not affect production data. In

addition they require extensive logging to use

failure data for internal testing and improvement.

 Service consumers need to make a greater set of

decisions if the core assets use externally available

software. For externally developed software, an SLA

protects both the service consumer and provider in case

of failure, but it does not prevent or eliminate failure.

As a result service consumers need to develop and test

their systems to consider the case when services are

completely unavailable. External services also mean

that there is no control over changes made to the

service, release cycles, or even shutdown. Service

consumers will have to be tested every time there is a

new service release.

4.2 Variation Mechanism Decisions

 Cohen and Tarr both present simple examples of

models for product lines that are composed of services

for medical records and insurance claims respectively

[4, 7]. In the medical example, variations can occur

depending on such factors as the medical actor who is

involved (physician, nurse, technician), the type of

medical practice (cardiology, radiology,

endocrinology) and the type of health care organization

(hospital, insurance company, physicians office). Core

assets may include services for medical treatment,

billing, and patient information. In the insurance claims

example, variations can occur on such items as type of

policy (life, home, auto), and state-specific policies.

 Management of variability points is a key to product

line success. However, variation mechanisms for SPL

core assets implemented as SOA services have not

been systematically addressed. Because decisions on

specific variability mechanisms are important, we

identify an initial set of decisions:

1. Parameters for invoking services. This is a simple

variation mechanism in which parameters are used

to invoke different variations of a service, such as

different treatment responsibilities that may

depend on role (physician, nurse, technician). This

has been identified by in the literature as a primary

variability mechanism [4,7].

2. Using infrastructure services to hide variability. A

number of services can be common tasks that are

delegated to the infrastructure. Examples include

role-based identity management and data

formatting. In the health domain, different sets of

actors will require very different access and

authorization privileges. Health care insurers will

have the right to see financial information,

physicians can see detailed treatment information,

and research organizations will only be able to see

information that is completely anonymous. These

types of variations can be effectively handled as

infrastructure services that are invoked when

needed.

3. Encapsulating variability within a service. This

approach isolates core service functionality from

aspects that are either highly changeable, or in the

case of an SPL, potential variation points. Figure 2

shows an example in which separate service layers

are created for the interface, core service code,

data access and in this case, access to a policy

manager infrastructure service.

4. Differential composition of atomic services.

Services are often developed as atomic services

that perform specific tasks. In situations where

different configurations are required (such as

SPL), or where external policies in the business

environment require frequent unplanned changes

(such as health care), building in a capability for

composing services from a number of atomic

services enables variability. The composition of

services can be delegated to the infrastructure

through a standard such as WS-BPEL (Web

Services Business process Execution Language) or

through proprietary or custom developed Business

Process Management (BPM) functionality. This

enables applications or products in a product line

to be developed through the integration of

functionality from existing services.

5. Using different protocols for interface

implementations. In service-oriented applications,

there may be a need for different interface

implementations where the same business

functionality is available through different

interfaces. For example internal consumers may be

able to use an internal EJB interface, and external

consumers will use a web service interface to the

same functionality.

5. Conclusions and Next Steps

 The implementation of an SPL using core assets

implemented as services has significant potential.

However, to gain the full potential requires making a

set of pre-implementation decision points and

engineering tradeoffs. The Framework for Product

Line Practice offers a good starting point. It identifies

29 key product line practice areas. We have focused on

four practice areas that have strong relevance for SOA

services and have identified an initial set of decisions

in these areas. We have also identified a set of potential

variability mechanisms that have relevance for SPL

core assets implemented as services.

 In addition, proof-of-concept analyses of the

relevance of specific technologies, tools and methods

to the context for which they were developed can also

be instrumental in building up a body of knowledge in

the area [13]. For example, Sidharth Surana from the

Carnegie Mellon University Master of Software

Engineering program is currently conducting a proof-

of-concept analysis of the relevance of different

variation mechanisms for a simple product line

example.

 Future directions will require a validation and

updating of the initial mappings, more complete

mapping of services to SPL product line practices, and

empirical research on actual SOA-based SPL

implementations. This can ultimately lead to a

codification of best practice for the use of SOA in the

context of SPL.

6. References

[1] Clements, P. & Northrop, L. M. Software Product

Lines: Practices and Patterns. Addison-Wesley,

2001.

Service Interface Layer

Performs transformations between messages from
service consumers and LIS code

LIS Code Layer

Contains existing LIS code plus new code that had to be
developed to meet service requirements

Data Access Layer

Contains code to access internal and
external data sources

Policy Layer

Contains code to
access Policy

Manager

[2] Northrop, L. & Clements, P. A Framework for

Software Product Line Practice, Version 5.0

http://www.sei.cmu.edu/productlines/framework.h

tml (2009).

[3] Lewis, Grace. Service-Oriented Architecture

(SOA). SEI Webinar Series

www.sei.cmu.edu/collaborating/spins/081408webi

nars.html

[4] Cohen, Sholom & Krut, Robert. Proceedings of

the First Workshop on Service-Oriented

Architectures and Product Lines (CMU/SEI-2008-

SR-006). Pittsburgh, PA: Software Engineering

Institute, Carnegie Mellon University, 2008.

[5] Cohen, Sholom & Krut, Robert. Managing

Variation in Services from a Software Product

Line Context. Pittsburgh, PA: Software

Engineering Institute, Carnegie Mellon University,

2009 - forthcoming.

[6] Ralph Mietzner, Andreas Metzger, Frank

Leymann and Klaus Pohl. Variability Modeling to

Support Customization and Deployment of Multi-

Tenant-Aware Software as a Service Applications.

In Proceedings of PESOS Workshop, ICSE,

Vancouver, Canada, May 18-19, 2009.

[7] Tarr. P. Technologies for Software Product Line

Development. https://www-

950.ibm.com/events/wwe/grp/grp004.nsf/vLookup

PDFs/tarr-product-lines-033009-slides/$file/tarr-

product-lines-033009-slides.pdf

[8] S. G¨unther and T. Berger, ―Service-oriented

product lines: Towards a development process and

feature management model for web services,‖ in

SPLC ’08: 12th International Software Product

Line Conference, pp. 131–136, 2008.

[9] D. Chappell, Enterprise Service Bus, O’Reilly,

June 2004.

[10] Organization for the Advancement of Structured

formation Standards, ―Web Services Business

Process Execution Language Version 2.0‖, 2007,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-

v2.0-OS.html/

[11] Bass, Len; Clements, Paul; & Kazman, Rick.

Software Architecture in Practice, 2nd ed. Boston,

MA: Addison-Wesley, 2003.

[12] Lewis , Grace A.; Morris, Edwin J.; Smith,

Dennis B.; Simanta, Soumya. SMART:

Analyzing the Reuse Potential of Legacy

Components in a Service-Oriented Architecture

Environment (CMU/SEI-2008-TN-008).

Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University, 2008.

[13] F. Hueppi, L.Wrage, and G. Lewis, ―T-Check in

Technologies for Interoperability: Business

Process Management in a Web Services Context‖,

CMU/SEI-2008-TN-005, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh,

PA, June 2008.

http://www.sei.cmu.edu/productlines/framework.html
http://www.sei.cmu.edu/productlines/framework.html
http://www.sei.cmu.edu/collaborating/spins/081408webinars.html
http://www.sei.cmu.edu/collaborating/spins/081408webinars.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html/
https://www-950.ibm.com/events/wwe/grp/grp004.nsf/vLookup
https://www-950.ibm.com/events/wwe/grp/grp004.nsf/vLookup

© 2009 Carnegie Mellon University

Service-Oriented Architecture

(SOA) and Software Product

Lines: Pre-Implementation

Decisions

Dennis B. Smith
dbs@sei.cmu.edu
Workshop on Service-Oriented Architectures
and Software Product Lines (SOAPL)
13th International Software Product Line
Conference (SPLC)
San Francisco, Ca
August 25, 2009

mailto:dbs@sei.cmu.edu

2
SOA and Product Lines

© 2009 Carnegie Mellon University

Agenda

Intersection of software product lines and SOA

Selected practice areas and decision points

Variation mechanisms

Conclusions and next steps

3
SOA and Product Lines

© 2009 Carnegie Mellon University

Software Product Lines

Software product line
• a set of software-intensive systems that share a common, managed set of

features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a
prescribed way

Successful products lines enable organizations to capitalize on systematic
reuse to achieve business goals
Benefits of software product lines

• productivity gains
• decreased development costs
• improved time to market
• higher reliability
• competitive advantage

4
SOA and Product Lines

© 2009 Carnegie Mellon University

Service Oriented Architecture

Service-oriented architecture (SOA) is a way of designing, developing,
deploying and managing systems, in which

• Services provide reusable business functionality via well-defined interfaces.
• Service consumers are built using functionality from available services.
• Service interface definitions are first-class artifacts.

— There is a clear separation between service interface and service
implementation

• An SOA infrastructure enables discovery, composition, and invocation of
services.

• Protocols are predominantly, but not exclusively, message-based document
exchanges.

5
SOA and Product Lines

© 2009 Carnegie Mellon University

Services

Services are reusable components that represent
business tasks, e.g.

• Look up patient information

• Validate credit card

• Get test results

• Schedule appointment

Services can be

• Globally distributed across organizations

• Reconfigured into new business processes

6
SOA and Product Lines

© 2009 Carnegie Mellon University

A Notional Service-Oriented System Architecture

Research

And Public

Health System

Get

Patient

Info

Get

Physician

Info

SOA Infrastructure

Laboratory System

Physician

Record

System

Inpatient

System

Outpatient

System

Insurance

Company

System

Patient

Portal

Service Consumers

Infrastructure

Service
Implementation

Service Interfaces

Patient

Record

System

Get Test

Info

Create

Lab Test

Order

Service Y…

System

Z
…

…
Service

Consumer

X

7
SOA and Product Lines

© 2009 Carnegie Mellon University

Intersection Between Software Product Lines and
SOA

Software product lines support systematic reuse by using core assets with
a production plan to enable the rapid generation of new products
SOA exposes services that can be reused by a variety of consumers,
enabling:

• Agility, adaptability, cost efficiency and legacy leverage
SOA services can become core assets within a product line
Software product line framework identifies 29 required practice areas

• We initially identify decision points that need to be addressed in 4 practice
areas if services are to be used as core assets

SOA services can provide significant leverage as variability mechanisms in
a product line

• We initially identify 5 variability mechanisms

8
SOA and Product Lines

© 2009 Carnegie Mellon University

Agenda

Intersection of software product lines and SOA

Selected practice areas and decision points

Variation mechanisms

Conclusions and next steps

9
SOA and Product Lines

© 2009 Carnegie Mellon University

Selected Practice Areas

Architecture

Using externally available software

Mining existing assets

Testing

10
SOA and Product Lines

© 2009 Carnegie Mellon University

Practice Area: Architecture

Specific SOA standards, interfaces and technologies
• Type of standards: web services, REST, proprietary standards
• Specific implementations: eg web services has 250 different standards

Handling of basic SOA operations
• Decisions on responsibility for operations (infrastructure, services,

consumer)
— Discovery

o Design time
o Use of broker; how broker is to be implemented

— Composition and enforcement mechanisms
— Invocation: routing, mediation, process orchestration, complex event

processing

11
SOA and Product Lines

© 2009 Carnegie Mellon University

Practice Area: Using Externally Available
Software

Decision Points

• How are the services to be accessed, what standards do they support, what
outputs do they return

• Do the external services meet the functionality and quality of service
requirements of the software product line

• What type of testing has been performed on the services, at what level

• How appropriate and effective is the service level agreement

• What types of mechanisms are built into the services to handle variations

• Do the external services have an option to establish variability points

• Can variability be handled by the infrastructure or by consumers of services

12
SOA and Product Lines

© 2009 Carnegie Mellon University

Practice Area: Mining Existing Assets

Does it make sense to migrate the legacy system to an SOA environment?

What services make sense to develop?

What legacy system components can be used to implement these service?

What changes to components are needed to accomplish the migration?

What migration strategies are most appropriate?

What are the preliminary estimates of cost and risk?

What is an ideal pilot project that can help address some of these risks?

13
SOA and Product Lines

© 2009 Carnegie Mellon University

Practice Area: Testing- 1

Service provider perspective

• Regression tests cover both conventional interfaces as well as service
interfaces to make sure that changes made for one set of users do not
affect the other set of users

• Functional tests consider potentially unknown users and uses of the
functionality of the service.

• Greater number of consumers requires additional security testing, stress
testing and load testing.

• Regression testing needs to verify whether existing service-level
agreements (SLAs) are affected.

• Service providers have to maintain separate instances of their service
interfaces as well as their service implementation so that test data does not
affect production data.

14
SOA and Product Lines

© 2009 Carnegie Mellon University

Practice Area: Testing-2

Service consumer perspective

• service consumers need to develop and test their systems to consider the
case when services are completely unavailable.

• external services

• no control over

— changes made to the service,

— release cycles,

— shutdown.

Service consumers will have to be tested every time there is a new service
release

15
SOA and Product Lines

© 2009 Carnegie Mellon University

Agenda

Intersection of software product lines and SOA

Selected practice areas and decision points

Variation mechanisms

Conclusions and next steps

16
SOA and Product Lines

© 2009 Carnegie Mellon University

Parameters Invoke Service

Parameters invoke different variations of a service, such as treatment
responsibilities that may depend on role (physician, nurse, technician)

• a single service is invoked

• the parameters sent to the service are modified for the appropriate behavior

In health care domain, the service “OrderTest” can have variability to

enable carrying out different laboratory tests.

• Variability mechanisms can allow for differential input and output

o Input: list of test names/codes along with the notification rules

o Output: list of orderIDs corresponding to the specific test ordered

17
SOA and Product Lines

© 2009 Carnegie Mellon University

Infrastructure Services Hide Variability

Common tasks become services that are delegated to the infrastructure.

• Examples include role based identity management and data formatting.

— In the health domain, different sets of actors will require very different
access and authorization privileges.

o Health care insurers can access financial information

o physicians can access detailed treatment information

o research organizations will only be able to see information that is
completely anonymous.

— -the infrastructure can determine authorization privileges for different
roles

18
SOA and Product Lines

© 2009 Carnegie Mellon University

Encapsulating Variability Within a Service

This approach isolates core service functionality from aspects that are
either highly changeable, or in the case of an SPL, potential variation
points.

Service layers can be created for the interface, core service code, data
access and in this case, access to a policy manager infrastructure service

Service Interface Layer

Performs transformations between messages from
service consumers and LIS code

LIS Code Layer

Contains existing LIS code plus new code that had to be
developed to meet service requirements

Data Access Layer

Contains code to access internal and
external data sources

Policy Layer

Contains code to
access Policy

Manager

19
SOA and Product Lines

© 2009 Carnegie Mellon University

Differential Composition of Atomic Services

Services are often developed as atomic services that perform specific
tasks. In software product lines, different configurations are required.

Composing services from a number of atomic services enables variability

• composition of web services can be delegated to the infrastructure through

— a standard such as WS-BPEL (Web Services Business process
Execution Language)

— proprietary or custom developed Business Process Management (BPM)
functionality

Differential composition enables applications or products in a product line
to be developed through the integration of functionality from existing
services

20
SOA and Product Lines

© 2009 Carnegie Mellon University

Different Protocols for Interface Implementations

The same business functionality can be implemented through different
interfaces.

Example: ordering laboratory tests

• internal consumers can use an internal EJB implementation

• external consumers requiring the internet may need to use more standard
web service implementations with greater firewall protection.

21
SOA and Product Lines

© 2009 Carnegie Mellon University

Agenda

Intersection of software product lines and SOA

Selected practice areas and decision points

Variation mechanisms

Conclusions and next steps

22
SOA and Product Lines

© 2009 Carnegie Mellon University

Conclusions and Next Steps

Examine rest of software product line practice areas for decision points
and engineering tradeoffs

Expand potential set of variation mechanisms

Perform proof of concept analyses of the relevance of specific
technologies, tools and methods to the context for which they were
developed can also be instrumental in building up a body of knowledge in
the area

• Sidharth Surana of Carnegie Mellon has completed a proof of concept
analysis of the relevance of different variation mechanisms for a simple
product line example

Validation and updating of the initial mappings, more complete mapping of
services to SPL product line practices, and empirical research on actual
SOA based SPL implementations.

23
SOA and Product Lines

© 2009 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of
the trademark holder.
This Presentation may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required for
any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.
This work was created in the performance of Federal Government Contract Number FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center. The Government of the United
States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in
whole or in part and in any manner, and to have or permit others to do so, for government
purposes pursuant to the copyright license under the clause at 252.227-7013.

mailto:permission@sei.cmu.edu
mailto:permission@sei.cmu.edu
mailto:permission@sei.cmu.edu
mailto:permission@sei.cmu.edu
mailto:permission@sei.cmu.edu

	AcrF48F.tmp
	FODA: Twenty Years of Perspective on Feature Models
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Prologue
	Agenda
	Agenda
	Introduction
	Introduction
	Agenda
	Prologue
	Number of Citations
	Number of Citations
	Number of Citations
	Number of Citations
	Number of Citations
	Number of Citations
	Number of Citations
	Number of Citations
	Number of Citations
	Number of Citations
	Number of Citations
	Survey
	Survey
	Survey
	Survey
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Feature Model Genealogy
	Why Popular?
	Salient Features of FODA Report
	Salient Features of FODA Report
	Agenda
	Future Works
	Other Issues
	Other Issues
	Other Issues
	Other Issues
	Other Issues
	Other Issues
	Agenda
	Acknowledgement
	The End

	OMGLMNGMFBKHAIFOONGCFBGBFCDEKJIE:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	LGBJCPNNFPODEODLCCFPPBKEGHLABDHO:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	DCKHALLEHGCDPGIKPOOFPBPALIOEBNID:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	HGDHNKOEJKLCCJMGONANGJDGEADGCNKO:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	MBBILLLCNLHOKMNFEGHKKMOJDEILFHIP:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	AFENMIFNPGOGKMDFGGLOPKMAJINKKCBD:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	PAHNLPOHAPLPEMCNNJHDEMNCKMKFPOOG:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	BMCCMAJGBCCMPIANDAOMBKKAMIBCGJJM:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	HIJHJBDMMPOJINBCPOOKNCHKLLJJCLHK:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	JCMABLMPPNGPPICLJKMCHIHLBMBOGNGG:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	EJNCMDNLFAKBEICHDPMPNMGPFGHKBAAG:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	GCFMAHCFIDAODLAFNLCFFMDAJBFNFJCDALKO:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	HLJJPKPFKGLIOBFMDAAILKKCGPFMAHPGAFMM:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	LGJLKMFIFMFMIBGPFMAHKLFKOLPANFLDIGDP:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	IPEOIJOIPPNCKANHHELDGKHIEPIBKFJP:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	FLDCCAGDAKJKOJLJBMDAELCCDFJFPNIH:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	FGEFLECJLFCJPOOCGAPDMNKDDPIHOMAB:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

	FPICMOOPEILKGCLJHACKANAJJIEIBNEL:
	form1:
	x:
	f1:
	f4: 1102213392759
	f5: oi

	f2: Join Now
	f3:

