
SPLC 2008 Workshop: Service-Oriented Architectures and Software Product Lines - Putting Both Together

Call for Workshop Participation

Service-Oriented Architectures and Software Product Lines - Putting Both Together
(SOAPL 2008)

Monday, 8 September 2008

 Description
 Audience
 Schedule
 Submission Instructions
 Workshop Organizers
 SOAPL 2007

 SPLC 2008
 SPLC 2008 Workshops

Contact Information
Robert Krut
rk@sei.cmu.edu
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Phone: +1-412-268-8505
Fax: +1-412-268-5758

Presentations

Krut, Robert & Cohen, Sholom. Workhop on Service-Oriented Architectures and Software Product
Lines - Putting Both Together (SOAPL 2008)

Dolog, Peter & Schafer, Michael. Feature Based Design of Web Service Transaction Compensations

Bartholdt, Jörg; Franke, Bernd; Schwanninger, Christa; & Stal, Michael. Combining Product Line
Engineering and Service Oriented Architecture in Health Care Infrastructure Systems: Experience
Report

Rusk, J. Jeffrey & Gasevic, Dragan. Semantic Web Services-based Reasoning in the Design of
Software Product Lines

Gunther, Sebastian & Berger, Thorsten. Service-Oriented Product Lines: A Development Process
and Feature Management Model for Web Services

Acher, Mathieu; Collet, Philippe; Lahire, Philippe; & Montagnat, Johan. Imaging Services on the
Grid as a Product Line: Requirements and Architecture

Boffoli, Nicola; Caivano, Danilo; Castelluccia, Daniela; Maria Maggi, Fabrizio; & Visaggio,
Giuseppe. Business Process Lines for SOA Development through the Software Product Lines
Paradigm

Attendees

● Javier Baro, UPM, javierbaro@gmail.com
● Jörg Bartholdt, Siemens AG, joerg.bartholdt@siemens.com
● Thorsten Berger, University of Leipzig, berger@informatik.uni-leipzig.de
● Nicola Boffoli, University of Bari, boffoli@di.uniba.it
● Sholom Cohen, SEI, sgc@sei.cmu.edu
● Hyunsik Choi, Postech, nllbut@postech.ac.kr
● Peter Dolog, Aalborg University, dolog@cs.aau.dk
● Marius Dragouinoiu, University of Limerick, marius.dragouinoiu@il.ie
● Sebastian Guenther, Universität Magdeburg, sebastian.guenther@iti.cs.uni-magdeburg.de
● Paul Jensen, Overwatch Textron, paul.jensen@overwatch.com

http://www.sei.cmu.edu/productlines/SOAPL2008/ (1 of 3) [7/16/2009 10:57:24 AM]

http://www.sei.cmu.edu/productlines/SOAPL/
http://www.lero.ie/SPLC2008
http://www.lero.ie/splc2008/workshops.html
mailto:rk@sei.cmu.edu
mailto:javierbaro@gmail.com
mailto:joerg.bartholdt@siemens.com
mailto:berger@informatik.uni-leipzig.de
mailto:boffoli@di.uniba.it
mailto:sgc@sei.cmu.edu
mailto:nllbut@postech.ac.kr
mailto:dolog@cs.aau.dk
mailto:marius.dragouinoiu@il.ie
mailto:sebastian.guenther@iti.cs.uni-magdeburg.de
mailto:paul.jensen@overwatch.com

SPLC 2008 Workshop: Service-Oriented Architectures and Software Product Lines - Putting Both Together

● Mahvish Khorum, BTH, mkm@bth.se
● Bob Krut, SEI/CMU, rk@sei.cmu.edu
● Philippe Lahire, University of Nice, philippe.lahire@unice.fr
● Jaejoon Lee, Lancaster University, j.lee@comp.lancs.ac.uk
● Kwangchun Lee, Information and Communication University, statkclee@icu.ac.kr
● Tomi Männistö, Helsinki University of Technology, tomi.mannisto@tkk.fi
● James McGinley, Vitares LTD., james.mcginley@vitares.com
● Liam O'Brien, NICTA, liam.obrien@nicta.com.au
● Maryam Razavian, Politecnico di Torino, maryam.razavian@polito.it
● Jeff Rusk, Athabasca University, jrusk@nirb.ca
● Magnus Wilson, Ericsson AB, magnus.wilson@ericsson.com

Description

Service-Oriented Architecture (SOA) and software product line (SPL) approaches to software
development share a common goal. They both encourage an organization to reuse existing assets and
capabilities rather than repeatedly redeveloping them for new systems. The intent is that
organizations can capitalize on reuse to achieve desired benefits such as productivity gains,
decreased development costs, improved time to market, higher reliability, and competitive
advantage. Their distinct goals may be stated as:

● SOA: "enable assembly, orchestration and maintenance of enterprise solutions to quickly
react to changing business requirements" [Wienands]

● SPL: systematically capture and exploit commonality among a set of related systems while
managing variations for specific customers or market segments

This workshop will build on results of the SOAPL 2007 workshop: Service-Oriented Architectures
and Product Lines - What is the Connection? and the workshop report [Cohen & Krut]. This year's
workshop, SOAPL 2008, will explore experiences in integrating SOA and SPL, specifically:

1. How web services have been used to support product lines using a service-oriented
architecture?

2. How product line practices have been used to support web services and service-oriented
architectures?

Topics of interest for the workshop include, but are not limited to:

● Practice areas that span both SOA and product lines (e.g., domain analysis, legacy mining,
operations/governance, etc.)

● Handling variability through services
● Cost models to justify investment in SOA for product lines
● Use of support technology such as: domain specific languages, tools, other
● Differences between service-oriented and more conventional product line development

approaches
● Architectural approaches: static vs. dynamic

Audience

Participants in the SOAPL 2008 will include product line and service-oriented practitioners who
have experience in integrating service-oriented architectures and software product lines approaches.
These include practitioners in product line engineering, product line management, and architects/
developers of SOA-based systems.

http://www.sei.cmu.edu/productlines/SOAPL2008/ (2 of 3) [7/16/2009 10:57:24 AM]

mailto:mkm@bth.se
mailto:rk@sei.cmu.edu
mailto:philippe.lahire@unice.fr
mailto:j.lee@comp.lancs.ac.uk
mailto:statkclee@icu.ac.kr
mailto:tomi.mannisto@tkk.fi
mailto:james.mcginley@vitares.com
mailto:maryam.razavian@polito.it
mailto:jrusk@nirb.ca
mailto:magnus.wilson@ericsson.com
http://www.sei.cmu.edu/productlines/SOAPL/
http://www.sei.cmu.edu/productlines/SOAPL/

SPLC 2008 Workshop: Service-Oriented Architectures and Software Product Lines - Putting Both Together

Schedule

The workshop will be highly interactive and focus on making tangible progress towards answering
the two questions relating to results in integrating SOA and product line practices. The morning
session will feature invited speakers and selected presentations based on position papers. Participants
will be assigned to groups that reflect specific topics. After the workshop, the leader of each working
group will be asked to write a summary of the working group's discussion and (especially) its
conclusions.

Submission Instructions

Prospective participants are required to submit a 3-6 page position paper or experience report
pertaining to the workshop topics listed above or describing the software architecture or other
artifacts of a SOA-based product line.

All submissions will be reviewed by members of the program committee for quality and relevance.
Accepted papers will become part of the workshop proceedings. Three or four papers will be chosen
to be presented during the workshop to foment discussion. Submit your paper in PDF form to soa-
workshop@sei.cmu.edu or by July 1, 2008. Notifications of paper or experience report acceptance
will be sent by July 15, 2008. The camera-ready version of accepted papers is due July 31, 2008.

Workshop Organizers

● Sholom Cohen, Software Engineering Institute, USA
● Dragan Gasevic, Athabasca University, Canada
● Andreas Helferich, Universität Stuttgart, Germany
● Robert Krut, Software Engineering Institute, USA
● Jaejoon Lee, Lancaster University, UK
● Grace Lewis, Software Engineering Institute, USA
● Tomi Männistö, Helsinki University of Technology, Finland
● Curt Pederson, American Family Insurance, USA
● Dennis Smith, Software Engineering Institute, USA
● Christoph Wienands, Siemens Corporate Research, USA

 [Wienands] Wienands, Christoph. "Studying The Common Problems With Service-oriented
Architecture and Software Product Lines." Service Oriented Architecture (SOA) & Web Services
Conference, Atlanta, GA, October 16-18, 2006.

[Cohen & Krut] Cohen, Sholom & Krut, Robert. Proceedings of the First Workshop on Service-
Oriented Architectures and Software Product Lines (CMU/SEI-2008-SR-006). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2008.

http://www.sei.cmu.edu/productlines/SOAPL2008/ (3 of 3) [7/16/2009 10:57:24 AM]

mailto:soa-workshop@sei.cmu.edu
mailto:soa-workshop@sei.cmu.edu
http://www.sei.cmu.edu/publications/documents/08.reports/08sr006.html
http://www.sei.cmu.edu/publications/documents/08.reports/08sr006.html

© 2008 Carnegie Mellon University

Workshop on Service-
Oriented Architectures and
Software Product Lines -
Putting Both Together
(SOAPL 2008)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Bob Krut & Sholom Cohen
8 September 2008
SPLC 2008, Limerick, Ireland

2
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

Agenda

Final Presentation and Discussion (if necessary)14:00-14:30

Conclusion: Goals Addressed, Topics for San Francisco, Future
Work

17:00-17:30

General Discussion Continued15:45-17:00

Break15:30-15:45

General Discussion14:30-15:30

Lunch12:30-14:00

Presentations and Discussions (20 minute time limit plus
questions and discussion on each presentation)

10:30-12:30

Break10:15-10:30

Invited Speaker: Dr Peter Dolog, Aalborg University 09:15-10:15

Introductions and Goals09:00-09:15

3
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

Workshop Organizers

Sholom Cohen, Software Engineering Institute, USA

Dragan Gasevic, Athabasca University, Canada

Andreas Helferich, Universität Stuttgart, Germany

Robert Krut, Software Engineering Institute, USA

Jaejoon Lee, Lancaster University, UK

Grace Lewis, Software Engineering Institute, USA

Tomi Männistö, Helsinki University of Technology, Finland

Curt Pederson, American Family Insurance, USA

Dennis Smith, Software Engineering Institute, USA

Christoph Wienands, Siemens Corporate Research, USA

4
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

The First Workshop on Service-Oriented
Architectures and Product Lines (SOAPL 2007)
Part of the 2007 Software Product Line Conference (SPLC 2007),

10 September 2007, Kyoto, Japan.

Service Oriented Architectures and Product Lines - What is the
Connection?

SOAPL 2007 explored the connections from two perspectives:

1. Can services support product lines using a service-oriented
architecture?

2. How can use of product line practices support services and service-
oriented architectures?

Proceedings of the First Workshop on Service-Oriented Architectures and
Product Lines (CMU/SEI-2008-SR-006).

http://www.sei.cmu.edu/publications/documents/08.reports/08sr006.html

5
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

The Second Workshop on Service-Oriented
Architectures and Product Lines (SOAPL 2008)

Service Oriented Architectures and Product Lines - Putting Both Together

SOAPL 2008 explores experiences in integrating SOA and SPL:

1. How web services have been used to support product lines using a
service-oriented architecture?

2. How product line practices have been used to support web services
and service-oriented architectures?

Participants in the workshop hopefully includes product line and service-
oriented practitioners who have experience in integrating service-
oriented architectures and software product lines approaches.

Five position papers were accepted.

6
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

Accepted Papers

Combining Product Line Engineering and Service Oriented Architecture in Health Care
Infrastructure Systems: Experience Report
Jörg Bartholdt, Bernd Franke, Christa Schwanninger, and Michael Stal, Siemens AG

Semantic Web Services-based Reasoning in the Design of Software Product Lines
J. Jeffrey Rusk and Dragan Gasevic, Athabasca University

Service-Oriented Product Lines: A Development Process and Feature Management
Model for Web Services
Sebastian Gunther, Otto-von-Guericke-Universitat Magdeburg, and Thorsten Berger,
Universitat Leipzig

Imaging Services on the Grid as a Product Line: Requirements and Architecture
Mathieu Acher, Philippe Collet, Philippe Lahire, and Johan Montagnat, Universite de
Nice

Business Process Lines for SOA Development through SPL Paradigm
Nicola Boffoli, Danilo Caivano, Daniela Castelluccia, Fabrizio Maria Maggi, and
Giuseppe Visaggio, University of Bari - Via E.

7
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

Workshop Theme

Two major themes for this year’s workshop:

1. variability and variability mechanisms

2. product composition

both within the context of SOA and product lines.

All of the papers touched on one or both of those themes.

These topics will provide a starting point for the workshop.

Other suggested topics:

• in advance

• as papers are presented and discussed

8
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

Invited Speaker

Dr. Peter Dolog

Associate Professor

Computer Science Department

Aalborg University

Leads the Intelligent Web and Information Systems (IWIS) group

includes adaptive hypertext and hypermedia, user modelling,
personalization, web based systems, web services, software product lines
and technology enhanced learning.

Presentation Title:

Feature Based Design of Web Service Transaction Compensations

9
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

Workshop Topics

How have web services been used to support product lines using a
service-oriented architecture?

How have product line practices been used to support web services and
service-oriented architectures?

Additional topics:

• variability and variability mechanisms

• product composition

10
SEI Presentation
Robert Krut, 3 September 2008
© 2008 Carnegie Mellon University

Conclusion

Were the goals of this workshop addressed? Comments?

What would you recommend as the topic for San Francisco?

What future work in this area will you be doing?

Feature Based Design of Web Service
Transaction Compensations

Peter Dolog with Michael Schäfer
dolog@cs.aau.dk
CS Department
Intelligent Web Information Systems
http://www.cs.aau.dk, http://iwis.cs.aau.dk

SOAPL 2008 @ SPLC 2008, September 2008, Limerick,
Ireland

http://www.cs.aau.dk/
http://iwis.cs.aau.dk/

2SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Outline

IWIS group and background
General problem
Business transactions
Middleware for advanced compensations
Service provider and client feature modelling
Matchmaking and restriction model
Further Challenges

3SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Outline

IWIS group and background
General problem
Business transactions
Middleware for advanced compensations
Service provider and client feature modelling
Matchmaking and restriction model
Further Challenges

4SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Intelligent Web and Information Systems
http://iwis.cs.aau.dk

Adaptation
Techniques

and Algorithms
Engineering
Adaptation

Adaptive
Infrastructures/Middleware

Different
Application

Areas

5SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Adaptation/Customization
Customization by humans (designers)
Dynamic adaptation by a system itself
Adaptation is about decision on which information resource or
function variant to provide or recommend access to,
We need a knowledge to decide about appropriate information
or service configuration in a certain processing step (user or
other):

Resource and information access environment
Application domain
User/Context
And their configuration – variants and their meaningful combinations for
certain purposes

6SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Outline

IWIS group and background
General problem
Business transactions
Middleware for advanced compensations
Service provider and client feature modelling
Matchmaking and restriction model
Further Challenges

7SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Open Web Service Environment

Service Providers
• A number of autonomous service providers exist
• They can provide similar functionality
• They can dis-/appear any time
• Each wants to maximize its profit for executing provided services by

external consumers
Service Consumers

• Number of consumers with similar requirements exist
• They want to achieve high value for their expense
• To maximize their service
• By composing matched available services from different providers

8SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Software Product Lines

Software Providers
• Number of reusable software assets exist
• They may vary in its functionality
• They want to maximize its profit by providing the assets in

an application in a family mostly from one company
Software Consumers

• Number of consumers with similar requirements
• They want to achieve high value for their expense
• To maximize their service
• By composing a final application from the reusable assets

9SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Difference

Client is composing in web service world
Client is composing from different providers in web service

world
Services used in the composition may be exchanged
Question:

• What can be achieved by current state of the art software
product lines techniques?

10SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Outline

IWIS group and background
General problem
Business transactions
Middleware for advanced compensations
Service provider and client feature modelling
Matchmaking and restriction model
Further Challenges

11SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Print and send payslip
Transfer salary
Transfer tax

Payroll Scenario
Company Employee

Bank

Transfer
salary

Transfer
tax

Print and
mail payslip

Transfer car
instalment

Wait for payment
Transfer monthly instalment
for the new car

12SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Service Oriented Payroll Scenario
Company Employee

Bank

Transfer
tax

Print and
mail payslip

Transfer car
instalment

To reach mutually-agreed outcome (commit/cancel)
In environment with concurrent access

Transfer
salary

13SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Transactions

Control the execution of the required operations on the
external services.

Consist of a set of operations (e.g. database operations) that are
performed by multiple participants.

Control the collective outcome of the operations.

Distributed transactions control the execution of operations on
multiple providers.
• Participant
• Coordinator

14SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Error Compensation
Different transaction specifications exist for different purposes
Backward recovery

Normally, predefined rollback operations are executed in order to restore
the state before the transaction.

Time and money is lost
Dependent transactions also have to roll back (domino effect)

Forward recovery
Aims at changing pro-actively the state of the participant or transaction to
enable a successful execution after a failure.

Complex
Can normally only be performed semi-automatically

15SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Traditional WS-Transaction Coordin. Structure
1. Create new transaction

2. Return coordination context

3. Invoke service, send
coordination context

4. Register with coordination context

5. Confirm registration

8. Abort
transaction

6. Process request

7. Send failure notification

7. Send request
result

→ Failure

Normal request
processing
Request failure
handling

16SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

C

T1

WS4

WS1

WS2 WS3

abstract state diagram

WS – Tx / Business Activity Coordination Type

17SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Payroll Processing

Accounts
Company
Employee

Tax
Car Dealer

1. Transfer of the salary to the employee‘s account2. Transfer of the tax to the tax authority‘s account3. Specify the salary details, print and send the payslip

…

Transfer instalment to the car dealer‘s account

Transaction

18SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Motivating Scenario – Problem

A service fails due to an internal error.
The error can only be compensated by aborting the complete transaction.
Why should the transaction be aborted, if a different service exists that can
perform the same operations?

…

Transaction

19SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Outline

IWIS group and background
General problem
Business transactions
Middleware for advanced compensations
Service provider and client feature modelling
Matchmaking and restriction model
Further Challenges

20SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Extended Transaction Coordination Structure

Transaction
Coordinator

1. Create new transaction

2. Return coordination context

3. Invoke abstract service, send
coordination context

9. Register with
adapter context

10. Confirm registration

11. Process request

12. Send request
result

5. Register with
coordination
context

4. Request adapter
context

6. Confirm
registration

7. Return
adapter
context

8. Invoke concrete
service, send
adapter context

13. Send request
result

21SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

New Components - Abstract Service

Does not directly implement
functionalities.
Manages a list of concrete services.
Is a mediator between the client and the
concrete service.
Manages and performs compensation
actions.
Interfaces:

• Service
• Event (internal compensation

handling)
• Compensation (external

compensation handling)
• Contract exchange

C
on

tr
ac

t e
xc

ha
ng

e

22SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Compensation Activities and Types

23SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Example: Internal Compensation Rule

<cmp:InternalCompensationRule identifier="internalFailureLastRequestResending">
<cmp:CompensationCondition>
<cmp:ParticipantEvent eventCode=
"http://sourceforge.net/projects/frogs/AdapterInteraction/ParticipantFault"/>
<cmp:ParticipantState
stateType='http://schemas.xmlsoap.org/ws/2004/10/wsba/Faulting' />

<cmp:ReplacementService exists="true" isDirectReplacement="true" />
<cmp:RequestSequence>
<cmp:Request identifier="transferSalaryMethod" />

</cmp:RequestSequence>
</cmp:CompensationCondition>
<cmp:CompensationPlan>
<cmp:Compensation>
<cmp:ServiceReplacement/>

</cmp:Compensation>
<cmp:Compensation>
<cmp:RequestResending lastN="1" />

</cmp:Compensation>
</cmp:CompensationPlan>

</cmp:InternalCompensationRule>

The condition of the compensation
rule

Condition 1: The internal event
must have been a failure of
the concrete service

Condition 2: The state in which
the concrete service has to
be

Condition 3: A direct
replacement concrete
service has to exist

Condition 4: The last request
must have called this method

The execution plan of the
compensation rule

Step 1: Replace the current
concrete service

Step 2: Resend the last request

24SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

New Components - Adapter

Encapsulates coordinator-specific
functionality.
Functions as a coordinator for the
concrete service.
Manages messaging:

• Forwards normal messages
between the real coordinator and
the concrete service.

• Intercepts failure messages and
informs the abstract service.

• Creates additional notifications as
part of a compensation process.

Adapter Management

In
st

ru
ct

io
ns

25SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Internal Compensation Handling – No Action

Concrete service fails.
Abstract service checks its compensation
rules and contract.
Compensation is not possible.
Normal transaction abort.

Transaction
Coordinator

11. Process request

12. Signal failure

13. Report
event

14. Fail

15. Forward
failure
notification 16. Abort

transaction

26SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Internal Compensation Handling – Replacement

Concrete service fails.
Abstract service checks its compensation
rules and contract.
Concrete service is replaced.
Coordinator was not notified!

Transaction
Coordinator

11. Process request

20. Send request
result

12. Signal failure

21. Send request
result

13. Report
event

14. Forget
participant

15. Confirm failure
19. Process request

16. Resend
request

17. Register with
adapter context

18. Confirm registration

27SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Evaluation

Multiple scenarios for internal and external compensation
handling have been implemented and tested.

An evaluation model has been created, which calculates net values
for the standard environment and the abstract service
environment.

Allows an assessment whether the utilization of the new
design is economical and beneficial.

Experiment performed on a simalated environment
More in ACM TWEB paper

28SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Outline

IWIS group and background
General problem
Business transactions
Middleware for advanced compensations
Service provider and client feature modelling
Matchmaking and restriction model
Further Challenges

29SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Compensation Types

30SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Compensation Features

<< Concept >>
Compensation

<< OptionalFeature >>
ExternalCompensation

Handling

<< MandatoryFeature >>
InternalCompensation

Handling

<< OptionalFeature >>
AdditionalRequest

<< OptionalFeature >>
AdditionalService

<< MandatoryFeature >>
ServiceAbort

<< OptionalFeature >>
Repetition

<< OptionalFeature >>
Replacement

<< VariationPoint >>
{Kind = AND}

<< MandatoryFeature >>
RequestSequence

Change

<< VariationPoint >>
{Kind = OR}

<< OptionalFeature >>
AllRequest
Repetition

<< MandatoryFeature >>
LastRequest
Repetition

<< MandatoryFeature >>
ResultResending

<< OptionalFeature >>
SessionRestart

<< OptionalFeature >>
AdditionalActions

<< MandatoryFeature >>
NoCompensation

<< OptionalFeature >>
Forwarding

<< OptionalFeature >>
PartialRequest

Repetition

31SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Capability Feature Model

Consists of:
• functionality feature model
• compensation feature model

The compensation feature model can contain custom features.

32SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Service Capabilities

33SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Consumer Requirements

34SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Outline

IWIS group and background
General problem
Business transactions
Middleware for advanced compensations
Service provider and client feature modelling
Matchmaking and restriction model
Further Challenges

35SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Matchmaking between service and consumer feature
models

Compatibility score calculation
Iteratively compares feature models
Features must appear at the same place in the graph
Mandatory features must all match but do not contribute to the

compatibility score
If a mismatch is found in a mandatory feature, algorithm stops

and a negative score is returned
Optional features add to the compatibility score when a match is

found (in our case +1)
Additional features may contribute with different scores

36SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Restriction Feature Model

<< Concept >>
Compensation

<< Feature >>
InternalCompensation

Handling

<< Feature >>
Repetition

<< Feature >>
Replacement

<< Feature >>
AllRequest
Repetition

<< Feature >>
LastRequest
Repetition

<< Feature >>
ResultResending

<< Feature >>
NoCompensation

<< Feature >>
PartialRequest

Repetition

37SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Example: Internal Compensation Rule

<cmp:InternalCompensationRule identifier="internalFailureLastRequestResending">
<cmp:CompensationCondition>
<cmp:ParticipantEvent eventCode=
"http://sourceforge.net/projects/frogs/AdapterInteraction/ParticipantFault"/>
<cmp:ParticipantState
stateType='http://schemas.xmlsoap.org/ws/2004/10/wsba/Faulting' />

<cmp:ReplacementService exists="true" isDirectReplacement="true" />
<cmp:RequestSequence>
<cmp:Request identifier="transferSalaryMethod" />

</cmp:RequestSequence>
</cmp:CompensationCondition>
<cmp:CompensationPlan>
<cmp:Compensation>
<cmp:ServiceReplacement/>

</cmp:Compensation>
<cmp:Compensation>
<cmp:RequestResending lastN="1" />

</cmp:Compensation>
</cmp:CompensationPlan>

</cmp:InternalCompensationRule>

38SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Feature Model
<feature name="Compensation" type="NONE" id="compensation">

<feature name="InternalCompensationHandling" type="NONE”
id="internalCompensationHandling">
…
<feature name="PartialRequestRepetition" type="NONE"
id="reference3IXIpartialRequestRepetition">

<feature name="ResultResending" type="NONE"
id="reference3IXIreferenceIXIresultResending">

</feature>
</feature>

</feature>
<feature name="Replacement" type="NONE" id="replacement">

<feature name="LastRequestRepetition" type="NONE"
id="reference4IXIlastRequestRepetition">

</feature>
<feature name="PartialRequestRepetition" type="NONE"

id="reference5IXIpartialRequestRepetition">
<feature name="ResultResending" type="NONE"

id="reference5IXIreferenceIXIresultResending">
</feature>

</feature>
<feature name="AllRequestRepetition" type="NONE"

id="reference6IXIallRequestRepetition">
<feature name="ResultResending" type="NONE"

id="reference6IXIreferenceIXIresultResending">
</feature>

</feature>
</feature>

</feature>
…

</feature>

39SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Layers of Abstraction

and

xor

xor

Physical Services and
Workflow Variants

Capability and
Compensation
Concepts

Capability and
Compensation
Features and
Configurations

Restriction
Profiles

Navigation
and
Interaction

40SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Outline

IWIS group and background
General problem
Business transactions
Middleware for advanced compensations
Service provider and client feature modelling
Matchmaking and restriction model
Further Challenges

41SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

Workflows vs. Middleware

Compensations and adaptations can be specified at the design
level in workflows

Copensations and adaptations can be encoded in an intelligent
middleware

How to combine them
How to compose them
How to ensure consistency
…

42SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

FP7 ICT EU idSpace: Tooling of and training for collaborative,
distributed product

43SOAPL 2008: Feature Based Design of Web Service Transaction Compensations

References

• M. Schäfer, P. Dolog, W. Nejdl: An Environment for Flexible
Advanced Compensations of Web Service Transactions. ACM
TWEB, 2(2), 2008

• P. Dolog, W. Nejdl: Using UML-based feature models and
UML collaboration diagrams to information modelling for
web-based applications. UML 2004.

Thanks!!! Questions?

dolog@cs.aau.dk
http://www.cs.aau.dk/~dolog
http//iwis.cs.aau.dk

mailto:dolog@cs.aau.dk
http://www.cs.aau.dk/~dolog

Corporate Technology

Combining Product Line Engineering
and Service Oriented Architecture in
Health Care Infrastructure Systems:
Experience Report

Jörg Bartholdt, Bernd Franke, Christa Schwanninger Michael Stal
Corporate Technology & Health Care

Siemens AG

PLE SOA

Page 2 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

Business Case

Hospitals have a HIS (Hospital Information System).
Data is shared between departments (intra-hospital)

But what if it comes to transferring a patient to another hospital?
You carry your X-ray images with you

Soarian IC targets
§ inter-hospital communication
§ Special scenarios of external data integration

Soarian IC

Page 3 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

In future: target residential doctors, too

Hospital
Gießen

Hospital Lich

eFA-Node
Doctor

eFA-Node
Gießen

eFA-Node
Lich

1. create ECR
2. patient consent
3. provide patient data/documents
9. retrieve patient documents

Patient Summary

4. retrieve patient documents
5. create episode clinic Gießen

6. retrieve patient documents
7. retrieve episode clinic Gießen
8. create episode clinic Lich

patient data
consent
documents

episode
Gießen

episode
Lich

Referral to Gießen

Referral to Lich

Back to doctor

 patient data
 consent
 episode Gießen
 episode Lich

1

2

3

4

1

2 3

4

GP

Peer-To-Peer

Peer-To-Peer Pee
r-T

o-P
ee

r

Patient consults doctor

Page 4 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

History

Product development was serialized
Previous version forms the bases for the next version (architecture
erosion)
Results in monolithic application, interwoven dependencies

Assumptions:
Increased customer base (no serialization possible anymore)
Focus on main selling assets
Make system ready for integration

Goal:
Introduce SOA-approach: import/export via interfaces, composition of
features via service chaining
Introduce PLE: focus on core assets, allow for customer specific
variations, introduce new features in core if proven at one customer

Customer BCustomer A

Page 5 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

Challenges

1. Increasing variability
2. Configurability/Subset-ability
3. Extensibility
4. Increased testability
5. Outsourcing
6. Risk effect mitigation
7. Exploitation of COTS (Common-Off-The-Shelf) products
8. Prioritization of features to be integrated in the platform
9. Positioning in the market (guide the customer)
10.Acceleration of tender preparation
11.Clinical workflows
12.Traceability

Page 6 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

Approach

1. Scoping (2,8,9,10):
§ Increasing customer base requires focus on most profitable

features
§ Starting point: Group current requirements to features
§ Use feature model for reasoning with product mgmt, sales,

development, etc („common language“)
2. Variability Management (1,3,4,12):
§ Reduce variability points (expensive!) pre-configurations

3. Building re-use culture (1,2,4,10):
§ Keep clear product portfolio strategy
§ Focus to market commonalities
§ Quick hacks forbidden in the core assets

Page 7 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

Approach

4. Self-containment (2,3,4,5,6,12):
§ Fosters decoupling of components
§ Allows for exchange to third-party components
§ Allows to be used as a system, not only by humans via Web-

Interface
§ Improves testability

5. Integration (2,7):
§ More freedom to tailor to customer needs
§ Face the fact that Siemens is not the only supplier

6. Flexibility (5,11):
§ Adding workflow or rule engines
§ support specifics of each customer (ideally by the customer)
§ Late (dynamic) binding

Page 8 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

Approach

Other projects showed the likelihood of failure in a big-bang approach
We favor a migration strategy

implemented

Legacy System

new functionality

Service Interfaces

new
S - IC

. .

Commincation that
definietely can not be
handled through the DB,
To be avoided whenever
possible

Integration via DB,
Preferred communication

Page 9 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

Conclusion

SOA build a prominent, natural variation point with late (dynamic)
binding capabilities
Services as a variation point means flexible tooling available
(Workflow engines, BPEL)
Self-containment reduces coupling and fosters variation
We will not follow the total unawareness of the usage context implied
by SOA protagonists.

Future challenges
§Data model can not be changed as long as old application

components exist
§Restructure the organization (nobody wants to loose influence,

learning-curve)
§Wrap legacy system with new service interface without side-effects

Page 10 © Siemens AG, Corporate TechnologyJ. Bartholdt, B. Franke, C. Schwanninger M. Stal

Questions & Answers

Now, or later …

Joerg.Bartholdt@Siemens.com

Semantic Web Services-based
Reasoning in the Design of

Software Product Lines
J. Jeffrey Rusk and Dragan Gasevic

Athabasca University
Canada

Research Goal

To evaluate the suitability of the Web Service
Modeling Ontology (WSMO) in the encoding of
product configurations and related constraints
from a software product line (SPL) in such a
manner as to better enable reasoning
approaches which facilitate higher automation of
service discovery, composition, invocation, and
monitoring in service oriented architectures
(SOA).

SOAPL 2008 - September 8 2008,
Limerick, Ireland

2

Outline

• Background and Motivation

• Feature Models (FM)
• Web Service Modeling Ontology (WSMO)

• Model Transformations
– FM to WSMO
– Product Configuration to WSMO

• Orchestration in WSMO

• Reasoning
• Implementation, Conclusion and Future Work

SOAPL 2008 - September 8 2008,
Limerick, Ireland

3

Background Issues

• Impediments to successful implementation
of SPL when considering SOA

• Challenges representing SOA as SPL
• Limits to the expressiveness of FM
• Limited reasoning capabilities
• Ontology-related technology exists to

support

SOAPL 2008 - September 8 2008,
Limerick, Ireland

4

Deliverables

• Mappings between FM and WSMO
• Transformation implementation
• Reasoning framework

SOAPL 2008 - September 8 2008,
Limerick, Ireland

5

What do the deliverables make
possible?

The ability to explore and evaluate:
• accuracy of the mapping possible between

the two formalisms.
• level of automation supported during

transformation
• support or guidance that the ontology can

provide to feature modeling.

SOAPL 2008 - September 8 2008,
Limerick, Ireland

6

Themes of this Workshop

• Variability and variability mechanisms
• Product composition

How does this work relate to these themes?

SOAPL 2008 - September 8 2008,
Limerick, Ireland

7

Overall Flow of Information

SOAPL 2008 - September 8 2008,
Limerick, Ireland

8

Feature Models

• SPL implementations typically feature-
based

• FM ideal representation for SOA
• Using Czarnecki et al. notation and

rendering
• Metamodel of FM and product

configurations
• Tool support

SOAPL 2008 - September 8 2008,
Limerick, Ireland

9

Feature Model Metamodel

SOAPL 2008 - September 8 2008,
Limerick, Ireland

10

Adapted from: C.H.P. Kim, K. Czarnecki. Synchronizing cardinality-based feature models and their
specializations. In Model Driven Architecture – Foundations and Applications. 331-348. 2005.

Web Service Modeling Ontology
(WSMO)

• Semantic describes all aspects of SWS
• Relatively new framework
• Tool support
• Four core elements

– Ontologies

– Web Services
– Goals

– Mediators

SOAPL 2008 - September 8 2008,
Limerick, Ireland

11

WSMO Metamodel

SOAPL 2008 - September 8 2008,
Limerick, Ireland

12

Model Transformation

SOAPL 2008 - September 8 2008,
Limerick, Ireland

13

Feature Model WSMO

ATL

XML Formats

SOAPL 2008 - September 8 2008,
Limerick, Ireland

14

WSML-in-XMLFeature Plugin XML Export

ATL

Feature Model to WSMO

SOAPL 2008 - September 8 2008,
Limerick, Ireland

15

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

ontology VirtualWholesale

concept VirtualWholesale
Registration ofType (1 1) Registration
RewardsProgram ofType (0 1) RewardsProgram
Payment ofType (1 1) Payment
Provider ofType (1 4) Provider
Shipping ofType (1 4) Shipping

concept Registration
concept Payment
concept Provider
concept Shipping
concept RewardsProgram
concept Visa subConceptOf Payment
concept Mastercard subConceptOf Payment
concept AtlanticProductsLtd subConceptOf Provider
concept NorthernDesigns subConceptOf Provider
concept LakewoodRefurbishing subConceptOf Provider
concept QualityImportsLtd subConceptOf Provider
concept CanadaPost subConceptOf Shipping
concept Purolator subConceptOf Shipping
concept FederalExpress subConceptOf Shipping
concept Midland subConceptOf Shipping

axiom DisjointPayment
definedBy

!- ?x memberOf Visa
and ?x memberOf Mastercard.

Product Configuration to WSMO

• Most accurately represented as
orchestration

• Overall executable business process that
can be defined through interaction
between Web services

• Choreography may be a factor as well

SOAPL 2008 - September 8 2008,
Limerick, Ireland

16

Orchestration in WSMO

• Unlike choreography, orchestration in
WSMO is still under development

• Both based on abstract state machine
• Composed of state and set of guarded

transitions
• State in form of ontology providing

– Vocabulary for transition rules

– Set of instances that change state.

SOAPL 2008 - September 8 2008,
Limerick, Ireland

17

Reasoning
• Effects of:

– Product configuration choices

– Adding, moving, deleting features
– Assigning values to attributes

• Guidance for:
– Constraints in ontology not present in FM

– FM relationships not represented in ontology
– Orchestration dependencies

– Orchestrating services required
SOAPL 2008 - September 8 2008,

Limerick, Ireland
18

Implementation

• Feature Model Plugin
• WSMO Studio and KAON2 Reasoner
• ATL
• Eclipse

SOAPL 2008 - September 8 2008,
Limerick, Ireland

19

Conclusion

• Mappings between FM and WSMO
– Accuracy of mappings

– Level of automation attainable
– Precision of feature discovery

– Guidance provided by ontology

• Suitability of WSMO
– Expressiveness
– Related work

SOAPL 2008 - September 8 2008,
Limerick, Ireland

20

Future Work

• Refine mappings
• Improve transformation
• Explore further the available reasoning
• Integrate the various utilities into

comprehensive plugin working in Eclipse
environment

SOAPL 2008 - September 8 2008,
Limerick, Ireland

21

SOAPL 2008 - September 8 2008,
Limerick, Ireland

Thank you!
Questions?

Jeff Rusk

Director, Technical Services
Nunavut Impact Review Board

Cambridge Bay, Nunavut, Canada

(also MSc Candidate at Athabasca University)

jrusk@nirb.ca

Acknowledgements
The authors acknowledge the support of Athabasca University through the

Graduate Student Research Fund.

22

Very Large Business Applications Lab

Otto-von-Guericke Universität
Magdeburg

Fakultät für Informatik
Institut für betriebliche und technische Informationssysteme

Arbeitsgruppe Wirtschaftsinformatik

http://www.vlba-lab.de/

17. September 2008

Service-Oriented Product Lines:
Towards a Development Process and
Feature Management Model for Web
Services

SOAPL 2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Introduction

§ What is software development?
• Usage of a software development process

• Transform requirements into different artifacts (architectural descriptions, interface
descriptions, source code…)

§ How to manage artifacts?
• Apply changes to existing artifacts
• Reduce coupling of source code

§ What about reuse?
• Commonality and variability

§ Combination of Software Product Lines and Service-Oriented
Architectures provides solutions to many common software problems

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Structure

§ Introduction
§ Definitorial Background
§ Development Process for Software Product Lines
§ Service-Oriented Product Lines
§ Example
§ Conclusions

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Definitional Background:
Software Product Lines

§ Withey: „Product Lines is a group of products sharing a common,
managed set of features“ [1]

§ Specifically, manage variability among features that represent
requirements

§ Goal: Structure and reuse software development artifacts

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Definitional Background:
Service-Oriented Architectures

§ Loosely coupled and autonomous services

§ Properties according to Josuttis: self-containment, coarse-grained
interfaces, reusability and composability [2]

§ Implementation: Web Services or Enterprise Service Bus

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Definitional Background:
Web Services

§ „Software applications that can be discovered, described and accessed
based on XML and standard Web protocols“ [3]

§ Described by a WSDL
• Abstract definition describes interface, operations and messages

• Concrete definition describes bindings to operations

§ Distinguish into service broker, provider and consumer

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Structure

§ Introduction
§ Definitorial Background
§ Development Process for Software Product Lines
§ Service-Oriented Product Lines
§ Example
§ Conclusions

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Domain Engineering

§ Develop a software family

§ Analysis
• Capture domain specific knowledge
• Develop a domain model

• Represent domain concepts and requirements in a central feature model

• Identify variants with their distinguishing features

§ Design
• From architectural description to software entities

• Decide used frameworks, libraries and programming languages
• Form technological foundation for implementation of variants

§ Implementation
• Make or buy decision for software entities

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Application Engineering

§ Develop individual member (of the software family)

§ Five steps
• Problem Analysis (overall problem specification)
• Product Specification (concrete set of selected features)

• Collateral Development (Documentation)

• Product Implementation (Executables and test cases)

• Deployment

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Structure

§ Introduction
§ Definitorial Background
§ Development Process for Software Product Lines
§ Service-Oriented Product Lines
§ Example
§ Conclusions

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Service-Oriented Product Lines

§ Implement SPL with an SOA

§ Different impacts on development phases
• Analysis:

- Select SOA-specific modeling languages

- Software requirements can be modeled as features or part of the ESB

• Design

- ESB as routing and messaging backbone, and also implements e.g. compliance
requirements

- ESB mostly forms common part of SPL
- Web Service abstracts whole applications, databases or fine granular software

entities
• Implementation

- Careful choice of purchased ESB

- Wrap existing software with Web Services or use web service repositories

- Full SOPL process (design interface and implementation) vs. light SOPL process
(design only interfaces)

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Structure

§ Introduction
§ Definitorial Background
§ Development Process for Software Product Lines
§ Service-Oriented Product Lines
§ Example
§ Conclusions

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

The Web Store

§ Domain Engineering for a Web Store (base taken from [4])
§ Web store contains 7 modules:

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Web Store:
A Feature Model

§ Abstract representation of the overall product line
§ Uses set-like notations for features

• Base = {Acq,Chk,Crd,Ord,Shp,Bil,Pay}

§ Detail out features
• Credit Ranking: Use an independent agen-

cy (Agc) or explanation of the bank (Bak)
- Crd = {Agc, Bak}

• Shipment via surface (Sur) or airmail (Air)

- Shp = {Sur, Air}
• Surface shipment with standard (Std) or Express (Exp) Mail

- Sur = {Std, Exp}

§ Individual member is a composition of specific features
• Store1 = Base
• Acq • Chk • Agc • Bak • Ord • Std • Exp • Air • Bil • Pay

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Web Store:
Variability Management

§ Customers demand new features
• Discounting for bigger quantities of ordered goods

• Traceability of features

§ Impacts existing services of the Web Store

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Web Store:
Variability Management 2

§ Discounting concepts refines four basic features
• Disc = {Crd = {∆Agc, ∆Bak}, ∆Bil, ∆Pay}

§ Build a new member
• Include discounting feature

• Limit shipment to standard surface mail

• Store2 = {Base – {Exp, Air}} • Disc

• Store2 = Acq • Chk • Agc • Bak • Ord • Std • Bil • Pay • Disc
• Store2 = Acq • Chk • Agc • Bak • Ord • Std • Bil • Pay • ∆Agc • ∆Bak • ∆Bil • ∆Pay

§ Combination of a basic and refined feature leads to the final
representation

• Store2 = Acq • Chk • Agc´ • Bak´ • Ord • Std • Bil´ • Pay´

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Web Store:
Variability Management with WSDL

§ Description of Web Services with WSDL gives a high level view
§ Feature granularity must manage WSDL descriptions
§ Example: WSDL for Billing

• <element name="CalcBillOutput">
• <!– Other definitions ommitted -->
• <xsd:sequence>
• <xsd:element name="customerName“ type="xsd:string"/>
• <xsd:element name="customerAddress“ type="xsd:string"/>
• <xsd:element name="items" type="ItemOrder“ minOcurs="1" maxOccurs="unbound"/>
• <xsd:element name="totalPrice“ type="xsd:integer"/>
• </xsd:sequence>
• <!– Other definitions ommitted -->
• </element>

§ Variability Management with XAK [5]
• <element name="CalcBillOutput“ xak:artifact="STOREbillOutput">
• <!-- Other definitions omitted --!>
• <xsd:sequence xak:module="billOutput">
• <xsd:element name="customerName" type="xsd:string"/>
• <!-- Other definitions omitted --!>

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Web Store:
Variability Management with WSDL 2

§ WSDL Refinement
• <xak:refines xak:artifact="STOREbillOutput">
• <xak:extends xak:module="billOutput">
• <xak:super xak:module="billOutput"/>
• <xsd:element name="discount" type="xsd:integer"/>
• <xsd:element name="discountedPrice“ type="xsd:integer"/>
• </xak:extends>
• </xak:refines>

§ Combined WSDL
• <element name="CalcBillOutput">
• <!– Other definitions ommitted -->
• <xsd:sequence>
• <xsd:element name="customerName“ type="xsd:string"/>
• <xsd:element name="customerAddress“ type="xsd:string"/>
• <xsd:element name="items" type="ItemOrder“ minOcurs="1" maxOccurs="unbound"/>
• <xsd:element name="totalPrice“ type="xsd:integer"/>
• <xsd:element name=“discount“ type="xsd:integer"/>
• <xsd:element name=“discountedPrice“ type="xsd:integer"/>
• </xsd:sequence>
• <!– Other definitions ommitted -->
• </element>

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Conclusions

§ Introduction
§ Definitorial Background
§ Development Process for Software Product Lines
§ Service-Oriented Product Lines
§ Example
§ Conclusions

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Conclusions

§ Feature models and variability management models can be used for
Service-Oriented Product Lines as well

§ XML refinements allow practical solution to feature management

§ Focus on models leads to a high-level view

§ Promising
• If existing code base can be reused efficiently: focus on light SOPL process (only

define interfaces)

• Introduce Domain Specific Languages for domain modeling and SPL configuration,
allowing participation of end-users

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

Fin

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

Thanks for your attention!

ht
tp

://
w

w
w

.v
lb

a-
la

b.
de

/

© Copyright Arbeitsgruppe Wirtschaftsinformatik
Otto-von-Guericke Universität Magdeburg 2008

References

§ [1] J. Withey, “Investment analysis of software assets for product lines,”
Software Engineering Institute, Carnegie Mellon University, Technical
Report CMU/SEI-96-TR-10, 1996.

§ [2] N. M. Josuttis, SOA in Practice: The Art of Distributed System Design.
Sebastopol, California, USA: O’Reilly Media, Inc., 2007.

§ [3] M. C. Daconta, L. J. Obrst, and K. T. Smith, The Semantic Web: A Guide
to the Future of XML, Web Services, and Knowledge Management.
Indianapolis, Indiana, USA: Wiley Publishing, Inc., 2003.

§ [4] S. Apel, C. Kästner, and C. Lengauer, “Research challenges in the
tension between features and services,” Proceedings ICSE Workshop on
Systems Development in SOA Environments (SDSOA). New York, NY,
USA: ACM, 2008, pp. 53–58.

§ [5] S. Trujillo, D. Batory, and O. Diaz, “Feature refactoring a
multirepresentation program into a product line,” Proceedings of the 5th

international conference on Generative programming and component
engineering (GPCE). Portland, Oregon, USA: ACM, 2006, pp. 191– 200.

SOAPL 2008 | Sebastian Günther, Thorsten Berger | 9/17/2008

Imaging Services on the Grid as a
Product Line : Requirements and
Architecture

M. ACHER, Ph. COLLET, Ph. LAHIRE, J. Montagnat

Workshop SOAPLSOAPL 20082008
September 8th

Context : Services for the Grid

§ Grid
sharing data, algorithms
computation power, data-intensive

§ Workflows for the e-Science Grid
process chain, pipeline, data flow
reuse and compose (black) boxes

§ Implemented as Services

Requirements Overview

Composing Services on the Grid

§ How to deploy Grid Services ?
§ needs fine-grained information

§ Our position : a variability problem !

§ How to manage QoS (Quality of Service) ?
§ such as execution time, availability, reliability, etc. ?

§ To give information to ...
§ worflow engine , software architect, scheduler

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

From Service to Product Line (1)

Variability

Functional

QOS description

QOS computation

From Service to Product Line (2)

FunctionalFunctional QOSQOS

FunctionalFunctional QOSQOS

? ?

?

Functional Variability

extract: inputs

Magnetic
Resonance

Imaging

Functional description : example

Acquisition Model Acquisition Model
MRI = MRI T2

ResolutionResolution
Spatial Resolution

Dimension = 2D
color = B&W
Noise = none

Anatomic Structure = Anatomic Structure = brainbrain
Format = Format = DICOMDICOM

QOS Variability

How to caracterizecaracterize
How to measuremeasure
How to computecompute

Time
Cost
Security
Accuracy
Reliability

QOS description : example

QoS Property

Metric Dimension

Measurable

Unit

Value Type
Computation

Dynamic Output
accuracy

Comparable

Operator

<=

Conditions

Output

%

Numeric

Accuracy

good

Metric Metric
measurable = true
unit = %
comparable = true
type = numeric

DimensionDimension
accuracy = high
time = any
…

ComputationComputation
dynamic = true
rely_on = output
accuracy = good

Dimensions : time and space complexity, accuracy,
robustness, precision, specificity, sensibility

Interdependency between QOS and Computation of QoS :

Segmentation: refining classification

QoS depends on application domain :
goal of segmentation
body region
imaging protocol

“A particular segmentation may have high performance in
determining the volume of a tumor in the brain on an MRI
image,
... but may have low performance in segmenting a cancerous
mass from a mammography scan of a breast”

costly but precise
quick but uncertain
evaluation has a QoS too

Towards SPL: big picture

FunctionalFunctional
QOSQOS

Medical imaging

Acquisition Model Anatomic Structure

MRI

Resolution Format

DICOMSpatial Resolution

3D

Black&White

MRI T2

None

brain

Noise

FunctionalFunctional QOSQOS

Towards Service product line

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

Grid
workflow expert

+ + variabilityvariability

Behaviour + QOS

Service
Product

Line

registration
service

Service
Product

Line

segmentation
service

An MDE Approach

ApproachApproach
Model Driven Engineering (MDE)
Platform independent, abstraction
Model transformation and/or model composition

Equipping Service/Workflow with meta informationEquipping Service/Workflow with meta information
A common core (QOS & service metamodels)
Specific branches

Building the SPLBuilding the SPL
Describing a generic Domain-Specific service / workflow
Specifying composition protocol of one service

allow to address different workflow
includes also variability

An MDE Approach

==
eHealtheHealth
domain

Instance
of the SPL

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

…

Model abstraction of services

SelectionSelection

WorkflowWorkflow? ?
ServiceService

CompositionComposition

GRID Engine

DeploymentDeployment

script

PlatformPlatform
dependentdependent

transformation

Model-Driven Engineering

On-going Work

q QoS multi-views
q experts collaboration
q from end users to services

q How to infer a SPL ?

q Derivation process
q who for the reasoning process ?
q heuristics needed

q From Service to workflow

From Service to Workflow

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

01101010

10100111

00101010

00101010

101101

Grid
workflow expert

+ + variabilityvariability

Behaviour + QOS

Questions ?

Business Process Lines to developBusiness Process Lines to develop
ServiceService--Oriented Architectures throughOriented Architectures through
the Software Product Lines paradigmthe Software Product Lines paradigm

SOAPL 2008
Limerick, 8th September

SOAPL 2008
Limerick, 8th September

Business Process Lines to developBusiness Process Lines to develop
ServiceService--Oriented Architectures throughOriented Architectures through
the Software Product Lines paradigmthe Software Product Lines paradigm

Nicola Boffoli, Danilo Caivano, Daniela Castelluccia,
Fabrizio Maria Maggi, Giuseppe Visaggio

SERLAB - Department of Informatics
University of Bari - Italy

{boffoli, caivano, castelluccia, maggi, visaggio}@di.uniba.it

1

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

Outline

SPL + SOA
q Why?
q What?
q How?

Our proposal
q Business Process Line
q Decision Models
q Case Study

2DIB

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

SPL + SOA: Why?

Two common perspectives
q Software reuse

• implementing new software systems reusing
existing software resources rather than
developing the same software capabilities again

q Software flexibility
• allowing to adapt the systems to the different

customers of a whole market segment
– SPL focuses on the commonality and variability to build a

set of software products
– SOA allows to compose, orchestrate and maintain

solutions based on services, implementing business
processesDIB 3

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

SPL + SOA: What?

Our Proposal
q transferring peculiarities/advantages from SPL

to SOA

q build a SOA systems line suitable to customers
or market segments needs in a specific
application domain

DIB 4

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

SPL + SOA: How?

We start from a deep analysis of the
business processes identifying in them
commonality and variability typical of the
SPL paradigm

Business Process Line
+

Decision Models
DIB 5

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

Business Process Line (BPL)

A BPL realizes processes able to adapt
themselves to different customer needs
q Each process of a BPL can be then transformed

into the corresponding SOA system
• If the business processes are adaptable to the

customer needs
• then the generated SOA system, it will result in

its turn suitable to the specific customer
requirements

DIB 6

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

From SPL to BPL: Analogies and Tailoring …

SPL
q Collection, organization and systematic

refinement of the assets (invariant or variant)
q Automatic building of the products

• Product Configuration: through asset integration
procedures

• Product Specialization: through the specification
of the assets parametric part

DIB 7

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

… From SPL to BPL: Analogies and Tailoring

BPL
q Asset concept is referred to activities and work

definitions
q Product Configuration Ł Process Configuration

• the assets (activities and work definitions) can
be added to a basic business process in order to
configure the target business process

q Product Specialization Ł Process Specialization
• each asset of the target business process can be

specialized through attributes indicating specific
architectural characteristics to implement them

DIB 8

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

BPL Decision Models

Hypothesis: two kind of relations
1. between the business capabilities

(characterizing the customer needs) and the
suitable processes elements (that have to be
integrated in the target business process)

2. between the customer requirements and the
specific peculiarities of the processes
elements previously integrated in the target
process.

DIB 9

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

Decision Table Formalism

DIB 10

A decision table (DT) is divided in four quadrants:
conditions (Cond), conditional states (S), actions (Act) and
rules (x)
The table is defined so that each combination of conditions
and conditional states corresponds to a set of actions to
carry out.

- Compact overview
- Modular knowledge organization
- Evaluation of consistency,
completeness and redundancy

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

Configuring DT …

For each BPL a configuring DT is built in
order to select the variant assets
characteristic of the requested business
capabilities
q They have to be composed with the invariant

assets (integrated into a basic process) in
order to generate the target business process

DIB 11

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

… Configuring DT

q the CONDITION quadrant contains a set of business
capabilities, BCi i=1,...n

q the CONDITIONAL STATE quadrant contains the possible
values of each business capability [BCi]={bci1, bci2, …, bciq}

q the ACTION quadrant contains all the possible variant assets
{va1, va2, …, var} that can be added to the process
commonality

q the RULE quadrant relates each capabilities profile to the
corresponding variant assets to be added.

DIB 12

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

Specializing DT

For each asset, variant or invariant, a specializing DT
is built as follows

q the CONDITION quadrant contains a set of customer
requirements, CRj j=1,..,m, to specialize the parametric part
of the asset

q the CONDITIONAL STATE quadrant contains the possible
values of each requirement: [CRj]={crj1, crj2, …, crjt}

q the ACTION quadrant contains the parameters {p1, p2, …, ps}
and their values allowing to specialize the parametric part of
the asset

q the RULE quadrant relates each customer requirements values
set to the corresponding specializing parameters

DIB 13

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

Case Study …

Our proposal has been investigated in an
industrial case during the research project
“DAMA” (Data Archiving Management and
Acquisition)

q A specific part, Document Recognizing, is here
summarized

Invariant Part
q the process contains an OCR (Optical Character

Recognition) activity requiring a scanned Document
Image as input and produces a recognized Text
Document as output

DIB 14

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

… Case Study …

Configuring DT
q the table provides the following business

capabilities: Signature Extraction, Layout
Analysis and Image Extraction

DIB 15

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

… Case Study …

Scenario
q “The enterprise needs besides to elaborate and

archive typewriting and structured documents,
containing images and without signature”

DIB 16

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

… Case Study

DIB 17

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

Conclusion …

This work proposes to apply the good practices of
SPL to SOA, the authors introduce

q the concept of BPL in order to identify commonality and
variability of SOA systems at the process level

q two kind decision models supporting BPL activities
• Configuring Decision Model
• Specializing Decision Model

The case study DAMA is ongoing and encourages
further investigations in other applicative
domains in order to confirm and generalize the
preliminary results

DIB 18

Business Process Lines to develop Service-Oriented Architectures
through the Software Product Lines paradigm

… Conclusion

In order to support the application of the
proposal here presented, the authors are
developing two tools:
q the former aims to automate the decision

tables management (design and consulting)
q the latter is able to transform business process

models in executable workflows for SOA
systems

DIB 19

	Service-Oriented Architectures and Software Product Lines - Putting Both Together (SOAPL 2008)
	Description
	Audience

	Schedule

	Workshop Organizers

	Presentations
	Workshop on Service-
Oriented Architectures and
Software Product Lines -
Putting Both Together
(SOAPL 2008)
	Feature Based Design of Web Service
Transaction Compensations
	Combining Product Line Engineering
and Service Oriented Architecture in
Health Care Infrastructure Systems:
Experience Report
	Semantic Web Services-based
Reasoning in the Design of
Software Product Lines
	Service-Oriented Product Lines:
Towards a Development Process and
Feature Management Model for Web
Services
	Imaging Services on the Grid as a
Product Line : Requirements and
Architecture
	Business Process to Develop
Service-Oriented Architectures through
the Software Lines Paradigm

