
Reusing Off-the-Shelf Components to Develop
a Family of Applications in the C2 Architectural Style

Nenad Medvidovic and Richard N. Taylor

Department of Information and Computer Science
University of California, Irvine
Irvine, California 92697-3425

{neno,taylor}@ics.uci.edu

Abstract -- Reuse of large-grain software components offers
the potential for significant savings in application development
cost and time. Successful reuse of components and component
substitutability depends both on qualities of the components
reused as well as the software context in which the reuse is
attempted. Disciplined approaches to the structure and design
of software applications offers the potential of providing a hos-
pitable setting for such reuse. We present the results of a series
of exercises designed to determine how well “off-the-shelf”
constraint solvers could be reused in applications designed in
accordance with the C2 software architectural style. The exer-
cises involved the reuse of SkyBlue and Amulet’s one-way for-
mula constraint solver. We constructed numerous variations of
a single application (thus an application family). The paper
summarizes the style and presents the results from the exer-
cises. The exercises were successful in a variety of dimensions;
one conclusion is that the C2 style offers significant potential
for the development of application families and that wider tri-
als are warranted.1

Index Terms -- architectural styles, message-based architec-
tures, application families, graphical user interfaces (GUIs),
constraint management, component-based development.

I. Introduction
Software architecture research is directed at reducing

costs of developing applications and increasing the potential
for commonality between different members of a closely
related product family. One aspect of this research is devel-
opment of software architectural styles, canonical ways of
organizing the components in a product family [GS93,
PW92]. Typically, styles reflect and leverage key properties
of an application domain and recurring patterns of applica-
tion design within the domain. As such, they have the poten-
tial for providing structure for off-the-shelf (OTS)
component reuse.

However, all styles are not equally well equipped to sup-
port reuse. If a style is too restrictive, it will exclude the
world of legacy components. On the other hand, if the set of
style rules is too permissive, developers may be faced with
all of the well documented problems of reuse in general
[Kru92, Big94, GAO95, Sha95]. Therefore, achieving a bal-
ance, where the rules are strong enough to make reuse trac-

1. This material is based upon work sponsored by the Air Force Materiel
Command, Rome Laboratory, and the Advanced Research Projects Agency
under contract number F30602-94-C-0218. The content of the information
does not necessarily reflect the position or policy of the Government and no
official endorsement should be inferred.

table but broad enough to enable integration of OTS
components, is a key issue in formulating and adopting
architectural styles.

Our experience with C2, a component- and message-
based style for GUI software [TMA+95, TMA+96], indi-
cates that it provides such a balance. In a series of exercises,
we were able to integrate several OTS components of vari-
ous granularities into architectures that adhere to the rules of
C2. This paper focuses on a subset of these exercises, in
which we successfully integrated two externally developed
UI constraint solvers into a C2 architecture: SkyBlue
[San94] and Amulet’s one-way formula solver [MM95]. In
doing so, we were able to create several constraint mainte-
nance components in the C2 style, enabling the construction
of a large family of applications. We describe the details of
these exercises and the lessons we learned in the process.

The remainder of the paper is organized as follows:
Section II describes the rules and intended goals of C2. The
material in this section is condensed from a more detailed
exposition on the style, given in [TMA+96]. Section III pre-
sents a detailed overview of the architecture and implemen-
tation of KLAX, the application used as the basis for our
exercises. Section IV motivates the need for a constraint
manager in KLAX and describes the particular KLAX con-
straints we decided to maintain in an external constraint
solver. Section V discusses the design and implementation
issues encountered in integrating SkyBlue with the architec-
ture, while Section VI discusses replacing SkyBlue with
Amulet’s constraint manager. The library of KLAX compo-
nents created in the process of including SkyBlue and Amu-
let is described in Section VII. A discussion of several
instances of the KLAX application family built with the
components from the library is given in Section VIII.
Finally, our conclusions round out the paper.

II. Overview of C2
C2 is an architectural style designed to support the partic-

ular needs of applications that have a graphical user inter-
face aspect. The style supports a paradigm in which UI
components, such as dialogs, structured graphics models (of
various levels of abstraction), and, as this paper will show,
constraint managers, can more readily be reused. A variety
of other goals are potentially supported as well. These goals
include the ability to compose systems in which: compo-
nents may be written in different programming languages,
components may be running in a distributed, heterogeneous
environment without shared address spaces, architectures
may be changed dynamically, multiple users may be inter-
acting with the system, multiple toolkits may be employed,
multiple dialogs may be active, and multiple media types
may be involved.



The C2 style can be informally summarized as a network
of concurrent components hooked together by connectors,
i.e., message routing devices. Components and connectors
both have a defined top and bottom. The top of a component
may be connected to the bottom of a single connector and
the bottom of a component may be connected to the top of a
single connector. There is no bound on the number of com-
ponents or connectors that may be attached to a single con-
nector. When two connectors are attached to each other, it
must be from the bottom of one to the top of the other (see
Fig. 1).

Fig. 1. A sample C2 architecture. Jagged lines represent the parts of the ar-
chitecture not shown.

Each component has a top and bottom domain. The top
domain specifies the set of notifications to which a compo-
nent responds, and the set of requests that the component
emits up an architecture. The bottom domain specifies the
set of notifications that this component emits down an archi-
tecture and the set of requests to which it responds. All com-
munication between components is achieved by exchanging
messages. This requirement is suggested by the asynchro-
nous nature of component-based architectures, and, in par-
ticular, of applications that have a GUI aspect, where both
users and the application perform actions concurrently and
at arbitrary times and where various components in the
architecture must be notified of those actions. Message-
based communication is extensively used in distributed
environments for which this architectural style is suited.

Central to the architectural style is a principle of limited
visibility or substrate independence: a component within the
hierarchy can only be aware of components “above” it and is
completely unaware of components which reside “beneath”
it. Notions of above and below are used in this paper to sup-
port an intuitive understanding of the architectural style. As
is typical with virtual machine diagrams found in operating
systems textbooks, in this discussion the application code is
(arbitrarily) regarded as being at the top while user interface
toolkits, windowing systems, and physical devices are at the
bottom. The human user is thus at the very bottom, interact-
ing with the physical devices of keyboard, mouse, micro-
phone, and so forth.

Substrate independence has a clear potential for fostering
substitutability and reusability of components across archi-
tectures. One issue that must be addressed, however, is the
apparent dependence of a given component on its “super-
strate,” i.e., the components above it. If each component is
built so that its top domain closely corresponds to the bot-

tom domains of those components with which it is specifi-
cally intended to interact in the given architecture, its
reusability value is greatly diminished and it can only be
substituted by components with similarly constrained top
domains. For that reason, the C2 style introduces the notion
of event translation. Domain translation is a transformation
of the requests issued by a component into the specific form
understood by the recipient of the request, as well as the
transformation of notifications received by a component into
a form it understands. The C2 design environment [RR96] is
intended, among other things, to provide support for accom-
plishing this task.

Fig. 2. The Internal Architecture of a C2 Component.

The internal architecture of a component shown in Fig. 2
is targeted to the user interface domain. While issues con-
cerning composition of an architecture are independent of a
component’s internal structure, for purposes of exposition
below, this internal architecture is assumed.

Each component may have its own thread(s) of control, a
property also suggested by the asynchronous nature of tasks
in the GUI domain. It simplifies modeling and programming
of multi-component, multi-user, and concurrent applications
and enables exploitation of distributed platforms. A pro-
posed conceptual architecture is distinct from an implemen-
tation architecture, so that it is indeed possible for
components to share threads of control.

Finally, there is no assumption of a shared address space
among components. Any premise of a shared address space
would be unreasonable in an architectural style that allows
composition of heterogeneous, highly distributed compo-
nents, developed in different languages, with their own
threads of control, internal structures, and domains of dis-
course.

III. Overview of KLAX
The architecture into which SkyBlue and Amulet were

integrated is a version of the video game KLAX. A descrip-
tion of the game is given in Fig. 3. This particular applica-
tion was chosen as a useful test of the C2 style concepts in
that the game is based on common computer science data
structures and the game layout maps naturally to modular
artists. Also, the game play imposes some real-time con-
straints on the application, bringing performance issues to
the forefront.

C C C

C C

C C C

C

Component

Legend:

Connector

Communication
Link

Internal

Object

Wrapper

Dialog
&

Constraints

Domain
Translator

R
eq

ue
st

s

N
ot

ifi
ca

ti
on

s



Fig. 3. A screenshot and description of our implementation of the KLAX
video game.

The architecture of the system is depicted in Fig. 4. The
components that make up the KLAX game can be divided
into three logical groups. At the top of the architecture are
the components which encapsulate the game’s state. These
components are placed at the top since game state is vital for
the functioning of the other two groups of components. The
game state components receive no notifications, but respond
to requests and emit notifications of internal state changes.
Notifications are directed to the next level, where they are
received by both the game logic components and the artist
components.

The game logic components request changes of game
state in accordance with game rules and interpret game state
change notifications to determine the state of the game in
progress. For example, if a tile is dropped from the well,
RelativePositioningLogic determines if the palette is in a
position to catch the tile. If so, a request is sent to Pal-
etteADT to catch the tile. Otherwise, a notification is sent
that a tile has been dropped. This notification is detected by
StatusLogic, causing the number of lives to be decremented.

The artist components also receive notifications of game
state changes, causing them to update their depictions. Each
artist maintains the state of a set of abstract graphical objects
which, when modified, send state change notifications in
hope that a lower-level graphics component will render
them. TileArtist provides a flexible presentation for tiles.
Artists maintain information about the placement of abstract
tile objects. TileArtist intercepts any notifications about tile
objects and recasts them to notifications about more con-
crete drawable objects. For example, a “Tile-Created” notifi-
cation might be translated into a “Rectangle-Created”
notification. The LayoutManager component receives all
notifications from the artists and offsets any coordinates to
ensure that the game elements are drawn in the correct jux-
taposition.

The GraphicsBinding component receives all notifica-
tions about the state of the artists’ graphical objects and
translates them into calls to a window system. User events,
such as a key press, are translated into requests to the artist
components.

Fig. 4. Conceptual C2 architecture for KLAX.

The KLAX architecture is intended to support a family of
“falling-tile” games. The components were designed as
reusable building blocks to support different game varia-
tions. One such variation is described in [TMA+96].

To support the implementation of the KLAX architecture,
a C++ framework consisting of classes for C2 concepts such
as components, connectors, and messages was developed.
The size of this reusable framework is approximately 3100
commented lines of C++ code and it supports a variety of
implementations, discussed in [TMA+96], for a single con-
ceptual architecture. This framework is also useful since it
allowed us to integrate the Xlib toolkit [SG87], by wrapping
it to become the C2 GraphicsBinding component. The
KLAX implementation built using the framework consists
of approximately 8100 additional lines of commented C++
code.

Performance of the implementations was good on a Sun
Sparc2 workstation, easily exceeding human reaction time if
the ClockLogic component was set to use short time inter-
vals. Although we have not yet tried to optimize perfor-
mance, benchmarks indicated our current framework can
send 1200 simple messages per second when sending and
receiving components are in the same process. In the KLAX
system, a keystroke typically caused 10 to 30 message
sends, and a tick of the clock typically caused 3 to 20.

IV. KLAX Constraints
In its form as described above, KLAX does not necessar-

ily need a constraint solver. Its constraint management needs
would certainly not exploit the full power of a solver such as
SkyBlue, e.g., handling constraint hierarchies. On the other
hand, we think it should be possible to use a powerful con-
straint manager for maintaining a small number of simple
constraints. Additionally, the main purpose of this effort was
to explore the architectural issues in integrating OTS com-
ponents into a C2 architecture. We therefore opted not to
unnecessarily expend resources to artificially create a situa-
tion where a number of complex constraints needed to be
managed. Instead, we decided to integrate SkyBlue with
KLAX in its present form. If we were unable to do so, there
would be at least three possible sources of problems: (1) the

KLAX Chute
Tiles of random colors

KLAX Palette
Palette catches tiles coming
down the Chute and drops
them into the Well.

KLAX Well
Horizontal, vertical, and

drop at random times

diagonal sets of three or
more consecutive tiles of
the same color are removed
and any tiles above them
collapse down to fill in the
newly-created empty spaces.

and locations.

KLAX Status

Clock
Logic

Status
Logic

Tile
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Layout
Manager

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT



C2 style, (2) the KLAX architecture, and (3) SkyBlue. In
any case, we would learn a useful lesson.

We defined the following 4 constraints for management
by SkyBlue:
• Palette Boundary: The palette cannot move beyond the

chute and well’s left and right boundaries.
• Palette Location: Palette’s coordinates are a function of

its location and are updated every time the location
changes.2

• Tile Location: The tiles which are on the palette move
with the palette. In other words, the x coordinate of the
center of the tile always equals the x coordinate of the
center of the palette.

• Resizing: Each game element (chute, well, palette, and
tiles), is maintained in an abstract coordinate system by its
artist. This constraint transforms those abstract coordinate
systems, resizing the game elements to have the relative
dimensions depicted in Fig. 3 before they are rendered on
the screen. This constraint would be essential in a case
where the application is composed from preexisting com-
ponents supplied by different vendors. A similar con-
straint could also be used to accommodate resizing of the
game window, and hence of the game elements within it.

V. Integrating SkyBlue with KLAX
The four constraints were defined based on the needs of

the overall application. Further thought was still needed to
decide the location of the constraint manager in the KLAX
architecture. There clearly were several possibilities. One
solution would have been to include SkyBlue within the
appropriate components for the Palette Boundary, Palette
Location, and Tile Location constraints, since they are local
constraints. The Resizing constraint pertains to several game
elements, and would thus belong in a separate component.

Fig. 5. The SkyBlue constraint management system is incorporated into
KLAX by placing it inside the LayoutManager component. LayoutMan-
ager’s dialog handles all the C2 message traffic.

We initially opted for another solution: define all four
constraints in a centralized constraint manager component.
The LayoutManager component was intended to serve as a
constraint manager in the original design of KLAX shown
in Fig. 4. However, in the initial implementation, the con-
straints were solved with in-line code locally in PaletteADT
and PaletteArtist and the sole purpose of LayoutManager
was to properly line up game elements on the screen. The
implemented version of LayoutManager also placed the bur-

2. Location is an integer between 1 and 5.

den of ensuring that the game elements have the same rela-
tive dimensions on the developers of the PaletteArtist,
ChuteArtist, and WellArtist components. Incorporating con-
straint management functionality into LayoutManager
therefore rendered its implementation more faithful to its
original design.

The constraints were defined in the “dialog and con-
straints” part of the LayoutManager component (see Fig. 2),
while SkyBlue became the component’s internal object. As
such, SkyBlue has no knowledge of the architecture of
which it is now a part. It maintains the constraints, while all
the request and notification traffic is handled by LayoutMan-
ager’s dialog, as shown in Fig. 5. LayoutManager thus
became a constraint management component in the C2 style
that can be reused in other applications by only modifying
its dialog to include new constraints.3

PaletteADT, PaletteArtist, ChuteArtist, and WellArtist also
needed to be modified. Their local constraint management
code was removed. Furthermore, their dialogs and message
interfaces were expanded to notify LayoutManager of
changes in constraint variables and to handle requests from
LayoutManager to update them. Only 11 new messages
were added to handle this modification of the original appli-
cation and there was no perceptible performance degrada-
tion. The entire exercise was completed by one developer in
approximately 45 hours.

VI. Integrating Amulet with KLAX
C2 supports reuse through component-based develop-

ment, substrate independence, and domain translation.
These features also support component substitutability and
localization of change. We claim that, in general, two behav-
iorally equivalent components can always be substituted for
one another and that behavior preserving modifications to a
component’s implementation have no architecture-wide
effects [MORT96].

In the example discussed in the previous section, this
would mean that SkyBlue may be replaced with another
constraint manager by only having to modify the “dialog
and constraints” portion of LayoutManager to define con-
straints as required by the new solver. The set of messages in
LayoutManager’s interface and the rest of the KLAX archi-
tecture would remain unchanged.

To demonstrate this claim, we substituted SkyBlue with
Amulet’s one-way formula constraint solver. This exercise
required extracting and recompiling the needed portion of
Amulet.4 Once the solver was extracted from the rest of
Amulet, it was successfully substituted for SkyBlue and
tested by one developer in 75 minutes. As anticipated, no
architecture-wide changes were needed. The look-and-feel
of the application remained unchanged. There was again no
performance degradation.5

3. In the remainder of the paper, when we state that a constraint solver is
“inside” or “internal to” a component, the internal architecture of the com-
ponent will resemble that of the LayoutManager from Fig. 5.
4. This may seem like unnecessary work. However, we were unable to
locate implementations of any other constraint solvers, which was the
deciding factor in our selection. Furthermore, the availability of Amulet’s
source code and its implementation language (C++) made it a good candi-
date for this project.
5. For the purpose of brevity, in the remainder of the paper Amulet’s one-
way formula constraint manager will be referred to simply as “Amulet.”

SkyBlueDialog

Tile
Artist

Graphics
Binding

Layout
Manager

...



VII. KLAX Component Library
Integrating SkyBlue and Amulet with KLAX provided an

opportunity for building multiple versions of PaletteADT,
PaletteArtist, and LayoutManager components. The two
integrations described above resulted in three versions of
LayoutManager: the original, SkyBlue, and Amulet ver-
sions. These are listed as LayoutManager versions 1, 2, and
3 in Table 1. Two versions each of PaletteADT, PaletteArtist,
ChuteArtist, and WellArtist were created as well: original
components maintaining local constraints with in-line code
(versions 1 of the four components in Table 1) and compo-
nents whose constraints were managed elsewhere in the
architecture (versions 2 of the four components in Table 1).6

The two initial integrations also suggested other varia-
tions of these components, such as replacing in-line con-
straint management code with SkyBlue and Amulet
constraints in PaletteADT and PaletteArtist (see Footnote 3).
Also, a version of LayoutManager was implemented that
maintained only the Resizing constraint, in anticipation that
other components will internally manage their local con-
straints (this scenario was briefly described at the beginning
of Section V). This resulted in a total of 18 implemented
versions of the five components, as depicted in Table 1.

VIII. Building a Program Family
The four versions of PaletteADT and PaletteArtist, two

versions of ChuteArtist and WellArtist, and six versions of
LayoutManager, described in Table 1, could potentially be
used to build 384 different variations of the KLAX architec-

6. In the rest of the paper, a particular component version will be depicted
by the component name followed by version number (e.g., PaletteADT-2).

ture. Three such variations were described in Section III
(using versions 1 of all five components), Section V (using
versions 2 of the five components), and Section VI (replac-
ing LayoutManager-2 with LayoutManager-3 in the archi-
tecture from Section V). In this section, we discuss several
additional implemented variations of the architecture that
exhibit interesting properties.

VIII.A. Multiple Instances of a Constraint Manager
In the architecture depicted in Table 2, the Palette Bound-

ary, Palette Location, and Tile Location constraints are
defined and maintained in SkyBlue inside PaletteADT and
PaletteArtist, while the Resizing constraints are maintained
globally by LayoutManager. Therefore, multiple instances
of SkyBlue maintain the constraints in different KLAX
components.

VIII.B. Partial Communication and Service Utilization
Particularly interesting are components that are used in an

architecture for which they have not been specifically
designed, i.e., they can do more or less than they are asked
to do. This is an issue of reuse: if we build components a
certain way, are their users (designers) always obliged to use
them “fully”; furthermore, can meaningful work be done in
an architecture if two components communicate only par-
tially, i.e., certain messages are lost? The architectures
described below represent a crossection of exercises con-
ducted to better our understanding of partial communication
and partial component service utilization.
• A variation of the original architecture was implemented

by substituting LayoutManager-2 into the original archi-
tecture, as shown in Table 3. LayoutManager-2’s func-
tionality remains largely unused as no notifications are
sent to it to maintain the constraints. The application still
behaves as expected and there is no performance penalty.
Note that this will not always be the case: if LayoutMan-
ager-2 was substantially larger than LayoutManager-1 or
had much greater system resource needs (e.g., its own
operating system process), the performance would be
affected.

Table 1: Implemented Versions of PaletteADT, PaletteArtist,
ChuteArtist, WellArtist, and LayoutManager KLAX Components

Version
Number

Constraints
Maintained

Constraint
Managers

P
al

et
te

A
D

T

1 Palette Boundary In-Line Code

2 None None

3 Palette Boundary SkyBlue

4 Palette Boundary Amulet

P
al

et
te

A
rt

is
t

1 Palette Location
Tile Location

Tile Size

In-Line Code

2 None None

3 Palette Location
Tile Location

SkyBlue

4 Palette Location
Tile Location

Amulet

C
hu

te
A

rt
is

t 1 Chute Size In-Line Code

2 None None

W
el

l
A

rt
is

t 1 Well Size In-Line Code

2 None None

L
ay

ou
t

M
an

ag
er

1 None None

2 All SkyBlue

3 All Amulet

4 Resizing SkyBlue

5 Resizing Amulet

6 All SkyBlue & Amulet

Table 2: Multiple Instances of SkyBlue

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 3 Palette Location
Tile Location

SkyBlue

ChuteArtist 2 None None

WellArtist 2 None None

LayoutManager 4 Resizing SkyBlue

Table 3: None of LayoutManager’s Constraint Management
Functionality is Utilized

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 1 Palette Boundary In-Line Code

PaletteArtist 1 Palette Location
Tile Location
Palette Size

In-Line Code

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 2 All SkyBlue



• Another architecture that was built is shown in Table 4.
This exercise was intended to explore heterogeneous
approaches to constraint maintenance in a single architec-
ture: some components in the architecture maintain their
constraints with in-line code (WellArtist and ChuteArtist),
others maintain them internally using SkyBlue (Pal-
etteADT), while PaletteArtist’s constraints are maintained
by an external constraint manager. LayoutManager-2 is
still partially utilized, but a larger subset of its services is
used than in the preceding architecture.

• In the architecture shown in Table 5, PaletteADT expects
that some other component will maintain the Palette
Boundary constraint. However, LayoutManager-1 does
not understand and therefore ignores the notifications sent
by PaletteADT (partial communication). Movement of the
palette is thereby not constrained and the application
behaves erroneously: the palette disappears when moved
beyond its right boundary; the execution aborts when the
palette moves beyond the left boundary and the Graphics-
Binding component (see Section III) attempts to render it
at negative screen coordinates.

The above examples seem to imply that partial service
utilization generally has no ill effects on a system, while
partial communication does. This is not always the case. For
example, an additional version of each component from the
original architecture was built to enable testing of the appli-
cation. These components would generate notifications that
were needed by both components below them in the archi-
tecture and the testing harness. If a “testing” component was
inserted into the original architecture, all of its testing-
related messages would be ignored by components below it,
resulting in partial communication, yet the application
would still behave as expected.

VIII.C. Multiple Constraint Managers in a Single
Component

LayoutManager-6 had some of its constraints defined in
SkyBlue and others in Amulet. Combining multiple con-
straint solvers in a single system has only recently been

identified as a potentially useful approach to constraint man-
agement [San94, MM95]. Integrating multiple constraint
solvers in a single C2 component is certainly at a different
level of granularity. However, this exercise sensitized us to
several issues intrinsic to the interaction of heterogeneous
constraint managers.

Specifying constraints in different solvers over disjoint
sets of variables is a trivial task, since there are no depen-
dencies between the solvers. On the other hand, if the two
sets of constraint variables intersect, the problem is more
complex. In our case, constraint variables in SkyBlue and
Amulet are of different types, so that the same variable can-
not be used in constraints specified in both solvers. There-
fore, each conceptually common variable is implemented by
two actual variables (var_SkyBlue and var_Amulet). Fur-
thermore, additional functionality is needed to monitor the
changes in the variables and programmatically update one
when the other is changed due to constraint enforcement
(see Fig. 6).

Fig. 6. To provide consistent constraint maintenance across constraint solv-
ers, each conceptually common constraint variable (CV) is implemented
with two actual variables. Changes in one are automatically reflected in the
other.

For example, in LayoutManager-6, Palette Boundary, Tile
Location, and Resizing constraints are defined in SkyBlue,
while Palette Location is specified in Amulet. Every time
location_SkyBlue changes, its new value is assigned to
location_Amulet so that Amulet can properly update the
paletteX_Amulet variable. To propagate its change through
the rest of SkyBlue variables, paletteX_Amulet’s new value
is copied into paletteX_SkyBlue.

Our solution to defining SkyBlue and Amulet constraints
over overlapping sets of variables, although effective, was
not particularly elegant. It had the feel of programming
one’s own application-specific constraint management func-
tionality. While the purpose of the exercise was to investi-
gate issues pertinent to software architectures and
application families, this problem has broader ramifications.
A scenario where both a powerful but complex solver and a
simple one are needed in an application is likely. Therefore,
we consider the problem of multiple interacting constraint
managers an open research issue that requires careful exam-
ination. We are currently exploring what role an architec-
tural style, such as C2, may play in its resolution.

VIII.D. Multiple Constraint Managers in an
Architecture

An issue related to using multiple constraint managers
inside a single component is using multiple constraint man-
agers in different components, but in a single architecture.
Such an architecture was built using components shown in
Table 6. In this architecture, Palette Boundary and Resizing
constraints are maintained by SkyBlue, and Palette Location
and Tile Location by Amulet. Since the sets of constraint

Table 4: LayoutManager’s Constraint Management Functionality is
Only Partially Utilized

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 2 None None

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 2 All SkyBlue

Table 5: Palette Boundary Constraint is not Maintained

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 2 None None

PaletteArtist 1 Palette Location
Tile Location
Palette Size

In-Line Code

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 1 None None

B C

X

CV1

CV2

CV2CV1

A Solver-1 Solver 2



variables managed by the two solvers are disjoint, there are
no interdependencies of the kind discussed in the previous
example between SkyBlue and Amulet. Hence, this modifi-
cation to the architecture was a simple one.

IX. Conclusion
The full potential of component-based software architec-

tural styles cannot be realized unless reusing code developed
by others becomes a common practice. A new architectural
style can become a standard in its domain only if it makes
reuse easier. We believe that C2 is such a style for GUI soft-
ware.

The series of exercises described in this paper demon-
strate that C2 isolates changes inside components and limits
any global effects of those changes through message-based
communication. Furthermore, C2’s principles of substrate
independence and domain translation [TMA+96] enable
component substitutability. Finally, its component- and mes-
sage-based nature allows partial communication and service
utilization of components, which are essential to cost-effec-
tive reuse.

In a component-based style, such as C2, the number of
possible architectures grows combinatorially as the number
of behaviorally related components increases.7 Thus, the 18
components depicted in Table 1 can generate 384 distinct
versions of KLAX. Of course, every possible architecture is
neither meaningful (e.g., the example of partial communica-
tion in Section VIII.B) nor particularly interesting. This
exercise fulfilled its purpose nonetheless, since it demon-
strated the ease with which a library of components and an
application family in the C2 style may be created.

Finally, we now have a constraint management compo-
nent in the C2 style that will be reused across future applica-
tions. Beyond this immediate benefit, integrating SkyBlue
and Amulet with KLAX has taught us an invaluable lesson
on the intricacies of incorporating OTS components into C2
architectures. We will build upon this experience in our
exploration of other facets of C2.

X. Acknowledgements
We would like to acknowledge the members of the C2

research group for their contribution on various aspects of
C2. We also wish to thank the developers of SkyBlue and
Amulet for providing the source code to their systems and
adequate documentation to ease our usage of them.

7. In [MORT96] we demonstrate how such components, e.g., the different
versions of the LayoutManager, comprise a type hierarchy.

XI. References
[Big94] T. J. Biggerstaff. The Library Scaling Problem and

the Limits of Concrete Component Reuse. IEEE
International Conference on Software Reuse,
November 1994.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom.
Architectural Mismatch, or, Why It’s Hard to Build
Systems out of Existing Parts. In Proceedings of
the 17th International Conference on Software
Engineering, Seattle, WA, April 1995.

[GS93] D. Garlan and M. Shaw. An Introduction to
Software Architecture: Advances in Software
Engineering and Knowledge Engineering, volume
I. World Scientific Publishing, 1993.

[Kru92] C. W. Krueger. Software Reuse. ACM Computing
Surveys, pages 131-183, June 1992.

[MM95] R. McDaniel and B. A. Myers. Amulet’s Dynamic
and Flexible Prototype-Instance Object and
Constraint System in C++. Technical Report,
CMU-CS-95-176, Carnegie Mellon University,
Pittsburgh, PA, July 1995.

[MORT96] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N.
Taylor. Using object-oriented typing to support
architectural design in the C2 style. In Proceedings
of ACM SIGSOFT’96: Fourth Symposium on the
Foundations of Software Engineering (FSE4), San
Francisco, CA, October 1996.

[PW92] D. E. Perry and A. L. Wolf. Foundations for the
Study of Software Architectures. ACM SIGSOFT
Software Engineering Notes, pages 40-52, October
1992.

[RR96] J. E. Robbins and D. Redmiles. Software
architecture design from the perspective of human
cognitive needs. In Proceedings of the California
Software Symposium (CSS’96), Los Angeles, CA,
USA, April 1996.

[San94] M. Sannella. SkyBlue: A Multi-Way Local
Propagation Constraint Solver for User Interface
Construction. In Proceedings of the Seventh
Annual ACM Symposium on User Interface
Software and Technology, Marina del Ray, CA,
November 1994, pages 137-146.

[SG87] R. W. Scheifler and J. Gettys. The X Window
System. ACM Transactions on Graphics, June
1987.

[Sha95] M. Shaw. Architectural Issues in Software Reuse:
It’s Not Just the Functionality, It’s the Packaging.
In Proceedings of IEEE Symposium on Software
Reusability, April 1995.

[TMA+95] R. N. Taylor, N. Medvidovic, K. M. Anderson, E.
J. Whitehead, Jr., and J. E. Robbins. A Component-
and Message-Based Architectural Style for GUI
Software. In Proceedings of the 17th International
Conference on Software Engineering (ICSE 17),
Seattle, WA, April 1995, pages 295-304.

[TMA+96] R. N. Taylor, N. Medvidovic, K. M. Anderson, E.
J. Whitehead, Jr., J. E. Robbins, K. A. Nies, P.
Oreizy, and D. L. Dubrow. A Component- and
Message-Based Architectural Style for GUI
Software. IEEE Transactions on Software
Engineering, pages 390-406, June 1996.

Table 6: Multiple Constraint Solvers

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 4 Palette Location
Tile Location

Amulet

ChuteArtist 2 None None

WellArtist 2 None None

LayoutManager 4 Resizing SkyBlue


