
International Workshop on
Development and Evolution of Software Architectures for Product Families

position paper

Configurable Software Modules
for Families of PLC-based Systems

Flavio Bonfatti 1, Gianni Gadda 2, Paola Daniela Monari 1

1 Department of Engineering Sciences, University of Modena
via Campi 213/B, 41100 Modena (Italy)

tel +39 59 378514 fax +39 59 378515 email bonfatti@unimo.it

2 DemoCenter scrl
viale Virgilio 55, 41100 Modena (Italy)

tel +39 59 848810 fax +39 59 848630 email g.gadda@democenter.it

The market of automated systems based on Programmable Logic Controllers (PLCs) is
steadily growing and evolving towards higher levels of product customization. In
Europe, and particularly in Italy, most developers are small-medium specialized
enterprises (SMEs) which often apply sub-contracting. This means flexibility in facing a
market demand that changes rapidly in size and product types, but implies a number of
problems arising from uncompleteness and ambiguity of the exchanged information,
uneven quality levels, difficulties in taking advantage of previous experiences.

A PLC-based system is made of four main components: mechanical (carpentry, belts,
gears), electrical (power supply, engines, sensors), electronic (the control unit, other
computers) and software. The system design is split into two main phases: the structural
design, with the definition of mechanical and electrical components, and the control
design, with the definition of electronic and software components. The latter derives
requirements from the former: the system behaviour is decided by the electro-mechanical
project team who interprets customer requests.

Many difficulties arise from this situation. Since the two design phases are carried out by
project teams with different cultures, a common language is hard to define, so that
information lacks and misunderstandings frequently occur. Moreover, the two phases are
strictly sequential because of the subordinate role of the control team with respect to the
structural team, and this lengthens the design time. Finally, design errors and
incompletenesses deriving from the cited difficulties require a number of revisions and
iterations of the design process that increase production times and costs.

Further problems make design and realization of PLC-based plants particularly complex.
First, these are often one-of-a-kind systems, even though based on similar components.
Unless parametrized solution are identified, most of the control functions are developed
ex novo or substantially revised every time. Moreover, it happens that different

customers require similar systems, but employing different control units: thus, the same
control software must be generated and maintained in different languages. Finally,
because of the low level of PLC languages, heavy test sessions are required to assure the
needed system safety degree, in particular when sub-contractors are involved in the
project. Some design and development defects are detected only during the final test on
the field, with negative consequences on relations with the customer.

A significant enhancement of PLC software design and development practice is presently
under study. It adapts and integrates two techniques resulting from European Union
funded projects: the ESPRIT / CIME project 8224 - RUMS, and the ESPRIT / ESSI
project 10542 - EASIER. In short, the proposed approach:

• Provides the structural designer with a modelling tool coming from the RUMS
project, conceived to obtain a rule-based, compact and parametrized product
definition that relates functional and structural aspects. Similarities and peculiarities
of the different system versions are completely captured and represented according
to a proper family-based model.

• Provides the software designer with an object-oriented language, derived from
the EASIER project, that decomposes the plant control into parts at different
composition levels, and assigns to every part the description of its (possibly
parametrized) behaviour. This knowledge is expressed in form of declarations and
rules, easily readable by all the involved personnel and suitable to support
completeness and consistency controls.

The result is a control software package for the whole system family, adaptable to the
single version by setting the parameter configuration that identifies it.

Concerning software modularity, the proposed practice conceives the system control as
a set of weakly coupled software modules, each managing one of the system component
units. In other words, the resulting control structure should mirror the system physical
structure so as to substantially improve the reuse potential of its parts in other systems.
The control code of complex units is obtained by a specific composition method. Unit
interactions are expressed as synchronizations of unit behaviours, and rely on the
definition of proper interface variables and information exchange rules.

A bedded encapsulation mechanism explicitly relates the complex unit behaviour to that
of its components. The encapsulation approach relies on the following two basic rules:

• a software control module (no matter if simple or complex) is not allowed to
access variables of the modules operating at the same level or at higher levels;

• a complex control module is only allowed to access interface variables of its
direct components, that is, the modules operating at the immediate lower level.

These rules are mainly aimed at limiting and disciplining the use of global variables, as
they constitute the most dangerous obstacle to software reuse. The former rule
establishes that the single module has to be designed in such a way to be unaware of the
other (external) modules, including those interacting with it or using it as a component. If

this condition is not met, the module functionality results somehow dependent on the
context where it has been developed, and this could prevent from using it in different
contexts. The latter rule explains where and how the interactions and dependences
between the two components, and with the upper level control module, should be
expressed. Limiting the access to the modules at the immediate lower level prevents
these from missing the control of their own components.

Observe that this bedded encapsulation approach applies recursively to upper level
compound parts. This means that the simple control modules, the compound module and
those of upper level are all viewed as reusable software packages. Depending on which
of the system physical parts (either elementary or compound) are employed elsewhere,
the corresponding control module can be reused. Its interactions with the other parts of
the new plant will be a task of the higher level module including it.

The EASIER experience showed that an important step forward the introduction of a
better software engineering practice consists in coding once for all the controls of the
most common component units and the most frequent interactions between them. In fact,
although complex systems differ significantly from each other, they often share
combinations of a number of basic functional units. The ongoing work is carried out
within the ESPRIT / IiM project 22273 - AUTOMAT (Methodology and Set of Tools
for the Improvement of Machine Tool Automation). This project pursues the general
objectives recalled above, but focusing on a particular class of PLC-based systems: CNC
machine tools and flexible manufacturing systems. In spite of this restriction, the
composition mechanism of reusable modules is widely studied, taking also into account
the need of mapping in onto the IEC1131-3 standard languages.

