
1

Configurable Designs

Anssi Karhinen, Alexander Ran, Tapio Tallgren

Software Technology Laboratory
Nokia Research Center

5 November, 1996

Abstract: The main problem in developing software product families is how to
share effort and reuse parts of design and implementation while providing
variation of features and capabilities in the products. We discuss the mecha-
nisms that are commonly used to achieve reuse and sharing in product families.
The variance can be either ad hoc or predictable, and it can be managed either
by making separate designs for each variant, or in other extreme by designing a
single product that has the functionality of all the variants. Our analysis moti-
vates a need for a new mechanism to deal with ad hoc variation. We propose an
approach based on design configuration. It enables sufficiently detailed designs
for every variant and at the same time achieves a level of design reuse without
making designs unnecessarily complex or implementations inefficient.

1. Introduction
Companies must address the requirements of different market segments by making products with a
choice of functional features and capabilities. For example, national standards impose constraints on
product functionality and implementation, cultural differences and fashions add variation to user
interface design, and advances in technology require frequent migration of products to new imple-
mentation and integration platforms and environments.

Companies can reduce the development, maintenance, and support costs of similar products by shar-
ing effort and reusing parts between different products. To manage such sharing and reuse, related
products are organized into families or product lines. Software-intensive products present an espe-
cially promising target for family-based reuse since large part of the cost is in design and develop-
ment, and the manufacturing is inexpensive. The idea of software product families is at least twenty
years old [8]. In this paper we concentrate on software and use ‘product’ to mean the software of a
software-intensive product.

The main problem in developing software product families is how to achieve sharing of effort and
reuse of design and implementation while providing variation of features and capabilities in final
products. In this paper we discuss the mechanisms that have been used to manage variation in product
families and analyze when they should be used. This analysis motivates the need for a new method to
manage design and implementation reuse in product families with ad hoc variation of features of
variant products.

In the software products that we have studied, the main mechanism to manage variance has been
preprocessing (using compiler flags) and configuration management of program files. This has com-

2

plicated the implementation and made the programs hard to maintain. In some of the cases the situa-
tion could have been improved by creating higher-level abstractions and by using features of modern
programming languages. However, in many cases the nature of variance is such that it cannot be
modeled by higher-level constructs.

Software reuse in product families is often understood as sharing the program code used in variant
products. The difference in product features then is achieved by having variable parts of programs
included or excluded based on some condition. To control inclusion and exclusion of variable program
segments developers use conditional compilation, configuration parameter files, and support of con-
figuration management tools. Unfortunately these mechanisms do not scale well due to non-local
dependencies between variable parts of the programs.

Examining programs whose configuration is determined by hundreds of interdependent conditions we
often felt that the problems are due to inferior design choices, lack of abstraction, and limitations of
old programming language technology. This is partly true. However, often variation of features across
a program family is such that introduction of abstractions that would allow treating variant programs
uniformly does not simplify the design but makes it more complex and unnecessary constraints the
implementation.

For example a company that starts to produce GSM mobile phones should pay attention to other
TDMA standards such as DECT, PDC (used in Japan), and IS-54 TDMA (in USA). If the developers
can structure the software so that the standard-specific parts are separate from the standards-
independent parts, and can introduce protocol abstractions to treat uniformly the standard-specific
parts, then much effort can be saved later when the company starts to produce phones for the other
TDMA standards.

However, a company that was producing mobile telephones for analog standards (AMPS or NMT)
before the emergence of digital mobile communication could not have predicted the effect of digital
standards on the structure of the software. This is an example of ad hoc variation on large scale. Ad
hoc variation is often present on a finer scale as well. For example, application-specific integrated
circuits (ASIC) of similar functionality may have very different interfaces. If the members of the
product family use different ASICs, the software must adapt to this variability.

Attempts to deal with ad hoc variation of features using by looking for abstractions that allow to treat
variants uniformly lead to unnecessary complex designs and inefficient implementations. On the other
hand implementation configuration while avoiding artificial abstraction of unstructured or unpredict-
able variation fails to utilize design as a tool for managing complexity. In this paper we argue that ad
hoc feature variation in a product family is best addressed by design configuration an approach similar
to implementation configuration but applied to software designs.

We will next discuss the methods that are used to manage variance in product families, with exam-
ples. We start with the most common, implementation configuration, which relays on a single design
and deals with variance on the implementation level. We will then cover customization and modulari-
zation, which both attempt to model variance. The shortcomings of these methods motivates the need
for a mechanism to manage on the design level variance that cannot easily be modeled. We propose
configurable designs as a solution, and present a method, overlay designs, to facilitate in configuring
designs.

2. Implementation Configuration
Program text manipulation through conditional compilation and source code configuration manage-
ment is the most common way to achieve sharing and reuse of software between different products.
Product families are often created so that one variant in the product family is first designed and
implemented completely. When different functionality is needed, the implementation of the first
variant is modified where necessary to match the new requirements, either by using conditional
compilation or by creating a new program file. The first variant serves as a prototype that always is
modified first in case of improvements or bug fixes. The changes are then propagated manually to
other variants in the family.

3

In this case, all variants in the product family have the same design. In general, we use the term
implementation configuration when there is only one design for all products in the family that does
not reflect the differences between variant products. Such a design may be relatively simple. However,
when variance constitutes a major source of complexity in product development, design that does not
reflect the variance does not serve the main purpose of design -- managing complexity. As the number
of products in the family grows, managing variation through configuration on the implementation
level becomes very complex.

Implementation configuration is often done using source code configuration management. This
requires that variance is mapped to different variants of the source files. However, using complete
source files to manage variance can lead to granularity mismatches as we will show in an example.

Source file preprocessing achieves smaller granularity of variance. Most programming systems today
contain preprocessing facilities that allow conditional compilation and macro definitions. When
software implementation is shared by several products that require non-trivial variation of features,
configuring the implementation to match the features accounts for much of the implementation
complexity. The mapping between the elements of product variability onto the elements of software
implementation variability may be very complex. This leads to two types of problems:

1. Product configuration for delivery requires thorough knowledge of the implementation.

2. Information is replicated and non-local dependencies exist in the implementation.

We demonstrate some of the problems associated with using implementation configuration for
achieving feature variation and code reuse in the second example of this section.

2.1 Configuration at the file level
The first example is about implementing the communications protocols that a telephone switch must
support. The protocols are usually standardized but in many cases there are national or customer
specific variations. The variance in protocols is mainly in the message parameters. The fields
(parameters) in a specific message can have slightly different semantics. The implementation of the
protocol must receive different messages and interpret the contents of the fields in the messages. It
must also check that the values in the fields are valid. The protocol implementation works also in the
opposite direction: it must pack information to the fields in the messages and send them outside of the
switching center.

The variance in the fields of messages could be managed by implementing message unpacking and
packing with two procedures for each field type. Each pack/unpack procedure pair might occupy a
single source file. The variance in a field can be managed by making variants from the source file that
contains the pack/unpack procedures for that field. Thus the source files can be managed by a con-
ventional version control system.

The representation of different types of values in the message fields can be quite complicated. Often
there are many semantic constraints on the allowable values that the implementation must check. The
packing and unpacking procedures can be about 500 lines of code together.

This approach would work well when the different procedures are very different from each other.
However, if the variance is very subtle, the unit of variance is much smaller than a source file con-
taining two procedures. Thus there would be a severe mismatch in the granularity of variance man-
agement and the actual variance.

2.2 Configuration by preprocessing
The example below is adapted from a real product. It shows part of a program to fill the fields in the
‘setup’ message of the Signaling System 7 protocol (see [6]), the trunk line signaling that the switch-
ing centers use to communicate to each other. There are ten national variants of the SS7 signaling
protocol that the switch must handle. In this example some of the SS7 functionality that is present in
some variants is made optional by using conditional compilation.

4

The programming language in this example is an executable variant of SDL, the IEEE standard
System Definition Language (see [3]). The procedural parts of the language are similar to Ada, Pascal
or Modula-2.

There are three compiler flags for different optional properties of SS7 signaling and one flag that is
used to adapt the procedure to different system environments (m7). The flags are sub for subad-
dressing in the network, uus for user-to-user signaling and tran for transit facility. Note how the
uus flag is used in many places.

This kind of configuration makes it very hard to recognize and understand the different dependencies
in the program. The code becomes more difficult to read and this complicates desktop testing and
code reviews. In unit testing, the module must be compiled with all possible compiler flag combina-
tions to make sure that it behaves as specified. Finally, since preprocessing does not follow the se-
mantics of the programming language, the compiler parameters cannot be tested independently of
each other.

Nevertheless, there is an important use for this kind of low level management of variability: software
products that must be able to compile and link in many different programming environments. These
products must be for example aware of defects and restrictions in certain compilers and environments.
This kind of variance is really variance at the program text level, which is exactly what pre-processing

is designed to do.

3. Customization and modularization
Managing family variance by customization means that all variants are supported by one “universal”
product that may be customized by the maker or by the customer to behave as any specific variant.
Hence customization enables one to change product capabilities, supported features, and modes of
operation. All possible components must be present in the delivered product, but the active set of
components is selected by customization procedures. The relationships between the various compo-
nents are fixed and thus the design is static. There is one design and one implementation that is
customized to achieve variation in its features and capabilities.

PROCEDURE pack_setup(
 IN/OUT ccsr_data sr_internal_data,
 IN/OUT opt_part optional_part,
);
DECLARE
#if (sub)
 facility_info facility_used_info,
#endif
#if (uus)
 utu_segments utu_segments,
#endif
 send_facility bool;
BEGIN
...
#if (m7)
#else
 TASK memset(
 @facility_info,
 0,
 SIZEOF(facility_used_info)
);
 TASK memset(
 @facility_info.subaddress_a,
 0xFF,
 SIZEOF(subaddress)
);
 TASK memset(
 @facility_info.subaddress_b,
 0xFF,
 SIZEOF(subaddress)
);
#endif

#if (tran)
 CALL pack_transit(opt_part);
#else
#endif
 CALL pack_lowlayer_comp(opt_part);
 CALL pack_highlayer_comp(opt_part);
#if (uus)
 DECISION ccsr_data.c1.utu_exist;
 (T):
 CALL pack_utu(
 opt_part,
 utu_segments
);
 ENDDECISION;
#else
#endif
 RETURN;
ENDPROCEDURE pack_setup;

5

Customization is often used because software engineers are trained to design single a single product
rather than a family of products. Also most design methods only address the design of a single prod-
uct. In some ways managing family variance by customization also makes the maintenance of the
family simpler, as there is only one design, one implementation, and one package to ship to the
customers. This also offers the best possibilities for reuse of common functionality in different variants
as these are localized to the same product. However, in practice the design and implementation of the
customizable product can be significantly more complex and costly than individual variants.

Providing family variation through customization is often an overkill. To produce a number of vari-
ants it is not necessary to design a universal machine in which all possible features and capabilities
must be integrated and coordinated. Designs could be made simpler if the reuse aspect of family
development were addressed by designing sets of reusable components and domain specific frame-
works. When variation in the application domain is well understood one can achieve significant reuse
between the variants in a product family through structuring the variation in design with reusable
components. While each variant has its own design, many components in their designs can be shared
between different variants.

When variance in the application domain is predictable, it can also be modeled on the design level.
High-level abstractions can then localize the variability. Modularization goes further than customiza-
tion in making the abstractions independent of each other. We will show in an example how creating
abstractions and then making them independent will make the design more flexible but also more
complex.

In modularization, variation is localized to structural elements of the design and variants are produced
by selecting an appropriate set of components. The shared part of the design (the family architecture)
is a framework that is further extended by selecting existing and specifying new components, and
establishing relationships between them. Both the choice of the components and their relations may
change from product to product.

Designing and developing a family architecture and generic components that may be shared by
different products in a family is a complex task. Furthermore, such product implementations often
require more run-time resources than simpler implementations of variant products.

3.1 Example of customization and modularization
Our example is the number analysis that a telephone switch performs. When a telephone user attempts
to make a call, he or she dials digits that the telephone switch analyzes to determine the destination of
the call. Since some destinations may be reached through several alternative routes, the switch will
have to select among them. A telephone call may be characterized by a number of attributes that are
used to select a possible route, such as whether the call is a voice or a data call, and the type of sig-
naling required by the calling party.

The switch maintains an array of destination records to implement call routing functionality. The
destination records list operator-selected routes to the destination. Each route may be characterized by
a number of attributes, such as congestion, availability, and bandwidth.

The attributes of the call and the attributes of the routes are used to make the routing decision. For
example, for calls with a minimum bandwidth requirement, such as data calls, the routes will be rated
based on the their bandwidth attribute. Also, since satellite links are slow, a voice call must be routed
so that it uses at most one satellite link.

6

In a telephone network, the range of variation in the capabilities of call routing subsystem is relatively
well known. A customizable product implements all possible variants and provides the user a cus-
tomization interface to select the active subset. For example, there could be four different route selec-
tion algorithms that the operator can select from. Each destination record would indicate which

algorithm is used with this desti-
nation. The operator uses a man-
agement interface to customize the
routing subsystem by changing the
information in the destination
records.

Let us consider the design in
Figure 1. It provides customiza-
tion of the selection algorithm: all
algorithms are always present and
the operator can select any of them
to be specified in a destination
record.

The classes are Call, Router,
different Selector subclasses for
different selection policies and a
Destination record class. The class
Selector is a generalization of the

classes Choose first and Choose randomly. This is indicated by the array with a hollow head. The
other arrows indicate navigability: an object at the other end of the arrow know about the object being
pointed at and can thus use it to provide services. The notation is the Unified Modeling Language [2].

A router object will look at a destination record table to find out the appropriate selector object for this
destination. Then it will ask the selector object to get a possible route for the call and destination pair.
The selector object will use the attributes of the call and the attributes of the routes from the destina-
tion record table. Different selectors implement different selection policies and use different attributes
to do that.

A design of a customizable call routing system would include all the different attributes needed to
cover the variability. Many components in the system depend on the attributes. The different selector
objects all use the attributes differently. To add a selection policy that uses a new attribute, the call or
destination record class will have to be changed. There is no way to extend the behavior of the selec-
tors incrementally because there are no abstractions on the attributes.

The modularization that is done in a customizable system is only targeted to handle the customization
process. It does not cover all variability in the domain. In our example the customizable feature was
the route selection policy. The lack of modularization makes any other changes hard.

To make the example modular, we model the variance in the call and destination attributes. We can
create new classes for call attributes and route attributes, and parametrize the selector destination
records and call objects with this type. This makes the call class into a second-order concept, a
parametrized class. To do that, we needed to abstract the notion of a call attribute. If we did not
already have such a concept, creating the second-order class would have been much harder.

Creating abstractions allowed us to localize all predictable variation in the example to design ele-
ments. Using customization for attribute variation would have led to a very large and slow imple-
mentation, while configuration would have left the variability to the implementation. Modular design
models all known variation; customization models only the variation which is visible in the product.
At the same time, modularization complicated the design by creating new high-level abstractions. In
many real-life cases the variance is ad hoc and there are no models for it. In those cases modulariza-
tion would either be impossible or at least be more difficult.

Route r

Route a t t r ibu tes
Se lec tor ins tance

Dest ina t ion record

Cal l a t t r ibutes

Cal l Se lec tor

Choose f i rs t Choose randomly

Figure 1: Routing subsystem design

7

4. Design configuration
We have studied several families of software-intensive telecommunications products, and in most of
them source-code configuration was the main method to achieve variation of features. This was not
adequate in a number of cases where support for variation was a major source of complexity. Since
variation was not handled by the designs, the complexity of the implementation led to serious prob-
lems in controlling the evolution of these product families. Also, the level of reuse in these systems
was very low which lead to high development and maintenance costs.

In some cases the situation could be improved by modular designs and customizable parts, using the
common mechanisms of indirection, deferred binding, parametrization, and higher order abstractions.
This would improve reuse and simplify implementation. However, the cost of design would grow and,
in many cases, implementation would be less efficient. Often this is not acceptable.

When feature variation between variant products is not systematic and cannot be predicted, or when
implementation must be optimized to minimize the use of hardware resources, a different approach is
needed.

We investigate a technique based on overlay designs. The idea may be illustrated with a metaphor of
overhead slides that may be stacked to create a composite image. Suppose you want to use a number of
slides that are similar in most parts and only differ in details. One way is to create the first slide
completely and then copy and modify its contents. This is fine as long as no changes need to be made
later in the shared part of the slides. This is rarely the case. A better approach would be to create the
shared part on one (master) transparency and use additional overlay transparencies to show the
variations.

The main idea of overlay design is to have a specific design for each variant without having to con-
sider family variation. The designs of variant products are compared for common and different parts.
The common part is separated as a shared overlay and the different parts are kept as variant overlays.
A complete design for a variant product is thus a simple combination of several overlays. This way we
achieve design reuse without introducing unnecessary complexity associated with reconciling and
abstracting differences between variants. Also the implementation is kept efficient because there is no
need to implement generic mechanisms. This is illustrated in Figure 2..

Ad hoc variation Predictable variation

Single
design

Customization

Indirection and deferred
binding

Implementation configuration

Preprocessing and configuration
management

Implementation
simplicity

↓
Multiple
designs

Modularization

Parametrization and sec-
ond-order abstractions

Design configuration

Overlay designs

Design simplicity,
implementation effi-
ciency

→

 Figure 2: Keeping design simple and implementation efficient

4.1 Design overlays
In the following example, we consider the design of a telephone switch implementing different call
control protocols. Call control connects the telephone calls going through the switch. It incorporates
variance that has traditionally been very hard to manage, and consequently the different call control
protocol designs and implementations have been separately developed and maintained.

8

In the example we will consider the ISDN, GSM, and ATM call control protocols (see [4], [5] and [1]
for these). ISDN is relatively complicated because it allows the user to either dial the whole number
before sending it to the switch or to dial the number digit by digit. The GSM protocol, in turn, is
complicated because it cannot trust the communication medium to be reliable. The ATM protocol is
the most simple one because the dialers are assumed to be computers or at least rather intelligent
telephones.

We use SDL state transition diagrams to depict the protocols, as it is a standard design notation for
telecommunication software. In the diagrams, the user (caller) is imagined to be on the left-hand side
and the connection network on the right-hand side. The protocols are somewhat simplified: The
diagrams will show only the call set-up part of the protocols, and we have dropped time-outs from
them.

4.1.1 Creating Design Overlays
We now present the design diagrams of the three call control protocols (Figure 3). Then we proceed to
identify the shared parts of the designs and generate design overlays to illustrate the common and
variant parts of the designs. There are three steps in generating design overlays.

The first is mapping the design elements in the different designs by identifying the common elements
in the diagrams and renaming them consistently. This task requires some domain expertise because
corresponding states and messages have dissimilar names in different protocols.

The second step is separation of the common elements from the original designs on a separate over-
lay. This yields a kind of template for the designs of variant protocols. The variant parts in each
protocol then make variant overlays. These are a kind of instantiation parameters or configurations for
the design template.

The third step is laying out the overlays so that the shared overlay can accommodate any of the
variant overlays. This way we achieve the visual effect of stacked overhead transparencies.

Null

Call initiated

Setup request

Setup

Call pro-
ceeding

Outgoing call
proceeding

Connect

Active

Connect

Null

CALL INIT

MNCC-
SETUP.REQ

DR(SETUP)

DI(CALL
PROC)

MO CALL
PROCEEDING

DI(CONN)

ACTIVE

MNCC-SETUP-
CNF

DR (CONN ACK)

MNCC-EST-
REQ

MM-CON-
NECTION-
PENDING

MNCC.EST.C
NF

MNCC-
CALL.PROC.IND

DI
(PROGRESS)

MNCC-
PROGRESS.IND

DI(ALERT)

CALL
DELIVERED

MNCC-
ALERT.IND

Null

Call initiated

Setup request

SETUP

Outgoing call
proceeding

CONNECT

Active

I N F O R M A T I O N

ALERTING

Call delivered

SETUP
ACKNOWLED

GEMENT

Proceeding
indication

Overlap
sending

Info request

More
information
indication

Alerting
indication

Setup confirm

CALL
PROCEEDING

Figure 3: ATM, GSM and ISDN Call Setup protocols before mapping.

A variant design is produced by applying the corresponding configuration to the design template.
Figure 4 shows variant designs for the three protocols produced in this way. The common elements
(states and messages) have been identified and renamed. The parts shaded in gray correspond to the
shared overlay. This is an illustration of how design overlays could support sharing of parts between
similar designs.

In this simple example we have only one shared and one variant overlay to produce a complete design.
However, since variant overlays are partial designs in their own right, the technique may be applied
recursively to factor shared parts of several variant overlays. Clearly, to make this approach practical,
tool support is needed for managing shared and variant overlays.

9

Null

Call initiated

Setup request

Setup

Call pro-
ceeding

Outgoing call
proceeding

Connect

Active

