
A Framework for Software Architecture Recovery

Wolfgang Eixelsberger
Lasse Warholm

ABB Corporate Research
Bergerveien 12

N-1361 Billingstad, Norway
+47 6684 3060

{wolfgang,lasse}@nocrc.abb.no

Rene Klösch
Harald Gall

Berndt Bellay
Technical University of Vienna

Distributed Systems Department
Argentinierstrasse 8/184-1
A-1040 Vienna, Austria

{gall,kloesch,bellay}@infosys.tuwien.ac.at

1. ABSTRACT

The recovery of „higher-level“ representations from
given source code of an existing software system is
important for the development of program families.
Therefore, we evaluated current reverse engineering
technology to which extent and how architectural
elements can be identified in a software system. The
architecture recovery framework we discuss in this paper
is ongoing research work within the ESPRIT project
ARES (Architectural Reasoning for Embedded Systems).
1

2. INTRODUCTION TO ARCHITECTURE
RECOVERY

2.1 Definition of software architecture and
architecture recovery

Software architecture is a relatively new research area
and, hence, no widely accepted definition exists. Software
architecture definitions in general contain three elements:
components, connectors and rationals, such as e.g. ‘The
structure of the components of a program/system, their
interrelationships, and principles and guidelines
governing their design and evolution over time.’ [1]

Since software architectures determine the gross structure
of a system, architectural representations enable software
developers to explicitly describe, assess, and manage
architectures of embedded software systems.

We define architecture recovery as a process of
identifying and extracting higher level abstractions from
existing software systems [2].

2.2 Architecture representation/properties

An architectural representation consists of structural and

1 ARES is supported by the European Commission under ESPRIT
framework IV contract no. 20477 and is pursued by Nokia RC Finland,
ABB Norway, Philips RC Holland, Imperial College, Technical University
Madrid, and Technical University of Vienna.

non-structural information about a software architecture.
Structural information are components and connectors
describing the configuration of a system and non-
structural information are architectural properties.
Architectural properties are for example, safety patterns,
communications patterns, or application domain
guidelines and constraints.

2.3 Related Approaches

In [3] an architecture modeling language is used to codify
specific architectural styles and a recognizer tools tries to
identify instances of such styles. The basic mechanism
used is program slicing as defined in [4]. In contrast to
these approaches we use commercially available reverse
engineering tools together with application domain
knowledge introduced by a human engineer to complete
the automatically recovered software views by manually
generated ones.

3. FRAMEWORK FOR ARCHITECTURE
RECOVERY

3.1 Introduction to the framework

In many cases, architectural information is available as
block-line diagrams. However, most architectural
information is inherent and hidden in different views as
source code or design documentation. The extraction of
architectural information from these different views,
therefore, is required in a structured manner.

Figure 1 sketches an overview of the proposed framework
for an architecture recovery methodology. The input of
the recovery process is the source code, the design
documentation, and domain knowledge.

Information from the source code can be extracted with
the help of reverse engineering tools and by manual
recovery. Reverse engineering tools perform static
analysis on the code and extract information like call
graphs, cross reference tables, and data flow diagrams.
Human interaction is not possible while the tools are
analyzing the source code.

ca ll g raphs

da ta flow

sta te m achines

source
code

functions

data structures

Abstraction

al
te

rn
at

in
g

to
p-

do
w

n
/ b

ot
to

m
-u

p
pr

oc
es

s
to

 c
on

fir
m

 a
rc

hi
te

ct
ur

e
hy

po
th

es
is

tool
generated

manually
generated

application specific
knowledge

domain knowledge

tab les /
repor ts

software views

e.g., ABB ATP e.g., safety critical systems

component

connector

Architectura l Properties

guidelines / constraints

architectural style

Application M odel

Figure 1: Framework for Architecture Recovery

Reverse engineering tools provide a higher level of
abstraction since information that is not of interest for the
specific view is excluded. The results of reverse
engineering tools have to be analyzed by human experts
and do not represent architectural representations per se.

Manual recovery is performed on the source code by
human experts. Human experts, especially domain
experts, can analyze the source code using knowledge
that is not available for reverse engineering tools. Such
knowledge includes information about domain
knowledge, high-level design decisions, coding standards
and system requirements.

The recovery of design documentation and domain
knowledge delivers additional information into already
existing abstractions such as data flow diagrams and
supports the generation of additional software views, for
example, state transition diagrams. The extracted
information still is not considered to be an architectural
representation of the system under study.

Based on our experience in object-oriented re-
architecturing, we determined the following strategy
towards architecture recovery:

1. Studying the application and domain-specific
knowledge (such as standards of the domain and
domain-specific rules and constraints)

2. Forming an architectural hypothesis regarding the
system and its structure

3. Verifying and refining the architectural hypothesis
against the software system under study.

4. Generating different software views of the examined
system.

5. Use of reverse engineering tools.

3.2 Evaluation of reverse engineering tools

In order to identify which software views can be
automatically generated and what tasks for the
architecture recovery can be done by tools several reverse
engineering tools were evaluated. The evaluation is based
on the reverse generated software views of a case study
from ABB and their usability for architecture recovery.
The capabilities of the reverse engineering tools were
assessed in providing means both for recovering
architectural elements and for generating higher-level
abstractions from given source code.

3.2.1 Difficulties with the case study

The difficulties with the case study resulted mainly from
three aspects which are typical for real-world
applications:

First, in real-world applications usually more than one
programming language is used. In the case study reported
in this paper C and Assembler were used. The reverse
engineering tools evaluated are not able to parse
Assembler code so only the C parts could be parsed and
studied. This results in incomplete views of the
application.

Furthermore, the C code contained externally defined
functions and variables which are defined and
instanciated in the assembler part. As a result some
reverse engineering tools did not include these variables
and functions in the generated reports. These variables
are a serious problem because they were used for the
main data flow in the application.

The case study was created for different development and
target environments and was reverse engineered on
another environment. This created some problems
parsing the C source code: To parse the C code with the

reverse engineering tools platform dependent parts of the
source code had to be supplied (e.g. header files) and
platform properties had to be taken into account (e.g. file
naming conventions, interrupt usage). Furthermore,
application specific knowledge was required to parse the
application in a useful way (e.g. versions of the
application). Macro definitions and additional files were
used to generate different versions of the application.

The generation of useful software views with the reverse
engineering tools also requires application specific and
domain knowledge. This mainly results from the size of
the application and different aspects of interest (e.g. error
routines that resulted in clustered graphical views).

3.2.2 Overview of the reverse engineering tools

The reverse engineering tools were chosen to represent a
wide spectrum of tools. The evaluated tools used on the
case study were:

• Refine/C (Reasoning Systems Inc.) is a reverse
engineering tool that is integrated in the
programmable and, hence, extensible reverse
engineering tool development environment Software
Refinery and provides only base capabilities.

• Imagix 4D (Imagix Corp.) is a reverse engineering
tool that can not be extended but provides a large set
of built-in facilities.

• Rigi (Rigi Research Project at the University of
Victoria) is a public domain reverse engineering tool
that provides standard reverse engineering
capabilities. It is also an open tool with respect to the
provided programming interface to the internal
representations of the source code parsing.

• Sniff+ (TakeFive Software) is a software development
environment for forward engineering which also
provides reverse engineering capabilities.

3.2.3 Evaluation Results

The results of the evaluation show that the reverse
engineering tools evaluated in this case study do not
provide the same functionality. In fact they provide very
different capabilities. The best example are the software
views that differ widely from tool to tool not only in their
representation but also in depth and type of information.
Although it is said that applying reverse engineering
tools on an application is an easy task it requires
application specific knowledge (e.g. to parse the source
code in a useful way) and domain knowledge (e.g. to
handle parsing problems) for many tasks during reverse
engineering making it not as easy and simple as it may
look.

Some views that are supported by the reverse engineering
tools cannot be generated in a useful way due to
application specific problems (e.g. different source

languages used, client-server software). The tool-
generated views can only show a part of the application
tracing a specific problem (the view of the complete
application is not usable in most cases).

It is time consuming to generate useful software views.
This results from the incompleteness of some views
which have then to be manually refined or completed and
from the fact that, although the generation of the views is
automatic, most of the time additional effort is needed to
relate the view to the specific problem traced (or a part of
the application).

The views only represent static information that can be
found automatically in the source code. Additional
application knowledge, therefore, is not included.

3.3 Manual analysis of source code

3.3.1 Motivation

Reverse engineering tools provide the reverse engineer
with lots of information. The process has therefore to
include a filtering mechanism to filter out information
that is useful for architectural recovery. After the filtering
process the software views are still incomplete because of
missing domain specific information.

The reverse engineer has therefore to manually
reengineer important software views.

3.3.2 Analysis Results

Manual analysis has been performed on a test case of the
ARES project. Because of the data orientation of the test
case software (real-time software) two views have been
manually recovered: interface view and data-flow view.

Since the interface to other subsystems of the test case are
mainly based on shared memory and interrupt functions
written in assembler language the reverse engineering
tools failed to provide interface information. Manual code
analysis provided all necessary interface information that
was also a precondition for the data flow analysis.

Data flow analysis has been performed for important data
flow through the test case system. The manual recovered
data flow has already been filtered and is therefore easy
to use and evaluate.

Manual recovered views are important views for the first
level of abstraction in the architecture recovery process.
However, these views do not contain architectural
information per se but are an important input in the
architecture recovery process.

3.4 Architectural Hypothesis

The identification of architectural elements requires addi-
tional input from the application domain: a coarse
description of the main components and their
interrelationships is used as an architectural hypothesis.
This architectural hypothesis (e.g. „the system consists of

an antenna that receives signals and passes it on to a
signal decoder to identify telegrams...“) provides a good
starting point for architecture recovery: following a
process of alternating top-down and bottom-up recovery,
architectural elements (such as „types of telegrams“) can
be identified much more purposeful.

The architectural hypothesis provides high-level
application domain information whereas specific
„instances“ of architectural elements in the source code
of an application can be found by using several software
views generated by reverse engineering tools.

4. CONCLUSION

Our framework for architecture recovery forms an
important attempt to combine application domain
knowledge and the capabilities of reverse engineering
tools in order to strive for the requirements of an
architecture recovery tool.

The architectural recovery framework is still under
development and will be evaluated in the case study from
ABB.

5. REFERENCES

[1] Garlan D., Perry D.E., Introduction to the Special
Issue on Software Architecture, IEEE Transactions on
Software Engineering, Vol. 21, No. 4, April 1995

[2] Gall H., Jazayeri M., Klösch R., Lugmayr W.,
Trausmuth G., Architecture Recovery in ARES,
Proceedings of the Second International Software
Architecture Workshop (ISAW-2), November 1996.

[3] Harris D.R., Reubenstein H.B., Yeh A.S., Reverse
Engineering to the Architectural Level, in Proceeding of
ICSE-17, IEEE Computer Society Press, pp. 186-195,
April 1995.

[4] Weiser M., Program Slicing, IEEE Transactions on
Software Engineering, SE-10(4):352-357, July 1984.

