
Information Needs in Performance Analysis of

Telecommunication Software � a Case Study

Vesa Hirvisalo

Esko Nuutila

Helsinki University of Technology

Laboratory of Information Processing Science

Otakaari 1, FIN-02150, Espoo, Finland

Vesa.Hirvisalo@hut.�, Esko.Nuutila@hut.�

This paper discusses the information and the architectural views that are needed in

performance analysis of software. Our discussion is based on a performance analysis

that we did. The analyzed system was a subsystem of a large distributed telecom-

munication system, which has real-time requirements on its performance. During

the analysis we found out that the typical software documents, e.g., speci�cations

of software module structure, functionality and interfaces, lack information that is

needed in performance analysis. In this paper, we describe what information we had

and recovered or produced. Further, we discuss what information should be available

to support performance analysis of large software systems.

1 Introduction

In this paper, we discuss the information and the architectural views that are needed

in performance analysis of software. The discussion is based on a case study; the

performance analysis of a telecommunication system software component. The goal

of the study was to �nd out the response time of a device driver and to locate the

bottlenecks in its execution. The analysis was done by modeling the component and

measuring its performance by experimenting with a real system.

A software performance analysis by modeling and experimentation involves process-

ing a large amount of analysis data. By analysis data we mean all the information

that is needed in a performance analysis. Typically analysis data consists of the

system documentation, the source code, performance models, monitoring and mea-

surement data etc.

In our experience, the system documentation should include di�erent views of the

system under study. The typical software documents, e.g. speci�cations of software



2

module structure, functionality and interfaces, lack information that is needed in

performance analysis. They tell what the system does and how it was built, but

they do not tell how the system operates.

To model and measure the performance of a software, the performance analyst

should understand how its execution proceeds and why it is designed to proceed as it

does. Without such understanding it is hard to decide, which features of the system

operation should be modeled and measured, and which not. Such information can

be found, for example, in execution architecture descriptions, control-�ow diagrams,

data-�ow diagrams, and various scheduling diagrams. We call such documentation

the execution description of a system.

During the performance analysis we found out that navigating in the system docu-

mentation is hard. Reading all the documentation and all the code of a large system

is too laborious. The performance analyst should have an easy access to the data.

For a given piece of code, the corresponding part of the documentation should be

easily available, and vice versa.

We modeled the system using execution graphs and queueing networks [4]. We used

the experimental measurement data to adjust and validate the performance model.

The performance bottlenecks and ways to improve the performance could be easily

seen from the �nal model.

The structure of this paper is the following. In Section 2, we introduce our analysis

task case. We describe the analysis method that we used and the corresponding

concepts. Section 3 describes the information needs in the performance analysis

process step by step. Section 4 discusses the questions raised in Section 3.

2 Analysis task case

The system under study was a part of a distributed telecommunication system,

which consists of a large communication control software and a number of various

hardware devices. We analyzed the performance of a device driver embedded on a

transmission control card.

The goal of the performance study was to �nd out the response time of the device

driver and to locate the bottlenecks in its execution. Our study resulted in detailed

information of the driver operation and a performance model of the driver. The

model points out performance bottlenecks and can be used to predict performance

e�ects of future improvements. Further, our study implied a modi�cation to the

driver, which improved the performance of the driver.



3

Such results cannot be achieved by using straight-forward methods, like simple struc-

tural pro�ling, which assigns each syntactic construct the time consumed by it. For

instance, the improvement to the performance of the driver was not achieved by

modifying the bottleneck, which consumed most of the CPU-time, but by modify-

ing a part of the system that feeded data to the bottleneck.

Our method of analysis, adapted from [2, 4], consists of the following phases, which

are discussed in more detail in the rest of this section.

� phase 1: overview the analysis task

� overview the system and the software

� overview the execution

� phase 2: model the performance

� build an execution model

� estimate the resource requirements

� build a performance model

� phase 3: experiment with the real system

� design and run the experiments

� phase 4: analysis

� analyze and interpret data

� validate and verify

To overview the system and the software, we read the software code and related

documentation and consulted the system designers. To understand the system op-

eration, we tried to build execution descriptions. An execution description is any

formal or informal description that expresses, how the execution of a system proceeds

and why the system is designed to execute as it does. Thus, it answers questions

like: what typically happens in the execution, what can happen in the execution,

why the implementation is as it is. A system can have several execution descrip-

tions. The following is a very short informal execution description, which expresses

the performance analyst the ideas and assumptions, which the system designer had:

Example: All incoming messages handled by the system are received by process A.

The incoming messages can be of any type, but type X messages are the most common

and most critical with respect to the overall performance of the system. Therefore,

the system is tuned to handle type X messages. A type X message is processed in the

following way. Process A parses the incoming message and sends the parsed data

to process B, which accesses the database and constructs the outgoing message. The

system scheduling does not allow process A to be interrupted, but process B can be

interrupted by processes A and C. However, process B is typically able to construct

the outgoing message before A receives the next one.



4

10.0

120.0

n*26.5

n*20.0

120.0

40.0

mem I/O

12.5

20.0

n*47.0

n*1.0

n*68.5

15.8

8.5

CPU

n*46.5 + 290.0

rec

send

select

allocate

free

read elem

write elem

n

n*116.5 + 56.8

Figure 1: Example of an execution graph.

We modeled the system performance by using execution graphs and queueing net-

works. An execution graph [1] consists of vertices, edges, and resource usage esti-

mates (typically time). An execution graph identi�es the software components that

execute, the order of execution, component repetition and conditional execution.

Figure 1 gives an example of an execution graph. It is a model of a message handler

that �rst allocates memory, then receives a message, processes the �elds of the

message, sends a message, and frees the allocated memory. For each component of

execution the CPU and I/O resource usage estimates are given.

A queueing network [3] consists of a set of servers and �ow of jobs between the

servers (see Figure 2). The servers can have a queue of incoming jobs.

Using the initial model of the system we designed and run the experiments. We

used both hardware and software monitors. The hardware monitors measured the

external and internal communication of the system. The software monitor printed

data on the software execution. It consisted of a user interface and a number of

small fragments of instrumentation code embedded in the transmission hardware

Server 1 Server 2

Figure 2: Example of an queueing network.



5

driver. The metric data emitted from the software monitor was stored for analysis.

3 Information needed

In this section, we describe the information content of the performance analysis

process. Our analysis consisted of four major phases: overview phase, modeling

phase, experimenting phase, and analysis phase. We shall discuss the information

content of each major phase in its own subsection.

3.1 Phase 1: Overview

During the overview phase, the major question that we tried to answer was the

following: In what way we should model the system, i.e., how should we decompose

it into parts and what kind of a structure should we build. We answered the question

by �nding out what kind of structures existed and were documented.

We had an overall description of the system and for each module in the system, we

had the following documentation available:

� an interface speci�cation describing the interface of the module

� a behavioral speci�cation describing the internal operation of the module

� a list of requirements that the module has to ful�ll

We tried to understand how the system was decomposed into modules and what kind

of coding conventions were used. Learning the overall software structure and coding

conventions was easy. Understanding the interconnections between the software

modules and the overall system functionality was very hard, i.e., we could understand

how something was implemented, but we did not know why.

Next we tried to get execution descriptions. This information was not readily avail-

able; so we tried to recover it, but we did not properly succeed. It seemed that the

various restrictions in the system, e.g., priorities of di�erent tasks, implied that the

ways how the execution can proceed are restricted. Because of the complexity of the

system, we could not state the restrictions. It seems that the execution descriptions

are very hard to recover once they have been lost.

Based on the di�erent views of the system that we had, we decided to build a

two-level model. The top level was the process structure and the second level was a

functional decomposition. We could also have used the modular or calling structure,

but they seemed inferior with respect to the goal of the analysis. Using other views

of the system would have been too laborious, because they were not readily available.



6

For a discussion of architectural views that can be typically found in industrial

software see, for example, [5].

3.2 Phase 2: Modeling

The major question that we tried to answer during the modeling phase was the fol-

lowing: which tasks on the �ow of control have signi�cant e�ect on the performance

of the system. Thus we tried to decompose the execution into reasonable-size parts

that included everything that seemed relevant and excluded everything that was

obviously irrelevant with respect to the performance.

We started modeling the system by building execution graphs describing its opera-

tion. Our work was based on the source code, the input data, the output data, and

international standards. We created the execution graphs by reading the code and

annotating it. The modeling of the system was based on the understanding how the

system operates and why it operates as it does.

We did not have proper execution descriptions. We could understand how the

execution typically proceeds, but we could not understand what are the options

and why the system executes as it does. The reasons for the selected design tell

the performance analyst what are the central tasks. They guide the performance

analyst to decide, which concrete tasks in an implementation should be merged to

form an abstract task in its model. They also guide to select the level of detail

needed in various parts of the model.

3.3 Phase 3: Experimenting

The major task in the experimenting phase was designing the experiments. Running

the experiments was rather easy and actually involved no thinking. We followed our

plan and saved the resulting measurement data. During this phase, we faced no

problems related to the information available.

3.4 Phase 4: Analysis

After experimenting, we analyzed our data and wrote the �nal document of our

performance analysis. The question that we tried to answer during this phase was

the following: Does our model describe the performance of the system under study.

The work that we did was basically simple; we analyzed our measured data sta-

tistically, added the resulting values to the performance model, and modi�ed the



7

Task A

Task B

Task C

Task D

Figure 3: A part of the initial model.

model accordingly. The result was a veri�ed performance model that pointed out

the performance bottlenecks.

The modi�cations that we made to our original model were signi�cant. Thus, our

original understanding of the execution, which was based on the system documen-

tation, lacked many facts. We illustrate this by an example. In Figure 3 is a part

of our original model. We believed that this part is a performance bottleneck, but

it was not. From the system documentation we did not understand that the outer

loops are executed only once in the situation that we studied. Further, the tasks A

and B have practically no e�ect on the overall performance. In our �nal model, the

part was reduced to the form of Figure 4.

After the experiments we had about 10Mb of analysis data containing di�erent

versions of source code (with various versions of instrumentation), di�erent versions

of execution models, measurement data from di�erent measurement sessions and

Task C

Task D

Figure 4: The corresponding part of the �nal model.



8

monitors, etc. Although all data was carefully placed into �les, we had major

di�culties in organizing the data and understanding all the dependencies.

To check if a detail was relevant or not, we had to �nd the corresponding data.

Typically, this meant �nding a piece of source code, a part of the system documen-

tation, an instrumentation that we had done, and the resulting metric values that

corresponded to a part of our performance model.

4 Discussion

When we had �nished the analysis task, we evaluated the analysis work itself. We

tried to understand what could be learned and how doing such analysis could be

improved. In the following, we �rst discuss the need for di�erent views and espe-

cially for execution descriptions. Then, we discuss the data access and management

problems.

In our experience, the analysis data should include di�erent views of the system

under study [6]. The typical software documents, e.g., speci�cations of software

module structure, functionality and interfaces, lack information that is needed in

performance analysis. They tell what the system does and how it was build, but

they do not tell how the system operates.

Example: A subsystem can be modeled as a thread of control in an execution graph or

as a node in a queueing network. Having multiple architectural views of the system

guides to select the best modeling mechanism. A single view easily leads to a biased

modeling decision.

To model and measure the performance of a software, the performance analyst

should understand how its execution proceeds. Without such understanding it is

hard to decide, which features of the system operation should and which should not

be modeled and measured.

Example: The performance analyst can model a group of three subroutines as three

vertices in an execution graph and have simple resource requirements for them. An-

other way to model the subroutines is to have a single vertex and a complex resource

requirement for it. The knowledge of reasons for the current implementation guides

in deciding how to model the subroutines.

During the performance analysis we found out that navigating in the system docu-

mentation is hard. Reading all the documentation and all the code of a large system

is too laborious. The performance analyst should have an easy access to the data.



9

We spend a lot of time while trying to �nd the documentation of particular pieces of

code. Understanding the code was usually easy after �nding relevant documentation

or standard. Also the reverse access should be fast: after reading a document, the

analyst should easily �nd the corresponding piece of code.

Example: The code has a statement size = 128, which causes the messages always

to have 128 elements contained. You wonder why, because a smaller size seems more

appropriate. Should you model how di�erent message sizes a�ect the performance

or not? After reading hundreds of pages of documentation you �nd out that the size

is an international standard.

It is quite obvious that these interconnection should be explicitly present, e.g.,

hypertext-like links should point to the corresponding parts of system documen-

tation and selected parts of international standards.

Signi�cant part of our work consisted of managing the data that we had gathered,

recovered, or produced. This was especially true for the analysis phase, where we

consumed a lot of time trying to �nd and organize the data. Although most of

the system remained unchanged during the study, the data evolved as the analysis

proceeded. Maintaining the various dependencies in the data made the analysis task

signi�cantly harder to do.

We feel that specialized data management tools and software documentation con-

taining multiple views is needed. Particularly, the documentation of any large soft-

ware having signi�cant performance requirements should include the views that

describe its execution. Having such documentation and tools does not only help

performance analysis; they are useful through the various stages of the life of a

software.

Acknowledgements

We thank Alexander Ran of Nokia Research Center for his valuable comments and

guidance during the preparation of this paper.

References

[1] T.L. Booth. Use of computation structure models to measure computation per-

formance. In Conference on Simulation, Measurement and Modeling of Computer

Systems, Boulder, CO, August 1979.



10

[2] R. Jain. The Art of Computer Systems Performace Analysis: Technique for

experimental design, measurement, simulation and modeling. John Wiley and

Sons, Inc, Littleton, Massachusetts, 1991.

[3] D.A. Menasce, Almeida A.F., and Dowdy L.W. Capacity Planning and Perfor-

mance Modeling. Prentice Hall, New Jersey, 1994.

[4] C.U. Smith. Performance Engineering of Software Systems. Addison-Wesley,

Massachusetts, 1990.

[5] D. Soni, R.L. Nord, and C. Hofmeister. Software architecture in industrial ap-

plications. In ICSE'95, pages 196�207, 1995.

[6] C.M. Woodside. A three-view model for performance engineering of concurrent

software. IEEE Transactions on Software Engineering, 21(9):754�766, Septem-

ber 1996.


