
Reference Architectures in a product line pr o

 ESI 1

Reference Architectures in a
product line process context

Sergio Bandinelli
European Software Institute

Parque Tecnológico de Zamudio #204
E-48170 Bizkaia, Spain.
Tel: +34-4-420 95 19
Fax: + 34-4-420 94 20

e-mail: Sergio.Bandinelli@esi.es

All rights reserved. No part of this publication may be reproduced, transmitted in any form,
or stored in a retrieval system, or by any means, mechanical, photographic, electrical,
electronic, or otherwise without the express permission of the copy r

 European Software Institute 1996

Reference Architectures in a product line process context

2  ESI

1. INTRODUCTION

The architecture level of description of a software system provides an overall view
of the system, making explicit its design rationale and constraints. Recently much
effort has been devoted to software architectures, setting the grounds for a new
discipline [1, 2, 3]. In particular, specific attention has been given to architecture
description languages (ADLs) to support architectural modellin g

A reference architecture is a software architecture for a prod u
of application systems in a given business domain. The reference architecture
contains design rationale, engineering decisions, assumptions and constraints that
apply to all members of the product family. Reference architectures generally
consist of partially specified systems composed of generic or abstract components
that are replaced by real components when the architecture is instantiated for an
actual application.

In other words, a reference architecture provides the means for structuring
knowledge on how to design and implement applications within a given domain in
an organisation. Once available, this knowledge can be used and reused in building
new applications. This production scheme is more or less explic in many
organisations. In doing so, software managers and practitioners are facing several
difficulties. These include:

• What are the benefits of having a reference architecture? How are these
benefits measured?

• Is a given reference architecture appropriate for a new development? If
not, what are the necessary changes?

• How do we guarantee the adequateness of a reference architecture to
fulfil user requirements? How do we determine whether a given
functionality is realised by an architecture?

• How is an application architecture derived from a reference architecture,
without corrupting its original design principles?

At ESI we are addressing these questions in the context of our technology plan. We
firmly believe that these problems need to be faced from a proc Thus,
our approach is to position reference architectures in a reuse-driven product-line
process to analyse possible solutions from that viewpoint. In the rest of this paper
we first provide a product line process context for reference architectures. We then
explore technological issues for reference architectures in the light of this process
context.

Reference Architectures in a product line pr o

 ESI 3

2. PRODUCT LINE PROCESS CONTEXT

Traditional life cycle models have originally been conceived under the assumption
that they apply to the development of an individual software These models
are generally structured in a series of phases that go from feasibility studies to
product delivery and maintenance. Product line development i sa different
approach: instead of having a separate development process for each product, the
set of products that address the same business domain are re ga whole and
developed as members of a standardised product family.

Product line development introduces new requirements to software processes and
support technology. The extent and nature of the impact that the introduction of
product line development may have in an organisational struc tand its processes
is not yet fully understood and is the subject of debate and research. However, it is
broadly agreed that product line development is structured into two separate
processes with different scopes. Domain Engineering (DE) focuses on the
development of a product family adaptable to deferred requirement and
engineering decisions. Application Engineering (AE) is aimed at deriving a single
product from the family to meet specific user requirements. DE is an iterative
process that incrementally grows the domain. Each enactment of the AE process
corresponds to the production of a new application within th e

Figure 1 shows the product line development phases as presented in RSP (Reuse-
driven Software Process), developed by SPC (Software Productivity consortium) [4].
Within the DE process, the Domain Definition activity establishes the boundaries of
the domain and characterises all the potential members of the product line. All the
products in the product line address the same business domain, thus they share
several common characteristics. At the same time, the products of the product line
differ among each other, since they address the requirements of different users. The
decision model identifies these variability assumptions in the product line by
defining a set of (user) decisions that are sufficient to characterise a particular
product in the product line.

Domain
Definition

Process
Engineering

Product Family
Engineering

Project
Support

Domain Management

Domain Engineer ing

Application
Modelling

A pplication
P roduction

 Delivery &
 Operation Support

Project Management

Application E ngineer ing

Fig. 1: DE and AE processes as specified in RSP.

Reference Architectures in a product line process context

4  ESI

The product family engineering activity is similar to traditional development but,
instead of developing a single product, it aims at developing the whole family of
products. It goes through requirements analysis, design and implementation taking
advantage of the product commonalties and leaving open the decisions identified
in the decision model. The process engineering activity scope is to establish a
standard process for deriving a product from the product famil yFinally the project
support activity is in charge of providing support for the enactment of application
engineering activities. The AE process must resolve deferred decisions to match user
needs by following the process developed within the process eng

Reference Architectures in a product line pr o

 ESI 5

3. TECHNOLOGICAL ISSUES OF REFERENCE ARCHITECTURES

The reference architecture is developed as part of the product family engineering
activity within DE. Therefore, it contains open decisions regarding unresolved
specific user needs. The reference architecture plays a central role in product family
development, since it links user requirements with implementation components,
providing the skeleton in which all other components are integrated. Each
application architecture is obtained by resolving deferred decisions corresponding
to specific user needs. Two issues are key in the representation and management of
reference architectures:

1. A reference architecture must be able to capture the v athe
product family.

2. Explicit links must relate the variability in the reference architecture to
the same kind of variability in other work-products (such as requirements
documents, code, test cases, etc.).

The mechanisms offered by currently used architecture description languages to
capture variability are mainly those of high-level programming languages. This
includes a number of language concepts ranging from the traditional function
parameters, to modern parametric packages, abstract classes, inheritance and late
binding mechanisms. Another approach to represent variability in reference
architecture is by using a meta-language of macro directives.
resolved, the macros can be processed to obtain an application architecture
representation. An advantage of the latter approach over the previous one is that
the macro meta-language can be independent of the target ADL .

Variability adds complexity to the reference architecture description. An ADL must
thus offer appropriate language mechanisms to represent this variability. Here are
some desirable features:

• Variability is localised. The selection among different architectural variants
should be localised in a single point of the representation. Otherwise, the
selection of one variant may require changes in multiple points of the
architectural description, which is an error-prone process

• Variability should not obscure architecture structure. Variability adds complexity
to architecture representations. Therefore it is convenient that the architecture
structure remains evident even if several variants co-exist in a single
representation.

• Variability should be adequately captured in graphical representations. Almost
every architecture description is accompanied by one or more graphical
representations. Thus, the variability must also be repres e

Capturing variability in the architecture description becomes of great value when
this variability is linked with the other work-products in p r
In a product line development process, the decision model says how the products
that belong to the product family differ from each other. In a new application
development, the first step is to produce an application model (see Figure 1) in
which the open decisions of the decision model are resolved ban analysis of
the user requirements. If explicit links are maintained betwe eand the
architecture, these links can be used to determine which variable parts of the

Reference Architectures in a product line process context

6  ESI

reference architecture are to be used to instantiate it into the application
architecture, maintaining its internal consistency and origina l
In addition links to code components can be used to guide (or automate) the
derivation of the application implementation.

Hypertext technology is a good starting point for supporting the linking of this
work-product network. The explicit network links also guarantee forward and
backward tracing of requirements for testing and documentation purposes. Of
course, this network has to be produced as part of the domain e

The architecture level of description represents a point in which technological
solutions and process issues meet. We believe that a process perspective provides an
adequate context for exploring new technological solutions or combining existing
ones to address the questions stated in the introduction.

Reference Architectures in a product line pr o

 ESI 7

4. REFERENCES

[1] David Garlan Ed., Proceedings of the First International Workshop on
Architectures for Software Systems, Seattle (USA), April

[2] Dewayne E. Perry, Alexander L. Wolf, “Foundations for the Study of Software
Architecture, SIGSOFT Software Engineering Notes, vol. 7 n.4, ACM, October
1992,

[3] Mary Shaw, David Garlan, “Software Architecture, Perspect
Discipline”, Prentice Hall, 1996.

[4] Software Productivity Consortium, “Reuse-driven Software Process
Guidebook” SPC-92019-CMC, Version 02.00.03, November 199 3

