
The 10th International Software Product Line Conference (SPLC 2006)

 10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

SPLC 2006 and Beyond

The Software Engineering Institute was the proud sponsor of the 2006 Software Product Line Conference.
As the tenth official gathering of the software product line community, SPLC 2006 provided a venue for 190
+ practitioners, researchers, and educators from 22 countries to reflect on the achievements made during
the past decade, assess the current state of the field, and identify key challenges still facing researchers
and practitioners. The conference featured 2 keynote presentations, 16 research and 7 experience papers,
3 panels, 14 tutorials, 4 workshops, 5 demonstrations, birds-of-a-feather discussions, and the 2006 hall of
fame induction. The Proceedings of SPLC 2006 are available from IEEE Computer Society (ISBN 0-7695-
2599-7).

We would like to thank all those who contributed to the success of this conference and look forward to
seeing you at the 11th International Software Product Line Conference (SPLC 2007), 10-14 September
2007 in Kyoto, Japan.

John D. McGregor, Clemson University (Conference Chair)
Frank van der Linden, Philips Medical Systems (Program Chair)
Robert L. Nord, Software Engineering Institute (Program Chair)

Post-Conference Information

 Welcome Message - John D. McGregor

 Software Product Lines Automate Development, Darryl K. Taft, eWeek, 25 August 2006.
 Conference Presentations

● Keynotes
�❍ The Option Value of Software Product Lines

Carliss Baldwin
�❍ Aspect-Oriented Programming Radical Research in Modularity

Gregor Kiczales

● Workshops
�❍ APLE - 1st International Workshop on Agile Product Line Engineering
�❍ Managing Variability for Software Product Lines: Working With Variability Mechanisms

■ Variability Management � Working with Variability Mechanisms
�❍ SPLiT'06: 3rd Workshop on Software Product Line Testing
�❍ OSSPL - First International Workshop on Open Source Software and Product Lines

■ Open source strengths for defining software product line practices (paper,
presentation)

■ Feature-Oriented Determination of Product Line Asset Types: In-House, COTS, or
Open Source? (paper, presentation)

■ Open Source in the Software Product Line: An Inevitable Trajectory? (paper,
presentation)

■ OSS Product Family Engineering (paper, presentation)

● Software Product Lines Doctoral Symposium

http://www.sei.cmu.edu/splc2006/ (1 of 2) [10/16/2008 1:17:48 PM]

http://www.computer.org/portal/site/store/menuitem.41cf17dc879177c86ee948ce8bcd45f3/index.jsp?&pName=store_level1&path=store/P2006&file=p2599.xml&xsl=generic.xsl&;jsessionid=GyynyBp2nL2TggvwQklZFJJCkzgv1xf0RvKy2tQ8kTp6pLQtchM8!-180191624
http://splc2007.jaist.ac.jp/
mailto:johnmc@cs.clemson.edu
http://www.eweek.com/article2/0,1895,2008424,00.asp

The 10th International Software Product Line Conference (SPLC 2006)

● Panels
�❍ Product Derivation Approaches

■ Building Interactive TV Applications with pure::variants
Danilo Beuche

■ BigLever Software Gears Solution
Charles Krueger

■ Product Derivation Panel - Domain-Specific Modeling
Juha-Pekka Tolvanen

■ Product Derivation Approaches: The Digital TV case and Koala
Rob van Ommering

�❍ Testing in a Software Product Line
�❍ Product Line Research

■ Introduction
Liam O�Brien

■ Product Line Research - Panel Statement
Dirk Muthig

■ Software Product Line Research Topics
Kyo Kang

■ Lessons Learned from the last 10 years and Directions for the next 10 years
Klaus Pohl

■ Lessons Learned from the Last Ten Years and Directions for the Next Ten
Paul Clements

● Paper Presentations
�❍ Product Line Adoption: A Vice President's View & Lessons Learned

Salah Jarrad
�❍ New Methods in Software Product Line Development

Charles W. Krueger

● 2006 Software Product Line Hall of Fame
�❍ Inducted from SPLC-Europe 2005

■ RAID controller firmware product line, LSI Logic - Engenio Storage Group
�❍ Nominated for induction at SPLC 2007

■ Bosch Gasoline Systems: Engine Control Software Product Line
■ Philips Low-end Television Product Line

Pre-Conference Information

 Keynote Speakers Registration
 Technical Program Important Dates
 Workshops Location/Hotel Reservation
 Tutorials Past Conferences
 Panels Conference & Program Committees
 Demonstrations Corporate Supporters
 Software Product Lines Doctoral Symposium News Items about SPLC
 Software Product Line Hall of Fame Help Publicize SPLC 2006
 Birds-of-a-Feather Sessions

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

Location:
Baltimore Marriott Waterfront
Baltimore, Maryland, USA

http://www.sei.cmu.edu/splc2006/ (2 of 2) [10/16/2008 1:17:48 PM]

http://www.splc.net/
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.jot.fm/issues/issue_2006_07/column2
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu
http://marriott.com/property/propertypage/BWIWF
http://www.ci.baltimore.md.us/visitor/

© 2006 Carnegie Mellon University

Welcome to SPLC 2006!!
John D. McGregor
August 23, 2006

Page 2

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Demographics

Here is where we come from and who we are:

22 countries; five with most representation:

United States 97 Commercial 66

Germany 22 Academic 51

South Korea 15 Defense industry 20

Japan 10 Defense agency 4

Finland 6 Civil agency 4

Total at start of Wednesday - 194

Page 3

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

The story so far

We have already had:

food

14 tutorials

food

4 research workshops &

the Doctoral Symposium

food

Conference Reception

Page 4

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Conference HighLights

Today is a long day with lots to do, you can rest when you get home

We kept the Europeans’ 1.5 hour lunches from SPLC 2005 but Americanized them and
we will have working lunches – demos will be conducted during lunch and you will be
able to take your lunch in to see the demos in which you are interested.

Don’t forget the SEI Reception and BoFs tonight.

SEI’s DoD BoF

BigLever’s BoF

Research BoF

Page 5

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Conference HighLights

Don’t miss

the Hall of Fame

Ice Cream Social

Page 6

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

www.SPLC.net

We expect the website to become a community resource

Any panel, research workshop, or other non-proceedings material may
be added to the site to make it widely available

Check the site periodically as the SPLC2007 crew builds their program

Page 7

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Thanks to
Frank van der Linden – Program
Chair Philips Medical Systems

Robert L. Nord – Program Chair
Software Engineering Institute

Daniel J. Paulish – Tutorials Chair
Siemens Corporate Research

Birgit (Mom) Geppert – Workshop
Chair - Avaya Labs

Isabel John – Doctoral Symposium
Chair - Fraunhofer Institute for
Experimental Software Engineering

Dave M. Weiss – Hall of Fame Chair
- Avaya Labs

Patrick Donohoe – Public Relations
Chair - SEI

Liam O’Brien – Proceedings
Editor - Lero, The Irish Software
Engineering Research Centre

Melissa L. Russ – Local Publicity
and Arrangements - Space
Telescope Science Institute

Bob Krut – Web Chair - SEI

Ruth Lynn Gregg – Registration
and Logistics - SEI

Pennie Walters, Daniel Pipitone,
Bob Fantazier, David Gregg –
Printed Materials - SEI

Carole Mann – Registration
Registration Systems Lab

Page 8

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Welcome Alexander

Page 9

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Thanks to the SPLC Steering Committee

Linda Northrop

Software Engineering Institute,
Chair

Len Bass

Software Engineering Institute

Paul Clements

Software Engineering Institute

Kyo C. Kang

POSTECH

John McGregor

Clemson University

Henk Obbink

Philips

Frank van der Linden

Philips Medical Systems

David M. Weiss

Avaya Labs

Page 10

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

SPLC 2006 THANKS OUR GENEROUS SPONSORS

SPLC 2006 is sponsored by

Gold-Level Corporate Supporters Silver-Level Corporate Supporters

Page 11

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Program HighLights

Rod Nord, program co-chair

Page 12

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Here’s Linda

Linda Northrop, chair of the SPLC steering committee, will add a
welcome from the SPLC steering committee and introduce today’s
keynote speaker.

Page 13

© 2006 Carnegie Mellon University

SPLC2006 Conference | Welcome

Text Format

Regular text format is 20 pt, SEI Blue, single line-spaced (1) and
0.5 line space after. Text highlight example is here. Or here.

• First level indent is 20 pt, black, single line-spaced (1) and 0.5 line
space after.

— Second level indent is 20 pt, black, single line-spaced (1) and 0.5
line space after. Dash leader is used.

o Third level indent is 20 pt, black, single line-spaced (1) and 0.5
line space after. Open Dot leader is used.

– Second level indent is 20 pt, black, single line-spaced (1)
and 0.5 line space after. Dash leader is used.

Slide 1 © Carliss Y. Baldwin 2006

The Opt i on Va lue o f
So f twar e P roduc t L i n e s

Carliss Y. Baldwin
Harvard Business School

SPLC 06
Baltimore, MD
August 23, 2006

Slide 2 © Carliss Y. Baldwin 2006

Unmanageab l e De s i g ns—What
They Ar e and t h e i r
F inanci a l Consequence s

Carliss Y. Baldwin
Harvard Business School

SPLC 06
Baltimore, MD
August 23, 2006

Slide 3 © Carliss Y. Baldwin 2006

Three Points to begin
u Large, complex, evolving designs

– Are a fact of modern life
– Need design architectures—

» “Description of the entities in a system and their relationships”
» Way of assigning work (Parnas)

u Designs create option value
– Value operates like a force in the economy
– We fight to create it and to keep it—using strategy,

including product line strategy

u Design Architecture, Option Value and Strategy
– How can you create and capture value in a large,

complex evolving set of designs?
– Subject of this talk

Slide 4 © Carliss Y. Baldwin 2006

In the economy, value acts
like a force

Value = money or the promise of money

Consider the computer industry…

Slide 5 © Carliss Y. Baldwin 2006

The changing structure of the
computer industry

u Andy Grove described a vertical-to-horizontal transition in
the computer industry:

1995-“Modular Cluster”

1980-“Vertical Silos”

Slide 6 © Carliss Y. Baldwin 2006

Andy’s Movie

Stack View in 1980

Top 15 Public
Companies in
US Computer
Industry

Area reflects
Market Value
in Constant
US $

Slide 7 © Carliss Y. Baldwin 2006

Andy’s Movie

Stack View in 1995

Top 15 Public
Companies in
US Computer
Industry

Area reflects
Market Value
in Constant
US $

Slide 8 © Carliss Y. Baldwin 2006

Andy’s Movie

Stack View in 2004

Top 15 Public
Companies in
US Computer
Industry

Area reflects
Market Value
in Constant
US $

Slide 9 © Carliss Y. Baldwin 2006

Turbulence in the Stack

Departures from Top 15:

u Xerox (~ bankrupt)

u DEC (bought)

u Hitachi

u NEC

u Sperry (bought)

u Unisys (marginal)

u Wang (bankrupt)

u NCR (bought)

u Computervision (LBO)

Arrivals to Top 15:

u Microsoft

u Cisco

u Google

u Dell

u EBay

u Yahoo

u SAP

u Taiwan Semiconductor

u First Data

Sic Transit Gloria Mundi … Sic Transit

Slide 10 © Carliss Y. Baldwin 2006

Contrast to the Auto Industry

Top 10 Public
Companies in
US Auto
Industry

Area reflects
Market Value
in Constant
US $

Other Chassis/Powertrain

Other Interior

Other Multiple
Electrical/Electronics

Other Misc.

Toyota Nissan Daimler
Chrysler

Honda GM Ford VW

Johnson Controls

Magna

Eaton

20031982

Aftermarket
AUGAT (electronics)

General Motors

FORD

Tenneco

Toyota

Dana Eaton

TRW
Interior

Other
Powertrain

Value stayed in one layer!

Slide 11 © Carliss Y. Baldwin 2006

Two patterns

u “Manageable” designs = auto industry
u “Unmanageable” designs = computer

industry

What makes computer designs so
unmanageable?

This was the question Kim Clark and I set out to
answer in 1987.

Slide 12 © Carliss Y. Baldwin 2006

After studying the history of computer
designs and correlating their changes
with value changes

We concluded that modularity
was part of the answer…

Slide 13 © Carliss Y. Baldwin 2006

Modularity is

u The degree to which a set of designs (or
tasks) is partitioned into components, called
modules, that are

u highly dependent within a module, nearly
independent across modules

u A property of architecture

u Somewhat under the architect’s control

Slide 14 © Carliss Y. Baldwin 2006

Modular Architecture?

u Modules = Entities with few relationships
– “Near-decomposable”

– “Loosely coupled”

u Modular architectural view describes
modules, ie, components and links
– Less detailed than “full” architecture

– Locates, does not describe interfaces

– Strategist’s perspective, not engineer’s

Slide 15 © Carliss Y. Baldwin 2006

Modular Architectural Views

Pictures of entities and links…

But not interfaces

Slide 16 © Carliss Y. Baldwin 2006

Design and Production Architecture of IBM
System/360

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 SLT architecture and standard c

2 Erich Bloch - August 1

3 New Processor Line Architectural Ground Rules

4 SPREAD Task Group - 12/28/61

5 New Processor Line control, product and programming standards

6 Corporate Processor Control Group (CPC) - 4/1/62

7 SLT Transistors

8 SLT Modules

9 SLT Cards

10 SLT Boards and Automatic Wiring

11 Processor 1 - Endicott, New York

12 Processor 2 - Hursley, En

13 Processor 3 - Poughkeepsie, New

14 Processor 4 - Poughkeepsie, New

15 Processor 5 - Poughkeepsie, New

16 Main memories, Corporate Memory Group (1)

17 Internal memories, CMG

18 Read-only memories for control, CMG

19 "Binary-addressed" Random Access Files

20 Corporate File Group (2)

21 Tape devices running at 5000+ char/sec

22 Corporate Tape Group (3)

23 Time-multiplex system for switching I/O devices

24 DSD Technical Development Group

25 Techniques to measure processor performance, system

26 throughput and software efficiency, Group Staff

27 A unified Input/output Control Structure (IOCS)

28 System Software for Configuration I (4)

29 System Software for Configuration II (4)

30 System Software for Configuration III (4)

31 FORTRAN and COBOL compilers

32 A unified programming language

33 Announcement and Marketing

34 Production, Testing and Integration

35 Shipment, Delivery and Installation

Slide 17 © Carliss Y. Baldwin 2006

Design and Production Architecture
of Engineering Workstation (Apollo)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

1 O Processor chip—CPU

2 Outsourced—Motorola 680x0 Key:

3 O Floating Point Accelerator x= transfer of material or information from column

4 Outsourced task to row task;

5 O Memory chips DRAMs, ROM T= transaction: sale of good by column owner

6 Outsourced—Commodity owner;

7 O Storage—Disk Drives O= outsourced task blocks;

8 Outsourced D= downstream or complementary task blo

9 O Storage—Tape Drive highly interdependent task blocks with many iterations

10 Outsourced and high within-block mundane transactio

11 O Printed circuit boards Apollo's footprint (tasks performed inhouse).

12 Outsourced—Commodity

13 O Display Monitor

14 Outsourced

15 O Keyboard, Cabinet, Fans

16 Outsourced

17 x x x x x x x x x x x x x x x x Aegis proprietary

18 Inhouse Operating System

19 Design

20 x x x x x x x x x x x x x x x x OS DOMAIN proprietary

21 Network Network Architecture

22

23 x x x x x x x x x x x x x x x x Hardware Design

24 DN series = 3-4 boards incl.

25 Hardware IO and Display controllers,

26 Power supply

27 T T T T T T T T T T T T T T T T x x x x Purchase Components

28 Component Test x x x x x

29 Kits x x x x x x Inhouse

30 Board stuff and Solderx x x x x x Manu-

31 Test Boards x x x x x x facturing

32 Board Assembly x x x x x x

33 System Assembly x x x x x x

34 System Test x x x x x x

35 Quality Assurance x x x x x x

36 Consolidate and Ship x x x x x x

37 x x x x x x D

38 x x x x x x Many Software Applications D

39 x x x x x x D

40 x x x x x x x x x x T D

41 x x x x x x x x x x Many OEMs T D

42 x x x x x x x x x x T D

Knowledge
vs. Tasks

Mozilla Before Redesign Mozilla After Redesign

Two Browser Architectures:
Entities = Files; Links = Function Calls

© Alan MacCormack, Johh Rusnak and Carliss Baldwin, 2006

Slide 19 © Carliss Y. Baldwin 2006

The system’s Modular Architecture
determines its options hence option value

u Modules = Units of DESIGN

u Design are options
– Can always stay with the old design

So…

u Modules are Carriers of Option Value

This is the “Power of Modularity”

Slide 20 © Carliss Y. Baldwin 2006

Modularity, Options and Product
Lines

User Group A B C D E

Potenti $1,000 $500 $1,500 $500 $1,000
Revenue

A multi-componen
software produ
addresses the nee
of each grou

Design Cost = $100 p
component

Total Cost = $10

Slide 21 © Carliss Y. Baldwin 2006

An Option is

u The right but not the obligation to take an
action
– Action = Use a new design

– If new is better than old, use new;

– Otherwise, keep the old.

u Each group (with potential revenue) is an
option
– To design a codebase or not

Slide 22 © Carliss Y. Baldwin 2006

With an integral architecture,
which groups are “in the money”?

User Group A B C D E

Potenti $1,000 $500 $1,500 $500 $1,000
Revenue

A multi-componen
software produ
addresses the nee
of each grou

Design Cost = $100 p
component

Total Cost = $10

Only Group C (“Center”) is in the money.

Total Profit = $1,500 - $1,000 = $500

Slide 23 © Carliss Y. Baldwin 2006

A Change of Architecture
User Group A B C D E

Potenti $1,000 $500 $1,500 $500 $1,000
Revenue

9 Custom
Components
and 1 Shared
Component

Which groups are “in the money”?

Slide 24 © Carliss Y. Baldwin 2006

With one shared component,
which groups are “in the money”?

User Group A B C D E

Potenti $1,000 $500 $1,500 $500 $1,000
Revenue

Groups A and E are now “in the money”!

Total Profit = $500 + $100 + $ 100

Slide 25 © Carliss Y. Baldwin 2006

Option Terms
u Value of “underlying” asset, V

– Revenue potential of each group

u Exercise (or “strike”) price, E
– Cost of customized components

u Option Value
– Max (V–E, 0)
– If V–E < 0, don’t exercise, get 0.

u Cost of Option, C
– Cost of shared component

u Net Option Value
– Sum of Option Values minus Option Cost
– $600 + $100 + $100 – $100 = $700

Slide 26 © Carliss Y. Baldwin 2006

With an 8-component Platform and
5 Modules…

User Group A B C D E

Potenti $1,000 $500 $1,500 $500 $1,000
Revenue

Exercise Price (per group) = $200 —ALL groups in the money!

Option Values: A=$800; B=300; C=1300; D=300; E=800.

Net Option Value: $800 + 300 + 1300 + 300 + 800 – 800
= $2700!

Module A Module B Module C Module D Module E

Slide 27 © Carliss Y. Baldwin 2006

Conclusion: Shared platforms reduce
exercise cost per group
System Before Platform System after Platform

Group Shared
Option Platform

Option Option

Option Option
Group
Option Option Option

Option

Result: (1) More group options are in
the money; (2) More profit

Slide 28 © Carliss Y. Baldwin 2006

So far, nothing seems
“unmanageable”…

BUT, what has been designed can
be re-designed

Slide 29 © Carliss Y. Baldwin 2006

“Unmanageable” Design
Architectures…

Modular, i.e, have lots of modules

+

Very High Option Potential, i.e. High
option value of Redesign

Slide 30 © Carliss Y. Baldwin 2006

Option Potential

u Probabilistic concept—value in the “right tail” of a
distribution of outcomes

0.0

0.1

0.2

0.3

0.4

-1.5 -1 -0.5 0 0.5 1 1.5

Value of X

Q(1) Q(2) Q(4) Q(10)

Q(k) =
Expected value
of the best of k
trials

The higher is
Q(k), the
higher the
module’s
option
potential

Q(1) Q(10)

Slide 31 © Carliss Y. Baldwin 2006

High Option Potential +
Low Strike Price

u Pays for LOTS of experiments

u Lots of experiments => lots of turnover of
designs

u Lots of entry =>

The dark side of a platform is …

Competition in modules!

Slide 32 © Carliss Y. Baldwin 2006

OP = Low Medium Zero High

Measuring Option Potential
u Successive, improving versions are evidence of option

potential being realized over time—after the fact
u Designers see option potential before the fact
u What do they see?

Platform

Version 1.0
Version 1.2

Version 1.5
Version 1.8

Slide 33 © Carliss Y. Baldwin 2006

Major challenge in research and
practice right now

Science may not be able to deliver
tools to measure ex ante option
potential reliably

But ex ante estimates are what’s
needed

Slide 34 © Carliss Y. Baldwin 2006

Option potential is like dark matter in
the universe

u Scientists can measure its effects but we
can’t measure “it”

u “Wizards” can perceive option potential
– But wizards don’t talk to scientists!

u Thus we lack ways to measure option value
scientifically
– It is a “research frontier”

Slide 35 © Carliss Y. Baldwin 2006

Option potential at work—
Matlab programming contest

Slide 36 © Carliss Y. Baldwin 2006

Sources of option potential
u Physics—

– Moore’s Law (dynamics of miniaturization) applies to
MOSFET circuits and systems (Mead and Conway)

– Power and heat systems vs. logic systems (Dan Whitney)

u User innovation
– Users’ discovery of their own needs

– “Killer apps”

u Architecture
– Experimenting with different relationships among

components

Slide 37 © Carliss Y. Baldwin 2006

Baldwin-Clark Conjecture

u Need BOTH modularity AND option value
to get rapid design evolution
(“unmanageable designs”);

u With rapid design evolution comes industry
instability and turbulence;

u Unmanageable designs are “mad, bad, and
dangerous to know.”

Slide 38 © Carliss Y. Baldwin 2006

High option potential induces entry
=> industry structure change

Other Chassis/Powertrain

Other Interior

Other Multiple Electrical/Electronics

Other Misc.

Toyota Nissan Daimler
Chrysler

Honda GM Ford VW

Johnson Controls

Magna

Eaton

Autos Computers

Slide 39 © Carliss Y. Baldwin 2006

Recapping the argument
u Designs create value

– Value operates like a force in the economy
– Changes the structure of industries

u Designs have architectures
– Modularity and Option Value are the key economic

properties of an architecture
– Option Value =

Number of Customers x Option Potential of the Design
– Modularity + High Option Potential => Unmanageable

u We have not yet asked:

How do you capture value in a complex designed
system?

Slide 40 © Carliss Y. Baldwin 2006

Is your world like…

Other Chassis/Powertrain

Other Interior

Other Multiple Electrical/Electronics

Other Misc.

Toyota Nissan Daimler
Chrysler

Honda GM Ford VW

Johnson Controls

Magna

Eaton

Autos? Computers?Semiconductors?

Slide 41 © Carliss Y. Baldwin 2006

If your world is like…
u Autos—product lines will stay within

integrated firms (which may have internal
platforms and modules)

u Semiconductors—integrated firms and
platform-module combinations will coexist

u Computers—platform-module combinations
will drive out integrated firms

Slide 42 © Carliss Y. Baldwin 2006

Which world? Depends on
u Modularity potential of product line

Module A Module B Module C Module D Module

vs.

Platform

Version 1.0
Version 1.2

Version 1.5
Version 1.8

u Option potential of the modules

Slide 43 © Carliss Y. Baldwin 2006

I can’t make it simpler…

Sorry!

Slide 44 © Carliss Y. Baldwin 2006

And how do you make money?

Ask me after!

Slide 45 © Carliss Y. Baldwin 2006

Remember

u Splitting a complex system into platform
and modules decreases the exercise price of
“group options”
– Split and customize

u After splitting, some of the customized
modules may have high option potential
– value in the right tail of probability distribution

u Modules with high option potential are
unmanageable

Slide 46 © Carliss Y. Baldwin 2006

Unmanageable Designs are…

Mad, bad, and dangerous to know

Embrace them, but carefully!

Slide 47 © Carliss Y. Baldwin 2006

Thank you!

Slide 48 © Carliss Y. Baldwin 2006

How do you make money in a modular,
high-option-potential world?

u Old paradigm

– “Plunge in”

– “Get lucky”

– “Watch out for Microsoft”

– “Get bought by HP”

Slide 49 © Carliss Y. Baldwin 2006

Company Rank in 2005
Microsoft 1
Intel 3
Cisco 4
Dell 5
Ebay 6
Oracle 7
SAP 9
Yahoo 10
Google 13
Taiwan Semiconductor 14
EMC 15

The new paradigm

Slide 50 © Carliss Y. Baldwin 2006

Our research strategy—Look for

u Stable patterns of behavior involving
several actors operating within a consistent
framework of ex ante incentives and ex post
rewards

u ==> Equilibria of linked games with self-
confirming beliefs (Game theory)

Slide 51 © Carliss Y. Baldwin 2006

How a “stable pattern” works

u Anticipation of $$$ (visions of IPOs)

u Lots of investment

u Lots of design searches

u Best designs “win”

u Fast design evolution => innovation

u Lots of real $$$ (an actual IPO)

“Rational expectations equilibrium”

Slide 52 © Carliss Y. Baldwin 2006

u Blind competition (everyone)
u Own the platform, NOT the modules

– MSFT, Intel, Ebay, TSMC

u Use M&A to be the “lead firm” in some slice of
the stack
– Cisco, Ebay, Oracle, SAP, Yahoo, Google

u Use design architecture to reduce your “footprint”
=> high ROIC
– Dell, Google

u Use the open source process to replace platforms
that you don’t own
– IBM and Linux

Not one stable pattern, but several

Slide 53 © Carliss Y. Baldwin 2006

The Evolution of Beliefs

u “Blind” competitors
– don’t know others exist

u “Footprint” competitors
– Don’t expect to influence others—just compete

u “Lead firms”
– Must influence the beliefs of their competitors
– FUD — “Fear, uncertainty and doubt”
– Others cannot be blind!

Slide 54 © Carliss Y. Baldwin 2006

Modular platforms don’t always win!

Strojwas (2005)

Semiconductor
Industry

Top 10 Firms:

1994 and 2004

Slide 55 © Carliss Y. Baldwin 2006

Option potential of
semiconductor modules is not
high enough to drive integral
architectures completely out.

Slide 56 © Carliss Y. Baldwin 2006

These are technical judgments
that affect corporate strategy and
industry structure

Huge penalties to getting this wrong!

Xerox, DEC, Sperry, Unisys, Wang,
NCR, Computervision

Slide 57 © Carliss Y. Baldwin 2006

Three Stable Patterns

u “Blind” Competition
– PCs in the early 1980s

– Internet in the mid-1990s

u “Footprint” Competition
– Sun vs. Apollo

– Dell vs. Compaq (and HP and …)

u “Lead Firm” Competition
– Monopoly—MSFT

– Mergers & Acquisitions—Cisco, Oracle, SAP, …

Slide 58 © Carliss Y. Baldwin 2006

“Blind” Competition

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

All Zeros (1, 0, 0)

All Ventures (1, 0, 0) All Fighters (1, 0, 0)

ESS (1/8, 3/8, 4/8)
)

Ventures do best

Fighters do best

Zeros do best

x A

B x

Slide 59 © Carliss Y. Baldwin 2006

“Blind” Competition

Slide 60 © Carliss Y. Baldwin 2006

“Footprint” Competition—Apollo
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

1 O Processor chip—CPU

2 Outsourced—Motorola 680x0 Key:

3 O Floating Point Accelerator x= transfer of material or information from column

4 Outsourced task to row task;

5 O Memory chips DRAMs, ROM T= transaction: sale of good by column owner

6 Outsourced—Commodity owner;

7 O Storage—Disk Drives O= outsourced task blocks;

8 Outsourced D= downstream or complementary task blo

9 O Storage—Tape Drive highly interdependent task blocks with many iterations

10 Outsourced and high within-block mundane transactio

11 O Printed circuit boards Apollo's footprint (tasks performed inhouse).

12 Outsourced—Commodity

13 O Display Monitor

14 Outsourced

15 O Keyboard, Cabinet, Fans

16 Outsourced

17 x x x x x x x x x x x x x x x x Aegis proprietary

18 Inhouse Operating System

19 Design

20 x x x x x x x x x x x x x x x x OS DOMAIN proprietary

21 Network Network Architecture

22

23 x x x x x x x x x x x x x x x x Hardware Design

24 DN series = 3-4 boards incl.

25 Hardware IO and Display controllers,

26 Power supply

27 T T T T T T T T T T T T T T T T x x x x Purchase Components

28 Component Test x x x x x

29 Kits x x x x x x Inhouse

30 Board stuff and Solderx x x x x x Manu-

31 Test Boards x x x x x x facturing

32 Board Assembly x x x x x x

33 System Assembly x x x x x x

34 System Test x x x x x x

35 Quality Assurance x x x x x x

36 Consolidate and Ship x x x x x x

37 x x x x x x D

38 x x x x x x Many Software Applications D

39 x x x x x x D

40 x x x x x x x x x x T D

41 x x x x x x x x x x Many OEMs T D

42 x x x x x x x x x x T D

Keeps
Design
Control

Slide 61 © Carliss Y. Baldwin 2006

Then Sun came along…
Apollo Computer

Aegis proprietary

Inhouse Operating System

Design

OS DOMAIN proprietary

Network Network Architecture

Hardware Design

DN series = 3-4 boards incl.

Hardware IO and Display controllers,

Power supply

x x x x Purchase Components

Component Test x x x x x

Kits x x x x x x Inhouse

Board stuff and Solderx x x x x x Manu-

Test Boardsx x x x x x facturing

Board Assembly x x x x x x

System Assembly x x x x x x

System Test x x x x x x

Quality Assurancex x x x x x

Consolidate and Shipx x x x x x

And did even less!

How?

x x x x x Customize Unix

x x x x x Inhouse Proprietary MMU

x x x x x Design Internal bus

x x Single Board Layout

T T T T x x x x Purchase Components

Component Test x x x x x O

Kits x x x x T Manu-

Board stuff and Solderx x x x x O facturing

Test Boardsx x x x T

Board Assembly x x x x x

System Assembly x x x x x

System Test x x x x x

Quality Assurancex x x x x

Consolidate and Shipx x x x x

Slide 62 © Carliss Y. Baldwin 2006

Then Sun came along…
Apollo Computer

Aegis proprietary

Inhouse Operating System

Design

OS DOMAIN proprietary

Network Network Architecture

Hardware Design

DN series = 3-4 boards incl.

Hardware IO and Display controllers,

Power supply

x x x x Purchase Components

Component Test x x x x x

Kits x x x x x x Inhouse

Board stuff and Solderx x x x x x Manu-

Test Boardsx x x x x x facturing

Board Assembly x x x x x x

System Assembly x x x x x x

System Test x x x x x x

Quality Assurancex x x x x x

Consolidate and Shipx x x x x x

x x x x x Customize Unix

x x x x x Inhouse Proprietary MMU

x x x x x Design Internal bus

x x Single Board Layout

T T T T x x x x Purchase Components

Component Test x x x x x O

Kits x x x x T Manu-

Board stuff and Solderx x x x x O facturing

Test Boardsx x x x T

Board Assembly x x x x x

System Assembly x x x x x

System Test x x x x x

Quality Assurancex x x x x

Consolidate and Shipx x x x x

Design Architecture for high
performance with a small
footprint

Public Standards for
outsourcing

And did even less!

How?

Slide 63 © Carliss Y. Baldwin 2006

Result: ROIC advantage to Sun
Average over 16 Quarters: Apollo Sun

Computer Microsystems
Invested Capital Ratios (Annualized)
Net Working Capital/ Sales (%) 29% 15% Low is good

Ending Net PPE / Sales (%) 24% 13% Low is good

Invested Capital/Sales (%) 57% 31% Low is good

Profitability
Net Income/Sales 0% 6% High is good

ROIC
ROIC (excl Cash, Annualized) 2% 20% High is go

Sun used its ROIC advantage to drive Apollo out
of the market

Apollo was acquired by HP in 1989

Slide 64 © Carliss Y. Baldwin 2006

Compaq vs. Dell

u Dell did to Compaq what Sun did to Apollo …

u Dell created an equally good machine, and
u Used design architecture to reduce its footprint in

production, logistics and distribution costs
– Negative Net Working Capital
– Direct sales, no dealers

u Result = Higher ROIC

Slide 65 © Carliss Y. Baldwin 2006

Higher ROIC always wins!
1997 Compaq Dell

Computer Computer
Invested Capital Ratios (Annualized)
Net Working Capital/ Sales (%) -2% -5% Low is good

Ending Net PPE / Sales (%) 8% 3% Low is good

Invested Capital/Sales (%) 8% -2% Low is good

Profitability
Net Income/Sales 8% 7% High is good

ROIC
ROIC (excl Cash, Annualized) 101% -287% !!

Dell started cutting prices; Compaq struggled, but in
the end had to exit.

Compaq was acquired by HP in 2002

Slide 66 © Carliss Y. Baldwin 2006

“Lead Firm” Competition

u Monopolist needs to deter all potential entrants
with threats of price war
– Very fragile equilibrium

– Potentially expensive to create “enough” FUD

u M&A Lead Firm does not try to deter all entry in
the design space
– Expects to buy most successful entrants ex post

– More robust equilibrium

– Maybe more advantageous, when you count the cost of
FUD

University of British Columbia
Software Practices Lab

Aspect-Oriented Programming

Radical Research in Modularity

© Copyright 2004-2006 Gregor Kiczales. All rights reserved.

Gregor Kiczales

Radical Research in Modularity 2

Expressiveness

• The code looks like the design

• “What’s going on” is clear

• The programmer can say what they want to

Programs must be written for people to read, and

only incidentally for machines to execute.

[SICP, Abelson, Sussman w/Sussman]

Radical Research in Modularity 3

Modularity and Abstraction

• Working definitions:

A module is a localized unit of source code
with a well-defined interface.

Abstraction means hiding irrelevant details
(behind an interface).

part v -- conclusions

Our Work is Like?

simple
statics

more
detailed
statics

simple
dynamics

m

assembling

wooden

blocks

modeling

and

designing

Radical Research in Modularity 5

Outline

• Introduction

• Intro to AOP
– OOP/AOP Example
– Example with AspectJ
– Other Examples

• Modularity and Abstraction
– Is AspectJ Code Modular, Abstract
– Explore Several Critiques
– Join Point Models
– Future Possibilities

Radical Research in Modularity 6

Simple Drawing tool (i.e. JHotDraw)

Radical Research in Modularity 7

Key Design Elements

• Shapes
– simple (Point)
– compound (Line…)
– display state
– displayed form

• Display

• …

• Display update signaling
– when shapes change
– update display
– aka Observer Pattern

Radical Research in Modularity 8

Using Objects

• Shapes

• Display

• Update signaling
Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

moveBy(int, int)

*

Radical Research in Modularity 9

Using Objects

• Shapes

• Display

• Update signaling

Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

moveBy(int, int)

*

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx; y = y + dy;

}

void setX(int x) {
this.x = x;

}

void setY(int y) {
this.y = y;

}
}

• Expressive
– code looks like the design
– “what’s going on” is clear

• Modular
– localized units
– well defined interfaces

• Abstract
– focus on more or less detail

Radical Research in Modularity 10

Using Objects

• Shapes

• Display

• Update signaling

1

Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

moveBy(int, int)

*

• Expressive
– Point, Line harder to read
– structure of signaling

• not localized, clear, declarative

• Modular? Abstract?
– signaling clearly not localized
– Point, Line polluted
– revisit this later

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx; y = y + dy;
display.update(this);

}
void setX(int x) {

this.x = x;
display.update(this);

}
void setY(int y) {

this.y = y;
display.update(this);

}
}

Radical Research in Modularity 11

1

Using Aspect-Oriented Programming

UpdateSignaling

Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

moveBy(int, int)

*

Radical Research in Modularity 12

1

Using Aspect-Oriented Programming

UpdateSignaling

Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

moveBy(int, int)

*

aspect UpdateSignaling {

private Display Shape.display;

pointcut change():
call(void Point.setX(int))
|| call(void Point.setY(int))
|| call(void Line.setP1(Point))
|| call(void Line.setP2(Point))
|| call(void Shape.moveBy(int, int));

after(Shape s) returning: change()
&& target(s) {

s.display.update();
}

}

Radical Research in Modularity 13

1

Using Aspect-Oriented Programming

UpdateSignaling

Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

moveBy(int, int)

*

aspect UpdateSignaling {

private Display Shape.display;

pointcut change():
call(void Shape.moveBy(int, int))
|| call(void Shape+.set*(..));

after(Shape s) returning: change()
&& target(s) {

s.display.update();
}

}

Radical Research in Modularity 14

1

Using Aspect-Oriented Programming

UpdateSignaling

Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

moveBy(int, int)

*

• Shapes

• Display

• Update signaling

aspect UpdateSignaling {

private Display Shape.display;

pointcut change():
call(void Shape.moveBy(int, int))
|| call(void Shape+.set*(..));

after(Shape s) returning: change()
&& target(s) {

s.display.update();
}

}

• Expressive
– “what’s going on” is clear

• Modular
– localized units
– well defined interfaces

• Abstract
– focus on more or less detail

Radical Research in Modularity 15

Outline

• Introduction

• Intro to AOP
– OOP/AOP Example
– Example with AspectJ
– Other Examples

• Modularity and Abstraction
– Is AspectJ Code Modular, Abstract
– Explore Several Critiques
– Join Point Models
– Future Possibilities

Radical Research in Modularity 16

AOP w/AspectJ

• AspectJ is
– seamless extension to Java
– Eclipse open source project
– de-facto standard on Java platform
– model for other AOP tools
– supported by IBM, Interface 21, BEA

2002 World Technology
Network Finalist

MIT Technology Review 10

Leading technologies 2000

MIT Technology Review
TR100 2004

Radical Research in Modularity 17

Dynamic Join Points

• 11 kinds of dynamic join point
– well defined points in flow of execution

• method, constructor, and advice execution
• method & constructor call
• field get & set
• exception handler execution
• static, object pre- and object initialization

method call
method

execution

:Point

setX(int)

points of aspect
correspondence

:Object

Radical Research in Modularity 18

execution(void Line.setP1(Point))

Pointcuts

a pointcut is a predicate on dynamic join points that:
– can match or not match any given join point
– says “what is true” when the pointcut matches
– can optionally expose some of the values at that join point

matches method execution join points with this signature

means of identifying
dynamic join points

Radical Research in Modularity 19

Pointcut Composition

whenever a Line executes a
“void setP1(Point)” or “void setP2(Point)” method

execution(void Line.setP1(Point)) ||
execution(void Line.setP2(Point));

pointcuts compose like predicates, using &&, || and !

Radical Research in Modularity 20

Primitive Pointcuts

- call, execution, adviceexecution
- get, set
- handler
- initialization, staticinitialization

- within, withincode

- this, target, args

- cflow, cflowbelow

kinded

match one kind of DJP
using signature

non-kinded

match all kinds of DJP
using variety of properties

Radical Research in Modularity 21

User-Defined Pointcuts

user-defined (aka named) pointcuts
– defined with pointcut declaration
– can be used in the same way as primitive pointcuts

pointcut change():
execution(void Line.setP1(Point)) ||
execution(void Line.setP2(Point));

name parameters

Every powerful language has three mechanisms for [combining simple ideas to form more complex ideas]:

* primitive expressions, which represent the simplest entities the language is concerned with,

* means of combination, by which compound elements are built from simpler ones, and

* means of abstraction, by which compound elements can be named and manipulated as units.

[SICP, Abelson, Sussman w/ Sussman]

Radical Research in Modularity 22

pointcut change():
execution(void Line.setP1(Point)) ||
execution(void Line.setP2(Point));

after() returning: change()
{
<code here runs after each change>

}

After Advice

:Line

setP1(Point)

after advice
runs on the

way back out

means of semantic effect
at dynamic join points

Radical Research in Modularity 23

A Simple Aspect
UpdateSignaling v1

box means complete running code

aspect UpdateSignaling {

pointcut change():
execution(void Line.setP1(Point)) ||
execution(void Line.setP2(Point));

after() returning: change()
{
Display.update();

}
}

Radical Research in Modularity 24

How to Read This Code
UpdateSignaling v1

aspect UpdateSignaling {

pointcut change():
execution(void Line.setP1(Point)) ||
execution(void Line.setP2(Point));

after() returning: change()
{
Display.update();

}
}

Some points in the
system’s execution

are a “change”.

Specifically, these
method executions.

Here is the UpdateSignaling
aspect of the system.

After returning from change points-
update the display.

Radical Research in Modularity 25

Without AspectJ

• what you would expect
– update calls are scattered and tangled
– “what is going on” is less explicit

class Line {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) {
this.p1 = p1;
Display.update();

}
void setP2(Point p2) {

this.p2 = p2;
Display.update();

}
}

UpdateSignaling v1

what you would write if you didn’t
have AspectJ;

NOT what AspectJ produces
OR meaning of AspectJ code

Radical Research in Modularity 26

How Do You Think About Objects?
• Objects

– Define their own behavior
– Have fields and methods
– Clear interface

• A datastructure w/
– Vector of fields
– Pointer to method table

• Dispatch code
– Method call table entry

• Macrology to
– Make fields look like vars
– Method calls look nice

Radical Research in Modularity 27

Abstraction

Helps understand

- one way to implement OOP

- potential performance costs

- language semantics issues

Helps to

- do OO design

- scale use of objects to large systems

• Objects
– Define their own behavior
– Have fields and methods
– Clear interface

• A datastructure w/
– Vector of fields
– Pointer to method table

• Dispatch code
– Method call table entry

• Macrology to
– Make fields look like vars
– Method calls look nice

Radical Research in Modularity 28

Abstraction
• Aspects

– Define their own behavior
– Have pointcuts, advice …
– Clear interface

• A datastructure w/
– Vector of fields
– Pointer to method table

• Code transformations
– Find join point shadows
– Insert interceptor calls

Helps to

- do AO design

- scale use of aspects to large systems

Helps understand

- one way to implement AOP

- potential performance costs

- language semantics issues

Radical Research in Modularity 29

Abstraction
• Objects

– Define their own behavior
– Have fields and methods
– Clear interface

• A datastructure w/
– Vector of fields
– Pointer to method table

• Dispatch code
– Method call table entry

• Macrology to
– Make fields look like vars
– Method calls look nice

• Aspects
– Define their own behavior
– Have pointcuts, advice …
– Clear interface

• A datastructure w/
– Vector of fields
– Pointer to method table

• Code transformations
– Find join point shadows
– Insert interceptor calls

Radical Research in Modularity 30

A Multi-Class Aspect
UpdateSignaling v2

aspect UpdateSignaling {

pointcut change():
execution(void Shape.moveBy(int, int)) ||
execution(void Line.setP1(Point)) ||
execution(void Line.setP2(Point)) ||
execution(void Point.setX(int)) ||
execution(void Point.setY(int));

after() returning: change() {
Display.update();

}
}

Radical Research in Modularity 31

Using Naming Convention
UpdateSignaling v2b

aspect UpdateSignaling {

pointcut change():
execution(void Shape.moveBy(int, int)) ||
execution(void Shape+.set*(*));

after() returning: change() {
Display.update();

}
}

Radical Research in Modularity 32

Using Attributes
UpdateSignaling v2c

aspect UpdateSignaling {

pointcut change():
execution(@Change * *(..)));

after() returning: change() {
Display.update();

}
}

class Line {
private Point p1, p2;

Point getP1() { return p1; }

Point getP2() { return p2; }

@Change

void moveBy(int dx, int dy) {

p1.moveBy(dx, dy);

p2.moveBy(dx, dy);

}

@Change
void setP1(Point p1) {

this.p1 = p1;
}
@Change
void setP2(Point p2) {

this.p2 = p2;

}
}

Radical Research in Modularity 33

Values at Join Points
UpdateSignaling v3

aspect UpdateSignaling {

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int)) ||
execution(void Shape+.set*(*)));

after(Shape s) returning: change(s) {
Display.update(s);

}
}

• pointcut can explicitly expose certain values

• advice can use explicitly exposed values

Radical Research in Modularity 34

aspect UpdateSignaling {

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int) ||
execution(void Shape+.set*(*)));

after(Shape s) returning: change(s) {
Display.update(s);

}
}

Crosscutting Structure
class Line {

private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {

p1.moveBy(dx, dy);

p2.moveBy(dx, dy);

}

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {
this.p2 = p2;

}
}

class Point {

private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {

x = x + dx; y = y + dy;

}
void setX(int x) {
this.x = x;

}
void setY(int y) {
this.y = y;

}
}

• Aspect and classes crosscut

• Pointcut cuts interface
– through Point and Line
– advice programs against interface
– interface structure is declarative

Radical Research in Modularity 35

Crosscutting

class Line {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) {
this.p1 = p1;
Display.update();

}
void setP2(Point p2) {
this.p2 = p2;
Display.update();

}
}

class Point {

private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void setX(int x) {
this.x = x;
Display.update();

}
void setY(int y) {
this.y = y;
Display.update();

}
}

aspect UpdateSignaling {

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int)) ||
execution(void Shape+.set*(*)));

after(Shape s) returning: change(s) {
Display.update(s);

}
}

class Line {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {
this.p2 = p2;

}
}

class Point {

private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void setX(int x) {
this.x = x;

}
void setY(int y) {
this.y = y;

}
}

c1 and c2 crosscut wrt a common
representation iff projections overlap, but do

not contain [Masuhara, ECOOP03]

Radical Research in Modularity 36

Scattering and Tangling

Observer pattern is

scattered –
spread around

tangled –
mixed in with other concerns

class Shape {
private Display display;

abstract void moveBy(int, int);

}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {
p1.moveBy(dx, dy);
p2.moveBy(dx, dy);
display.update(this);

}

void setP1(Point p1) {
this.p1 = p1;
display.update(this);

}
void setP2(Point p2) {

this.p2 = p2;
display.update(this);

}
}

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx;
y = y + dy;
display.update(this);

}

void setX(int x) {
this.x = x;
display.update(this);

}
void setY(int y) {

this.y = y;
display.update(this);

}

}

Radical Research in Modularity 37

IDE support

• AJDT (AspectJ Development Tool)

• An Eclipse Project

• Goal is JDT-quality AspectJ support
– highlighting, completion, wizards…
– structure browser

• immediate
• outline
• overview

Radical Research in Modularity 38

Only Top-Level Changes
UpdateSignaling v4

aspect UpdateSignaling {

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int)) ||
execution(void Shape+.set*(*)));

pointcut topLevelChange(Shape shape):
change(shape) && !cflowbelow(change(Shape));

after(Shape s) returning: topLevelChange(s) {
Display.update(s);

}
}

Radical Research in Modularity 39

Compositional Crosscutting
class Line {

private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {

p1.moveBy(dx, dy);

p2.moveBy(dx, dy);

}

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {
this.p2 = p2;

}
}

class Point {

private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {

x = x + dx; y = y + dy;

}
void setX(int x) {
this.x = x;

}
void setY(int y) {
this.y = y;

}
}

aspect UpdateSignaling {

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int)) ||
execution(void Shape+.set*(*)));

pointcut topLevelChange(Shape shape):
change(shape) && !cflowbelow(change(Shape));

after(Shape s) returning: topLevelChange(s) {
Display.update(s);

}
}

:Line end1:Point

moveBy(int, int) moveBy(int, int)
setX(int)

setY(int)

moveBy(int, int)
setX(int)

setY(int)

end2:Point

Radical Research in Modularity 40

Outline

• Introduction

• Intro to AOP
– OOP/AOP Example
– Example with AspectJ
– Other Examples

• Modularity and Abstraction
– Is AspectJ Code Modular, Abstract
– Explore Several Critiques
– Join Point Models
– Future Possibilities

Radical Research in Modularity 41

Design Invariants

aspect FactoryEnforcement {

pointcut newShape():
call(Shape+.new(..));

pointcut inFactory():
withincode(Shape+ Shape.make*(..));

pointcut illegalNewShape():
newShape() && !inFactory();

before(): illegalNewShape() {
throw new RuntimeError("Must call factory method…");

}
}

Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

makePoint(..)
makeLine(..)
moveBy(int, int)

*

Radical Research in Modularity 42

Design Invariants

aspect FactoryEnforcement {

pointcut newShape():
call(Shape+.new(..));

pointcut inFactory():
withincode(Shape+ Shape.make*(..));

pointcut illegalNewShape():
newShape() && !inFactory();

declare error: illegalNewShape():
"Must call factory method to create figure elements.";

}

Display

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Shape

makePoint(..)
makeLine(..)
moveBy(int, int)

*

Radical Research in Modularity 43

(Simple) Authentication State FSM

public aspect AccessibilityFSM {

private enum State { INIT, AUTHENTICATED, REJECTED };

private State curr = State.INIT; // global state

pointcut authenticate(): ...;

pointcut access(): ...;

after() returning: authenticate() { curr = State.AUTHENTICATED; }
after() throwing: authenticate() { curr = State.REJECTED; }

before(): access() {
if(curr != State.AUTHENTICATED)

throw new AccessException();
}

}

Radical Research in Modularity 44

FFDC [Colyer et. al. AOSD 2004]

• Logs every error as soon as its thrown

• Consistent policy makes logs meaningful

• Real FFDC implementations are more complex

public aspect FFDC {

private Log log = <appropriate global log>;

after() throwing (Error e):
execution(* com.ibm..*(..)) {

log.log(e);
}

}

Radical Research in Modularity 45

From a Spacewar Game
class Ship {

...
public void fire() { ... }
public void rotate(int direction) { ... }
public void fire() { ... }
...
static aspect EnsureShipIsAlive {

pointcut helmCommand(Ship ship):
this(ship) &&
(execution(void Ship.rotate(int)) ||

execution(void Ship.thrust(boolean)) ||
execution(void Ship.fire()));

void around(Ship ship): helmCommand(ship) {
if (ship.isAlive()) {

proceed(ship);
}

}
}

}

Radical Research in Modularity 46

dflow pointcut [Masuhara et. al.]

• Quotes strings passed to out.print

• when generating responses

• and the string is based on user input

aspect Sanitizing {
String around (String s):

call(void print(String))
&& args(s)
&& dflow[s, userInput]

(call(String Request.get()) && returns(userInput))

proceed(quote(s));
}

}

Radical Research in Modularity 47

aspect UpdateSignaling {

private Display Shape.display;

static void setDisplay(Shape s, Display d) {
s.display = d;

}

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int)) ||
execution(void Shape+.set*(*)));

after(Shape s) returning: change(s) {
s.display.update(s);

}
}

One Display per Shape
UpdateSignaling v5

• inter-type declarations

• aka open classes [Cannon 78]

• declares members of other types
– fields, methods

• display field
– is in objects of type Shape
– but belongs to UpdateSignaling aspect

private with respect to aspect

Radical Research in Modularity 48

From a Compiler
/**
* Implements the crosscutting relationships concerning the different kinds of
* labels that different kinds of statements (and one expr) have. The declare
* parents block can be read as table of what ASTs have what labels.
*
*/
aspect HasLabel {

private interface Label {} //enclosing loop's label
private interface TopLabel {}
private interface DoneLabel {}
private interface IncrLabel {}
private interface TrueLabel {}
private interface FalseLabel {}

declare parents: WhileStat implements TopLabel, DoneLabel;
declare parents: ForStat implements TopLabel, IncrLabel, DoneLabel;
declare parents: BreakStat implements Label ;
declare parents: ContinueStat implements Label ;
declare parents: BinaryExpr implements TrueLabel, DoneLabel;
declare parents: IfStat implements TrueLabel, FalseLabel, DoneLabel;

private String Label.label;
public String Label.getLabel() { return label; }
private void Label.setLabel(String label) { this.label = label; }

...

}

declare parents:
WhileStat implements TopLabel, DoneLabel;
ForStat implements TopLabel, IncrLabel, DoneLabel;
BreakStat implements Label ;
ContinueStat implements Label ;
BinaryExpr implements TrueLabel, DoneLabel;
IfStat implements TrueLabel, FalseLabel, DoneLabel;

Radical Research in Modularity 49

Outline

• Introduction

• Intro to AOP
– OOP/AOP Example
– Example with AspectJ
– Other Examples

• Modularity and Abstraction
– Is AspectJ Code Modular, Abstract?
– Explore Several Answers
– Join Point Models
– Future Possibilities

Radical Research in Modularity 50

“AOP is Anti-Modular”

• “it changes the behavior of my code”
– A can affect behavior visible at interface to C1

• But
– C2 can do that also
– That’s the nature of modularity:

• A module implements its behavior in terms of other
well-defined behaviors

A

C2

C1

Radical Research in Modularity 51

Real Programmers Use VI

• In non-AOP programmers can easily
chase module references
– to know what has to be consulted
– to determine complete behavior of C1
– we don’t want to have to use tool support

• But
– include files are ‘easy’ to chase down?
– write enterprise code w/o tools?

Radical Research in Modularity 52

Put the Genie Back in the Bottle

• Propose ‘improvement’ to AOP so that
– methods, classes, files etc.

that want advice, say so explicitly

• But
– this just reduces AOP back to procedure calls
– whole point was to go beyond that

Radical Research in Modularity 53

Without AspectJ

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx;
y = y + dy;

}

void setX(int x) {
this.x = x;

}
void setY(int y) {

this.y = y;

}
}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {
p1.moveBy(dx, dy);
p2.moveBy(dx, dy);

}

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {

this.p2 = p2;

}
}

class Shape {

abstract void moveBy(int, int);
}

UpdateSignaling v1

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx;
y = y + dy;

}

void setX(int x) {
this.x = x;

}
void setY(int y) {

this.y = y;

}
}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {
p1.moveBy(dx, dy);
p2.moveBy(dx, dy);

}

void setP1(Point p1) {
this.p1 = p1;
Display.update();

}
void setP2(Point p2) {

this.p2 = p2;
Display.update();

}
}

class Shape {

abstract void moveBy(int, int);
}

UpdateSignaling v2

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx;
y = y + dy;
Display.update();

}

void setX(int x) {
this.x = x;
Display.update();

}
void setY(int y) {

this.y = y;
Display.update();

}
}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {
p1.moveBy(dx, dy);
p2.moveBy(dx, dy);
Display.update();

}

void setP1(Point p1) {
this.p1 = p1;
Display.update();

}
void setP2(Point p2) {

this.p2 = p2;
Display.update();

}
}

class Shape {

abstract void moveBy(int, int);
}

UpdateSignaling v3

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx;
y = y + dy;
display.update(this);

}

void setX(int x) {
this.x = x;
display.update(this);

}
void setY(int y) {

this.y = y;
display.update(this);

}
}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {
p1.moveBy(dx, dy);
p2.moveBy(dx, dy);
display.update(this);

}

void setP1(Point p1) {
this.p1 = p1;
display.update(this);

}
void setP2(Point p2) {

this.p2 = p2;
display.update(this);

}
}

class Shape {

abstract void moveBy(int, int);
}

UpdateSignaling v5
class Shape {
private Display display;

abstract void moveBy(int, int);
}

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx;
y = y + dy;
display.update(this);

}

void setX(int x) {
this.x = x;
display.update(this);

}
void setY(int y) {

this.y = y;
display.update(this);

}
}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {
p1.moveBy(dx, dy);
p2.moveBy(dx, dy);
display.update(this);

}

void setP1(Point p1) {
this.p1 = p1;
display.update(this);

}
void setP2(Point p2) {

this.p2 = p2;
display.update(this);

}
}

• Replaying the same evolution
• Through 4 versions
• In plain OO (Java)

“display updating” is not modular
– evolution is cumbersome
– changes are scattered
– have to track & change all

callers
– it is harder to think about

Radical Research in Modularity 54

With AspectJ

class Point extends Shape {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {
x = x + dx;
y = y + dy;

}

void setX(int x) {
this.x = x;

}
void setY(int y) {

this.y = y;

}
}

class Line extends Shape {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {
p1.moveBy(dx, dy);
p2.moveBy(dx, dy);

}

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {

this.p2 = p2;

}
}

class Shape {

abstract void moveBy(int, int);
}

UpdateSignaling v1

aspect UpdateSignaling {

pointcut change():
execution(void Line.setP1(Point)) ||
execution(void Line.setP2(Point));

after() returning: change() {
Display.update();

}
}

UpdateSignaling v2

aspect UpdateSignaling {

pointcut change():
execution(void Shape.moveBy(int, int) ||
execution(void Line.setP1(Point)) ||
execution(void Line.setP2(Point)) ||
execution(void Point.setX(int)) ||
execution(void Point.setY(int));

after() returning: change() {
Display.update();

}
}

UpdateSignaling v2b

aspect UpdateSignaling {

pointcut change():
execution(void Shape.moveBy(int, int) ||
execution(void Shape+.set*(*));

after() returning: change() {
Display.update();

}
}

UpdateSignaling v3

aspect UpdateSignaling {

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int) ||
execution(void Shape+.set*(*)));

after(Shape s) returning: change(s) {
Display.update(s);

}
}

UpdateSignaling is modular
– all changes in single

aspect
– evolution is modular
– it is easier to think about

UpdateSignaling v5

aspect UpdateSignaling {

private Display Shape.display;

static void setDisplay(Shape s, Display d) {
s.display = d;

}

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int)) ||
execution(void Shape+.set*(*)));

after(Shape s) returning: change(s) {
shape.display.update(s);

}
}

Radical Research in Modularity 55

Selling Different Service Aspects

• During internal exploration of AspectJ @ IBM
– key point
– “So we could sell different logging policies?”

• Product-line potential of
– FFDC and related serviceability aspects

Radical Research in Modularity 56

Comparing refers to relations

Display Shape

shape.setDisplay(display);

Plain Java

Display Shape

UpdateSignaling.setDisplay(shape, display);

UpdateSignaling w/ AspectJ 1

Radical Research in Modularity 57

What’s Going On

• The nays make a subtle assumption:
A module is a statically localized unit of

source code with a well-defined static interface.

Abstraction means hiding permanently irrelevant
details behind an interface.

• But…
– crosscutting concerns (ccc)

• from perspective of ccc, system modularity is different
– it is decomposed along entirely different lines
for ccc to be modular, modularization can’t be static

Radical Research in Modularity 58

[Kiczales Mezini, ICSE 05]

• Starts w/ AspectJ style AOP

• Presents more flexible definition of module
– modules are statically localized
– but interfaces are somewhat more dynamic

• constructed based on complete system configuration
• complete module interface not known

until system configuration is known!

• Shows that modular reasoning
– is possible
– works better than without AOP if there are

crosscutting concerns

Radical Research in Modularity 59

Crosscutting Concerns are Real

• Crosscutting concerns are a fact of life

• They are a ‘root problem’ for modularity
• Even simple UpdateSignalling

– cannot be implemented modularly w/o AOP

SSP modularity not enough

A module is a statically localized unit of
source code with a well-defined static interface.

Abstraction means hiding permanently irrelevant details
behind an interface.

part v -- conclusions

Crosscutting In Other Domains

simple
statics

more detailed
statics

simple
dynamics

m

dynamics model is

• crosscutting

• only exists of whole

Radical Research in Modularity 61

[Whitney – Physical Limits to Modularity]

• Compares VLSI and complex electro-mechanical systems

• Claims that modular design difficult in high-power systems

• In our terms
– the high-power engenders many crosscutting concerns

“in CEMO thousands of distinct parts must be designed to
create a product with a similar total number of parts, and
many must be verified first individually and again in
assemblies by simulation and/or prototype testing; a
modular approach works sometimes, but not in systems
subjected to severe weight, space, or energy constraints; in
constrained systems, parts must be designed to share
functions or do multiple jobs; design and performance of
these parts are therefore highly coupled”

Radical Research in Modularity 62

[Smith, On the Origin of Objects1]

• How is it that we can see the world in different ways?

• Registration is
– process of ‘parsing’ objects out of fog of undifferentiated stuff
– constantly registering and re-registering the world
– mediates different perspectives on a changing world
– enables moving in and out of connection with the world

• Critical properties of registration
– multiple routes to reference

• morning star, evening star
– ability to exceed causal reach

• person closest to average height in Gorbachev's office now
– indexical reference

• the one in front of him

1. On this slide, object means in the real-world.

Radical Research in Modularity 63

Traditional Mechanisms

• Modular program structures

• Give rise to execution stream

• Only one place has static direct causal
access to given point in stream
– via single module that gives rise to it
– equivalent to ‘3 static assumptions’

class Line {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {

p1.moveBy(dx, dy);

p2.moveBy(dx, dy);

}

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {

this.p2 = p2;
}

}

class Point {

private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {

x = x + dx; y = y + dy;

}
void setX(int x) {

this.x = x;
}
void setY(int y) {

this.y = y;
}

}

stream of instructions

Radical Research in Modularity 64

Join Point Models
class Line {

private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void moveBy(int dx, int dy) {

p1.moveBy(dx, dy);

p2.moveBy(dx, dy);

}

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {

this.p2 = p2;
}

}

class Point {

private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void moveBy(int dx, int dy) {

x = x + dx; y = y + dy;

}
void setX(int x) {

this.x = x;
}
void setY(int y) {

this.y = y;
}

}

aspect UpdateSignaling {

pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int)) ||
execution(void Shape+.set*(*)));

pointcut topLevelChange(Shape shape):
change(shape) && !cflowbelow(change(Shape));

after(Shape s) returning: topLevelChange(s) {
Display.update(s);

}
}

stream of instructions

• Pointcuts
• pick out dynamic join points in stream
• unconstrained by original program modularity
• ‘register’ instructions in own form
• create a crosscutting modularity

Radical Research in Modularity 65

Join Point Models

• (De)compose software in different ways

• Register aspects out of fog of undifferentiated points
– means of identifying JPs (aka pointcut) registers
– aspects/slices/concerns… group over that

• Connect and have effect through that registration
– means of semantic effect (aka advice)

• Critical properties of registration
– multiple routes to reference

• void setX(int nx) { … }, call(void setX(int)), cflow(…)
– exceed causal reach

• within(com.sun..*), !within(com.mycompany.mysystem)
– indexical reference

• cflow(…)

Radical Research in Modularity 66

Variation in Modularity

A module is a statically localized unit of
source code with a well-defined static interface.

Abstraction means hiding permanently irrelevant
details behind an interface.

• Remove static restriction
• Consider what could go in 3 holes
• Be more ‘radical’ rather than conservative

Radical Research in Modularity 67

Radical Research in Modularity 68

Radical Research in Modularity 69

Radical Research in Modularity 70

Radical Research in Modularity 71

Mylar
see only what you’re working on

Aluminized film used to avoid blindness when staring at an eclipse
Task Focused UI to avoid information blindness when staring at Eclipse

Radical Research in Modularity 72

Radical Research in Modularity

A module is a statically localized unit of
source code with a well-defined static interface.

Abstraction means hiding permanently irrelevant details
behind an interface.

• AspectJ: static, per-configuration, per aspect

• Hyper/J: re-arrangeable, static, re-arrangeable

• Fluid AOP: fluid, fluid, fluid

• Mylar: dynamic filter, static, dynamic filter

• <please add here>

Radical Research in Modularity 73

Models, Programs and Systems

systemmodel

i = 1
while (i < 4) {

print(i)
i = i + 1

}

abstract

effective

programs live in
this magic space

Brian’s account talks
(in part) about this space

cc

Radical Research in Modularity 74

Models, Programs and Systems

i = 1
while (i < 4) {

print(i)
i = i + 1

}

systemmodel

abstract

effective

programs live in
this magic space

cc

Brian’s account talks
(in part) about this space

Summary for the
1st International Workshop on
Agile Product Line Engineering

APLE 2006
August 21, 2006 Baltimore, MD

(W2)
www.lsi.upc.edu/events/aple

Hosts
Pere Botella and Kendra Cooper

Organizers
Xavier Franch and Kendra Cooper

• Purpose of the Workshop
Bring together a diverse group of participants interested in
integrating agile methods and software product line engineering
methods to enable the rapid development of high quality software
with reduced cost

• Workshop Participants
– 14 international participants from academia and

industry
– Our participants:

• had expertise in agile methods and/or software
product line development

• had expertise in diverse domains
• were very enthusiastic

• Overall Organization of the Full Day Workshop
Two morning sessions were for presenting and discussing an
interesting collection of seven research and experience papers

– Papers have been posted on the workshop website
– Presentations will be posted soon

• Overall Organization of the Workshop (cont.)
Two afternoon sessions for identifying and discussing topics
of interest to both researchers and practitioners

Four major topics were identified:
1. Experiences using “pure” agile, “pure” product line

engineering, and combinations of agile and product line
engineering methods

- strengths, limitations of “pure” approaches
- experiences using combined approaches

2. Issues in defining an Agile Software Product line method
- start with an agile approach and tailor it?
- start with a product line approach and tailor it?

3. Empirical design/assessment of approaches in industry and
academia

- How to provide evidence that an approach is useful
4. How to share of theory/empirical results between academia

and industry

The first two topics were discussed in a lively atmosphere
We ran out of time to discuss the other two topics

• Future communication and events
- Presentations will be posted on the website
- Summary of our discussion will be distributed for

comments, revised, and then posted on the website
- Contact information for participants will be

distributed for future discussion and collaboration
- Special issue of Journal of Systems and Software

(JSS) has been arranged, call for papers will be
announced shortly

- APLE 2007 looks promising!

© 2005 by Carnegie Mellon University 1

Managing Variability
for Software Product

Lines:
Working With

Variability Mechanisms

SPLC
21 August 2006

Baltimore, Maryland, USA

© 2005 by Carnegie Mellon University 2

Workshop capsule

GOAL: As a community, we wish to produce guidance for
use of variation mechanisms of sufficient detail to be useful
to a software product line engineer.

ATTENDANCE: ~30

FORMAT: Five short paper presentations before lunch (out
of 13 submitted). Four working groups formed to work 3
hours after lunch.

WORKING GROUPS:
• Criteria influencing selection of variation mechanisms
• Criteria focused on cost
• Criteria focused on performance
• Variation mechanisms and evolution

© 2005 by Carnegie Mellon University 3

Workshop results

A comprehensive cookbook of the form

Situation Variation mechanism
Situation Variation mechanism

…

…is too complex a task for any one workshop.

To make progress, the workshop community proposed a
Wiki site be set up, where contributors can submit patterns
of variation mechanism usage.

Pattern: (problem, context) solution

© 2005 by Carnegie Mellon University 4

Variation mechanism Wiki

The workshop focused on how to describe the conditions
under which one would choose a variation mechanism –
the criteria for selection. For example
• Required run-time quality attributes of the products
• Required non-run-time quality attributes of the products
• Required binding time(s) of the mechanism
• Domain of application; stability of domain
• Cost of building the mechanism (over time)
• Cost of exercising the mechanism (over time)
• People skills required to build and to exercise
• Tools and automation compatibility requirements
• Legacy asset compatibility

© 2005 by Carnegie Mellon University 5

Wiki

Discussed preliminary design of the wiki for
• A pattern contributor

- “In what domains has this mechanism been
successfully used?”

- “With which languages/environments has this
mechanism been successful used?”

- “What quality attribute effects does this mechanism
have?”

- Etc.
• A pattern consumer

© 2005 by Carnegie Mellon University 6

Next workshop

There was group sentiment to have another workshop at
the next SPLC.

“Price of admission” might be contributing a pattern.

In the interim we will try to set up the wiki and seed it with
some patterns. This will involve settling on a pattern
language to use, which will evolve over time as we gain
experience.

© 2005 by Carnegie Mellon University 7

Workshop execution

Five short paper presentations (out of 13 submitted):

• “Implementing a Variation Point: A Pattern Language,”
John M. Hunt, John McGregor

• “Using Costing Information as Decision Support in Variability
Management,” Holger Schackmann, Horst Lichter

• “Coherent Integration of Variability Mechanisms at the
Requirements Elicitation and Analysis Levels,”
Nicolas Guelfi, Gilles Perrouin

• “Using Dependencies to Select Variability Realization
Techniques in Software Product Lines,”
Roberto Silveira Silva Filho, David F. Redmiles

• “Good Practice Guidelines for Code Generation in Software
Product Line Engineering,”
Neil Loughran Iris Groher Awais Rashid

Variability Management –
Working with Variability Mechanisms

Proceedings of the Workshop held in conjunction with the
10th Software Product Line Conference (SPLC-2006)

Editors:
Paul Clements
Dirk Muthig

IESE-Report No 152.06/E
Version 1.0
October 15, 2006

A publication by Fraunhofer IESE

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Table of Contents

1 Introduction 1
2 Towards the Use of Dependencies to Manage

Variability in Software Product Lines 4
Roberto Silveira Silva Filho and David F. Redmiles

3 Using Costing Information as Decision Support in
Variability Management 16

Holger Schackmann, Horst Lichter
4 Module Structures and SPL Variability 27

Philipp Schneider, Phonak Group
5 A first step towards a framework for the automated

analysis of feature models 39
David Benavides, Sergio Segura, Pablo Trinidad,
and Antonio Ruiz-Cortés

6 Version management tools as a basis for integrating
Product Derivation and Software Product Families 48

Jilles van Gurp, Christian Prehofer
7 Coherent Integration of Variability Mechanisms at

the Requirements Elicitation and Analysis Levels 58
Nicolas Guelfi, Gilles Perrouin

8 Product Line Architecture Variability Mechanisms 72
Steve Livengood

9 Implementing a Variation Point: A Pattern Language 83
John M. Hunt and John D. McGregor

10 On the Architectural Relevance of Variability
Mechanisms in Product Family Engineering 97

Arnd Schnieders
11 Good Practice Guidelines for Code Generation in

Software Product Line Engineering 108
Neil Loughran, Iris Groher and Awais Rashid

12 Beyond Code: Handling Variability in Art Artifacts
in Mobile Game Product Lines 124

Vander Alves, Gustavo Santos, Fernando Calheiros,
Vilmar Nepomuceno, Davi Pires, Alberto Costa Neto,
Paulo Borba

Copyright © Fraunhofer IESE 2006 v

Introduction

1 Introduction

1.1 Overview

Managing variability is the essence of software product line practice. Variability
enters the product line picture through the need for different features, deploy-
ment on different platforms, the desire for different quality attributes, and the
accommodation of different deployment scenarios. Eventually, every need for
variability manifests itself in one way or another in the actual artifacts that po-
pulate a product line’s core asset base.

“Variation mechanisms” is the name we give to the constructs that achieve va-
riation at the artifact level. Catalogs of these mechanisms have been published,
and they come in a wide variety. They may be

• requirements-level (such as the use of feature models, use case extensions,
etc.)

• application-level (such as the use of configurators or program generators)

• architectural (such as plug-ins, or component replacement or replication)

• design-level (such as aspects), or

• implementation-level constructs (such as inheritance or parameterization)

• runtime variation (such as reflective programming or conditionals)

Selecting the correct variation mechanism(s) can have a dramatic effect on the
cost to deploy new products, react to evolutionary pressures, and in general
maintain and grow the product line. But selection remains an ad hoc process in
nearly all product line organizations.

A one-day workshop entitled “Managing Variability for Software Product Lines:
Working With Variability Mechanisms” was held in conjunction with the 2006
Software Product Line Conference on August 21, 2006 in Baltimore, USA. Its
goal was to begin to fill the void between variability requirements visible to
those who deal with features and other product-level concerns, and the varia-
tion mechanisms visible to creators and consumers of a product line’s core as-
sets. The goal of the workshop was to begin to codify a body of knowledge for
the informed and purposeful selection of variation mechanisms to use in a
software product line’s core assets.

Advertised topics of interest included

• Reasoning frameworks for variability selection

• Factors that affect the selection of variability mechanisms

Copyright © Fraunhofer IESE 2006 1

Introduction

• Cost models to enable reasoned selection of variability mechanisms

• Variability mechanisms especially suited for non-software artifacts

• Binding time issues from an strategic or economic viewpoint

1.2 Program Committee

The program committee for the workshop comprised (in alphabetical order):

• Michalis Anastasopoulos, Fraunhofer IESE

• Martin Becker, Fraunhofer IESE

• Jan Bosch, Nokia

• Stan Jarzabek, National University of Singapore

• Charles Krueger, BigLever Software, Inc.

• Juha Kuusela, Bosch

• Klaus Schmid, University of Hildesheim

• Rob van Ommering, Philips Research

1.3 Workshop Execution

Approximately thirty people attended the workshop, making it the workshop
with the highest attendance at the conference. Thirteen position papers were
submitted, which are included in this report. The workshop was highly interac-
tive and focused on making tangible progress towards answering specific ques-
tions relating to best practices in variability management.

During the morning session there were short presentations of five selected pa-
pers. The bulk of the workshop, however, was reserved for discussions and o-
verall conclusions. Participants were be assigned to groups reflecting specific
topics. Then, the discussions were carried out by raising and debating relevant
questions related to every topic. Finally, a member of each group presented
that group’s conclusions.

1.4 Workshop Conclusions

A comprehensive cookbook of the form …

• Situation → Variation mechanism

• Situation → Variation mechanism
• …

Copyright © Fraunhofer IESE 2006 2

Introduction

…is too complex a task for any one workshop. To make progress, the work-
shop community proposed a Wiki site be set up, where contributors can submit
patterns of variation mechanism usage.

Pattern: (problem, context) → solution

The workshop focused on how to describe the conditions under which one
would choose a variation mechanism – the criteria for selection.

For example

• Required run-time quality attributes of the products
• Required non-run-time quality attributes of the products
• Required binding time(s) of the mechanism
• Domain of application; stability of domain
• Cost of building the mechanism (over time)
• Cost of exercising the mechanism (over time)
• People skills required to build and to exercise
• Tools and automation compatibility requirements
• Legacy asset compatibility

There was widespread group sentiment to have another workshop at the next
SPLC, wherein the “price of admission” might be contributing a pattern. In the
interim the organizers intend to the wiki and seed it with some patterns, as well
as solicit patterns from the product line community at large. This will involve
settling on a pattern language to use, which will evolve over time as we gain
experience.

1.5 Outline

The remaining chapters present the ten papers that were submitted to the
workshop and have been accepted by the program committee.

Copyright © Fraunhofer IESE 2006 3

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

2 Towards the Use of Dependencies to Manage Variability in
Software Product Lines

Roberto Silveira Silva Filho and David F. Redmiles
Donald Bren School of information and Computer Sciences

Department of Informatics, University of California, Irvine, CA 92697-3430, USA
{rsilvafi, redmiles}@ics.uci.edu

Dependencies have been used in feature-oriented product line to manage fea-
ture incompatibilities alternatives, activation requirements, and to support the
built of different software configurations. Few studies, however, have been de-
voted to study the role of dependencies in limiting the variability of product
lines and as important criteria for selecting variability realization techniques.
Understanding those variability implications, allow us to better understand the
design trade-offs of a particular product line, to bound its variability dimen-
sions, and to decide, as early as in the design phase, where and which variabil-
ity realization techniques to apply. This position paper proposes the use of de-
pendencies as one of the main criteria to be used in bounding variability and
choosing the appropriate variability realization techniques. We motivate and
exemplify our approach with a publish/subscribe product line.

2.1 Introduction

The goal of software product lines is “to capitalize on commonality and man-
age variability in order to reduce the time, effort, cost and complexity of creat-
ing and maintaining a product line of similar software systems”1 Whereas in a
software product line, reuse allows the reduction of the costs of producing
similar software systems, variability permits the customization of a software
family to the different needs of the product line members. It also facilitates the
incorporation of new software products in a product family, thus adding value
to the product line (Baldwin and Clark 2000). Variability, however, comes with
a cost. The more variability a product line supports, the more complex its im-
plementation becomes. Dependencies from the problem domain and from the
variable feature set pose a limit in the solution variability by hindering the reuse
of existing features, increasing the solution complexity and posing extra burden
in the configuration strategies.

In the design of software product lines, feature-oriented approaches have been
successfully used in the industry, where there seems to be a consensus on the
use of feature-oriented design models. In this approach, the variability among
software products is modeled in terms of features. Features represent units of
variation in different versions of the software (Svahnberg, Gurp et al. 2005).

1 Extracted from www.softwareproductlines.com/introduction/concepts.html

Copyright © Fraunhofer IESE 2006 4

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

Ideally, features must be implemented (or realized) as independent (or modular)
pieces of code that can be specified and built in isolation from one another. In
practice, however, features are not completely independent; those units of
variability usually require different services from other features either through
hierarchical decomposition or by all sorts of “use” dependencies. According to
the complexity of the system, this hierarchy can have an arbitrary number of
levels. Moreover, due to variability and domain constraints, incompatibilities
among features may also exist. Hence, in a feature-oriented model, the repre-
sentation of features dependencies is crucial. Features may be incompatible (ex-
clude dependency), may require additional or complementary features (usage
dependency), may modify the behavior of other features (modify dependency),
and may also have special activation dependencies (multiple, exclusive, subordi-
nate, concurrent or sequential) (Lee and Kang 2004). Additionally, due to reuse
and the variability realization technique employed, different features may share
common sub-features. Those dependencies can impact the design and behavior
of software in different ways. For example, they can originate unforeseeable
behavior in software as the case of feature interference problem (Cameron and
Velthuijsen 1993) where the combination of two or more features that share
common resources can interfere with one another in unpredictable ways.

With such a variety of dependencies and relations between features, the choice
of the appropriate variability realization technique (such as whether to employ
component or aspectual decomposition; or to apply compile time or runtime
variability for example) may be the difference between a tangled and a modular
implementation, guaranteeing important characteristics to the software prod-
uct line such as maintainability, modularity, comprehensibility and the extensi-
bility. Moreover, the understanding of those dependencies and their impact in
the system properties may support variability bounding and design simplifica-
tions, allowing designers to better assess the costs of varying or fixing certain
aspects of the product line.

2.2 Background and Motivation

The study of the role of dependencies in software product lines has gained re-
cent attention from the research community. The focus, however, has been
more on the use of those dependencies to prevent architecture configuration
mismatch, and less on the study of the impact of those dependencies on the
system design complexity and their impact on the variability of software. For
example, in the FODA (Kang, Cohen et al. 1990), FORM (Kang 1998), RSEB
(Griss, Favaro et al. 1998) methods and in the generative approach in
(Czarnecki and Eisenecker 2000), dependencies are used to model usage inter-
actions (alternative, multiple, optional and mandatory) as well as incompatibility
relations (exclusive or excludes), with the focus on configuration management
and conflict resolution. Recently, (Ferber, Haag et al. 2002) stresses the impor-
tance of dependency analysis in feature diagrams, and proposes a separate fea-

Copyright © Fraunhofer IESE 2006 5

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

ture-dependency model that complements the existing feature tress. Addition-
ally, it characterizes different interactions between features such as intentional,
environmental, and usage dependencies. Finally, in a more recent work, (Lee
and Kang 2004) studied the role of dependencies on modeling runtime feature
interactions, introducing the notion of activation and modification dependen-
cies in feature diagrams.

In the implementation domain, feature dependencies usually manifest them-
selves in the form of coupling between the components that implement those
features, in special data and control coupling occur as a consequence of activa-
tion and usage dependencies. Those dependencies have different impacts in
the variability of the final solution. Whereas control coupling usually limits the
activation order of the different pieces of software, data coupling can limit the
variability and reuse of those components. (Parnas 1978; Stevens, Myers et al.
1999)

On the light of those problems, different variability realization approaches have
been used. For example, (Lee and Kang 2004) propose a set of object-oriented
realization strategies to address activation dependencies. Those strategies are
presented in the form of design patterns derived from existing Factory, Proxy
and Builder patterns (Gamma, Helm et al. 1995). In essence, those patterns fo-
cus on managing and enforcing activation dependencies by promoting the late-
binding of the components that implement the many software features.
Whereas useful in many contexts, this modular (object-oriented) decomposition
is not always sufficient to address other kinds of dependencies, especially cross-
cutting variability dimensions or aspects, originated from more fundamental
problem dependencies. This motivated recent work such as (Garcia, Sant'Anna
et al. 2005), where Aspects are used to modularize design patterns.

In this position paper, we argue towards a more deep understanding of the role
in dependencies in software product lines. Not only as important information
for configuration management support, but as main factors to be considering
in the design, bounding and variability realization selection phases. We exem-
plify the role of dependencies with the following case study.

2.2.1 Case Study: Publish/Subscribe Product Line

Pub/sub infrastructures provides an asynchronous message service where in-
formation providers (publishers) generate information in the form of events (or
messages); whereas information consumers (or subscribers) express interest in
those events by means of subscriptions. Based on the subscription (an expres-
sion or query that can include the event content, order or time restrictions), the
events are routed from the publishers to the appropriate subscribers. The
events are then delivered according to a notification policy. Different pub-
lish/subscribe systems have been built from scratch in the last years, being tai-

Copyright © Fraunhofer IESE 2006 6

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

lored to different application domains. This observation motivated our research
in the development of YANCEES (Silva Filho and Redmiles 2005), a flexible in-
frastructure, that can be tailored to the needs of different publish/subscribe ap-
plication domains.

One important step in the design of a product line is the problem domain
analysis and the identification of the main units of variability (the features). In
our design, we adopted the framework proposed by (Rosenblum and Wolf
1997). In this model, routing, event, notification, observation (or subscription),
timing and resource are the main design concerns of a publish/subscribe infra-
structure. They represent the main variability dimensions in our model. The
event model defines how the event is represented (for example: tuples, record,
object or plain text). The routing model defines the strategy used to match sub-
scriptions to events (whether by the content, by a specific field (topic), or by a
dedicated channel where all events produced are delivered to the subscriber).
The notification model defines how to deliver events to the subscribers once
they are matched with the subscription (push or pull). The subscription model
defines the query language, and all the commands that can be part of it. Those
commands may operate over the content or over the order of the events. The
timing model defines guarantees with respect to the total or partial order of the
events. The resource model specifies how the infrastructure is implemented
(whether distributed in a peer-to-peer or hierarchical fashion, or whether it is
centralized). Note that the abstract features (routing, event, notification, sub-
scription, timing and resource), define a set of variability dimensions that are
further specialized in the following hierarchy level by different optional fea-
tures.

A possible feature diagram representing such product line variability is depicted
in Figure 1. The Diagram uses a UML notation. Stereotypes are used to express
optionally (OR relation) and exclusivity (XOR relation). An optional feature can
be selected together with other optional features in the same level, for the
same super feature. Abstract features appear as the first level under the
pub/sub infrastructure concept, and are not marked with stereotypes. Aggrega-
tion indicates containment and composition implies a part-role relation of the
pub/sub concept. When no stereotype is used, the features or concepts are
mandatory.

Copyright © Fraunhofer IESE 2006 7

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

Pub/sub infrastructure

Routing Event
Notification Subscription Timing Resource

Topic-based
<<optional>>

Channel-based
<<optional>>

Content-based
<<optional>>

Tuples
<<exclusive>>

Object
<<exclusive>>

Record
<<exclusive>> Content operator

<<optional>>

Sequence operator
<<optional>>

Basic
<<optional>>

Advanced
<<optional>>

Content filter
<<optional>>

Topic filter
<<optional>>

Abstraction
<<optional>>

Rules
<<optional>>

Pattern
<<optional>>

Time operators
<<optional>>

Sequence detection
<<optional>>

Push
<<optional>>

Pull
<<optional>>

Casual order
<<exclusive>>

Total order
<<exclusive>>

Distributed
<<exclusive>>

Centralized
<<exclusive>>

P2P
<<exclusive>>Plain Text

<<exclusive>>

Figure 1: Feature Diagram of Pub/sub systems

2.2.2 The Role Of Fundamental And Configuration-Specific Dependencies

Feature diagrams, as the one presented in Figure 1, express the basic model of
feature-oriented product line design. A feature diagram represents a tree of
features where the root represents a concept. A concept is usually represented
by a set of mandatory, optional and abstract features. The first level of a fea-
ture diagram usually represents a set of abstract features that implement a con-
cept, in our example, a pub/sub infrastructure. Those abstract features are par-
ents of more specific optional, alternative, exclusive and mandatory features.
For example, routing, subscription, notification, event, timing and resource fea-
tures, which variability is further defined by means of concrete features such as
record-based for event, total order timing, content-based filtering for subscrip-
tion and so on.

In a feature-based approach, we define as fundamental dependencies, those
relations between abstract features that are imposed by the problem domain.
In other words, they comprise the interactions between generic abstract fea-
tures that define the problem domain. In our example, events, routing, sub-
scriptions and notifications are inter-related by the very publish/subscribe proc-
ess itself: events are routed following subscriptions, generating notifications.
This process is common to all publish/subscribe infrastructures and provides a
conceptual model where configuration-specific features can be “plugged in”;
moreover, they define our variability dimensions in the product line. In contrast
to fundamental dependencies, configuration-specific dependencies are
those dependencies that exist between optional features and/or the compo-
nents that implement them. For example, some notification servers may use
pull notification approach, which require event persistency and user authentica-
tion support, sub-features present only in certain members of the product fam-
ily, specializations of the generic notification feature.

Copyright © Fraunhofer IESE 2006 8

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

In our case study, as seen in Figure 1, variability exists in every design dimension
of the system. A problem then surfaces when those variability dimensions (or
abstract features) are further refined and implemented. First, the dependencies
between features are not easily visualized in the diagram; they in fact are not
represented. Second, the abstract features are usually implemented as part of
the base or common code, whereas the optional features are provided on spe-
cific configurations. As a consequence, the abstract pub/sub fundamental de-
pendencies implicitly impact the implementation of each feature of the model.
For example, the implementation of a subscription command in our case study
must account for the way events are represented (records, objects, plain text,
attribute-value pairs) and the routing guarantees that the infrastructure pro-
vides (total or partial order of events). Those implicit dependency usually be-
come encoded in the base implementation of the product line, and will mani-
fest themselves later in the implementation of the infrastructure. As a conse-
quence, every time the event format or the routing policies vary, the subscrip-
tion commands that depend on those parameters will need to vary, either by
providing alternative implementations, or by accounting for this variability in
the feature implementation itself.

This observation has important consequences: (1) the combinatorial explo-
sion of features. Feature dependencies work as an important variability limita-
tion factor for the product line: the more dependencies exist between features,
the harder it is to manage all possible combinations of features in a product
line. (2) Reduced generality of features: dependencies also limit the reuse of
existing features and their implementations since changes in one feature can
impact features that depend on it. This fact prevents the unbounded generali-
zation of product lines, and places a theoretical limit in how one can leverage
reuse in such systems. (3) Limited extensibility: Since new features need to
cope with the existing dependencies in the model their implementation tends
to be more complex and prone to errors. Using Parnas terminology (Parnas
1976), the dependencies from the incomplete program (or base code), impact
the variability of the product family as a whole since implicit domain relations
(or dependencies) are usually inherited from the incomplete code.

As a consequence, in the design of a product line, a balance between variability
and reuse needs to be achieved. In this position paper, we argue that the de-
pendencies represent the key to understand and tackle this problem. With such
information, designers can either limit or fix the variability of a certain dimen-
sion or choose a variability realization technique that minimizes such coupling.
In spite of its importance, both fundamental and configuration-specific de-
pendencies are usually not explicitly represented in feature diagrams. Instead of
augmenting existing diagrams with such information, we propose the use of al-
ternative diagrams and models to elucidate those dependencies (Kruchten
1995).

Copyright © Fraunhofer IESE 2006 9

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

2.3 Approach

In our work, we propose the study of dependencies in a more fundamental
way, understanding the implications of those feature relationships in the choice
of the most adequate variability realization techniques. Our approach comes
from the observation that abstract problem features, originated in the problem
domain are usually chosen as main variability dimensions in the problem. Those
features, however, have implicit fundamental dependencies (or coupling) that
becomes part of the common code of the architecture and ends up constrain-
ing the variability of the product line as a whole, and the features specifically.
Hence, the analysis of those fundamental dependencies can help us select the
proper combination of variability dimensions and feature realization approaches
in order to reduce their impact in the software that will ultimately implement
the model. Also, depending on the target software and hardware platforms or
different environmental constraints and limitations, the dependency model can
provide a basis to decide which variability dimensions to fix, and/or which ones
to make variable. The approach can be summarized as:

1. Perform initial feature domain analysis
2. Identify the abstract features in the domain that define an abstract system

commonality
3. Perform a dependency analysis with respect to the abstract feature depend-

encies
4. Consider the target platform hardware and software constrains
5. Bound the mandatory features variability in order to minimize the impact of

dependencies
6. Choose appropriate variability realization technique for the base code
7. Choose the variability realization technique for the optional code

The variability realization approach used to model a feature will impact the
variability of the system in different ways. For example, (Czarnecki and Eise-
necker 2000) defines two main decomposition approaches: Modular decompo-
sition and Aspectural decompositions. When used in conjunction, those ap-
proaches can complement one another and reduce the impact of dependencies
(or coupling) in the code. Those approaches are discussed in mode detail in the
next sections.

2.3.1 Making Dependencies Explicit

The feature diagram in Figure 1 does not allow the visualization of all the de-
pendencies between the problem features, depicting only optionally, aggrega-
tion, specialization and exclusion. One way to visualize dependencies is pro-
posed by (Ferber, Haag et al. 2002). The use of graphs to represent such infor-

Copyright © Fraunhofer IESE 2006 10

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

mation, however, does not scale. Instead, we propose the use the DSM (De-
pendency Structure Matrix) notation as that used by (Baldwin and Clark 2000).
In this representation, dependencies between parameters, or in our case fea-
tures, are represented in the form of a square matrix. In our approach, instead
of representing only the number of dependencies or their simple existence,
with an X for example, we label the dependencies with the kind of coupling
they provide. A ‘D’ is placed in the matrix to represent a data dependency if the
ith column depends on the dimension in the jth row; similarly, a ‘C’ is placed o
represent a control dependency. The DSM of our case study is presented at
Figure 2.

Figure 2 reveals some interesting dependencies between the main variability
dimensions of the product line. Note that the event model and its representa-
tion directly impacts the subscription and routing models. A change in the
event format requires a change in the subscription language and routing algo-
rithms due to a strong data coupling between those two features or dimen-
sions (the event content and format itself). Timing is another crucial feature in
the model. A change in the routing algorithm may impact the timing guaran-
tees of the product line (guaranteed delivery and total order of events), which
will impact the subscription language semantics. A change in the resource
model may also affect the timing model. For example, in a hierarchical distrib-
uted system, the total order of events may not be available. Finally, the notifica-
tion model is orthogonal to the other features. Since it manages only events, it
can vary independently form the other features. Hence, this simple analysis al-
lows us to draw two lessons: first, by analyzing the dependencies between the
abstract features, as in Figure 2, a system architect can identify relations that
are not initially obvious in the original feature model of the system; and second,
as a consequence, she can adopt some strategies to minimize the impact of
dependencies in the final variability of the product line. For example, use differ-
ent decompositions such as aspects, or even fix some variability dimensions,
such as the event model. In doing so, the design of a product line can be opti-
mized and pitfalls such as hidden dependencies can be assessed, managed or
limited.

Copyright © Fraunhofer IESE 2006 11

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

Figure 2: DMS showing the dependencies between the features.

2.3.2 Variability realization techniques

Modular decomposition aims at decomposing the system into a hierarchy of
modules (components, objects, methods and so on) in such a way that cohe-
sion in the modules are maximized, while coupling is minimized. Many recur-
ring solutions exist to help in the design of such systems, including design pat-
terns (Lee and Kang 2004), conditional compilation, templates and other ap-
proaches(Svahnberg, Gurp et al. 2005) that are usually designed for functional
or object-oriented programming.

Modular decomposition is not always possible to accomplish in object-oriented
languages due to what is called crosscutting concerns, that can be a result of
non-functional requirements for example. Also, due to the lack of modularity in
many object-oriented design patterns (Hannemann and Kiczales 2002), their
use throughout the system, and especially in the base code, makes it hard for
the software to support changes and support evolution. For each design pat-
tern applied, new dependencies are introduced to the product line architecture,
as well as additional configuration costs to manage those dependencies.

Moreover, it is usually the case that a feature is mapped not to a single compo-
nent but to a set of components installed in different parts of the base code. In
our example, this approach can be applied in the case of Notification and Re-
source models in Figure 2. Those models do not depend on any other model.

Copyright © Fraunhofer IESE 2006 12

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

Aspectural decomposition aims at decomposing a system into a set of per-
spectives. Each one of those perspectives comprises concerns that refer to a
common model. Another way of describing this approach is that aspects en-
capsulate the coupling that might exist between components that implement a
single feature, that otherwise would usually become hard coded in the many
components that implement a feature. In the example of Figure 2, control de-
pendencies can be modularized as aspects, that weave to the base code, the
appropriate algorithm, according to the selected timing constraints. Examples
of modularizations using aspects are discussed at (Garcia, Sant'Anna et al.
2005) and (Hannemann and Kiczales 2002).

Other decomposition and strategies are also possible. In the pub/sub example,
data coupling can be addressed by using reflection as described in (Eugster and
Guerraoui 2001).

2.3.3 Bounding and Restrictions

In order to reduce the coupling between dimensions, one simple alternative is
the bounding of variability dimensions. After a dependency analysis, designers
can opt for limiting the variability of some abstract features. For example, the
event dimension in Figure 1 can be restricted to support only attribute-value
representation. This representation is generic enough to be used as topic and
object-based representations by using some conventions. The textual event rep-
resentation, however, is not trivially supported in this model, and must be
adapted to conform to attribute-value representations. A trade-off, therefore,
between variability and bounding exists and needs to be considered, according
to the applications the system will support.

Environmental restrictions also play an important role. Variability techniques
such as aspectual decomposition or reflection may not be available in a given
platform. In this case, whenever bounding is not an option, more traditional
approaches such as design patterns (Lee and Kang 2004) may be used.

2.4 Final Considerations

Feature dependencies are important in product line design since they can limit
the variability of the software. There are two major categories of dependencies:
fundamental problem dependencies, coming from the common problem fea-
tures, that originate the common base code; and feature-specific dependencies
that are originate from optional and alternative features in the product line. The
nature of the dependencies between the product line features, especially those
that are part of the problem domain, have a deep impact in the resulting vari-
ability of the software solution, a consequence of the coupling of the compo-
nents in the final code implementation. The understandings of those variability

Copyright © Fraunhofer IESE 2006 13

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

dimensions, allow us to analyze the design trade-offs of a particular product
line, and must be considered in the design of product lines. The use of depend-
ency analysis tools such as DSMs can help designers identify, as early as in the
design phase, the dependencies between the main variability dimensions of the
problem. This information is crucial to support designers in choosing the ap-
propriate variability realization techniques that can better suit the implementa-
tion (or realization) of the features, or to select which variability dimension to
fix in order to simplify the architecture design.

Whereas dependencies alone are not the only criteria to be used in selecting a
variability realization approach, their understanding provides an important input
to practitioners in understanding the variability restrictions imposed by the
problem domain, helping them in the choice of the adequate technique for
their case.

2.5 Acknowledgements

This research was supported by the U.S. National Science Foundation under
grants 0534775, 0326105, and 0205724 and by the Intel Corporation.

2.6 References

Baldwin, C. Y. and K. B. Clark (2000). Design Rules, Vol. 1: The Power of
Modularity. Cambridge, MA, MIT Press.

Cameron, E. J. and H. Velthuijsen (1993). "Feature interactions in telecommu-
nications systems." IEEE Communications Magazine 31(8): 18-23.

Czarnecki, K. and U. W. Eisenecker (2000). Generative Programming - Meth-
ods, Tools, and Applications, Addison-Wesley.

Eugster, P. T. and R. Guerraoui (2001). Content-Based Publish/Subscribe with
Structural Reflection. 6th USENIX Conference on Object-Oriented Technologies
and Systems, COOTS'01, San Antonio, TX.

Ferber, S., J. Haag, et al. (2002). "Feature Interaction and Dependencies: Mod-
eling Features for Reengineering a Legacy Product Line." Lecture Notes in
Computer Science. Second International Conference on Software Product Lines,
SPLC'02 2379: 235-256.

Gamma, E., R. Helm, et al. (1995). Design Patterns: Elements of Reusable Ob-
ject-Oriented Software, Addison-Wesley Publishing Company.

Copyright © Fraunhofer IESE 2006 14

Towards the Use of
Dependencies to Manage
Variability in
Software Product Lines

Garcia, A., C. Sant'Anna, et al. (2005). Modularizing design patterns with as-
pects: a quantitative study. Aspect-oriented software development, Chicago, Il-
linois, ACM Press.

Griss, M. L., J. Favaro, et al. (1998). Integrating Feature Modeling with RSEB.
Fifth International Conference on Software Reuse.

Hannemann, J. and G. Kiczales (2002). Design Pattern Implementation in Java
and AspectJ. 17th Annual ACM conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA'02), Seattle, Washington.

Kang, K. C. (1998). "FORM: A Feature-Oriented Reuse Method with Domain
Specific Architectures." Annals of Software Engineering 5: 345-355.

Kang, K. C., S. G. Cohen, et al. (1990). Feature-Oriented Domain Analysis
(FODA) Feasibility Study - CMU/SEI-90-TR-021. Pittsburgh, PA, Carnegie Mellon
Software Engineering Institute.

Kruchten, P. B. (1995). "The 4+1 View Model of architecture." IEEE Software
12(6): 42-50.

Lee, K. and K. C. Kang (2004). "Feature Dependency Analysis for Product Line
Component Design." Lecture Notes in Computer Science - 8th International
Conference on Software Reuse, ICSR'04 3107: 69-85.

Parnas, D. L. (1976). "On the Design and Development of Program Families."
IEEE Transactions on Software Engineering SE-2(1): 1-9.

Parnas, D. L. (1978). Designing software for ease of extension and contraction.
3rd international conference on Software engineering, Atlanta, Georgia, USA,
IEEE Press.

Rosenblum, D. S. and A. L. Wolf (1997). A Design Framework for Internet-Scale
Event Observation and Notification. 6th European Software Engineering Con-
ference/5th ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, Zurich, Switzerland, Springer-Verlag.

Silva Filho, R. S. and D. Redmiles (2005). Striving for Versatility in Pub-
lish/Subscribe Infrastructures. 5th International Workshop on Software Engi-
neering and Middleware (SEM'2005), Lisbon, Portugal., ACM Press.

Stevens, W. P., G. J. Myers, et al. (1999). "Structured design." IBM Systems
Journal 38(2-3): 231 - 256.

Svahnberg, M., J. v. Gurp, et al. (2005). "A Taxonomy of Variability Realization
Techniques." Software Practice and Experience 35(8): 705-754.

Copyright © Fraunhofer IESE 2006 15

Using Costing Information as
Decision Support
in Variability Management

3 Using Costing Information as Decision Support
in Variability Management

Holger Schackmann, Horst Lichter

Decisions on the scope of a software product line and the selection of variability
realization techniques have a large impact on costs and therefore substantially
affect the economic viability of a product line approach. But there is a lack of
information to guide these decisions, since there is no clarity on the cost impli-
cations of variability. To close this gap, we propose an approach to costing that
enables a more accurate allocation of incurred costs to the features within the
software product line. More accurate costing information provides guidance for
future scoping decisions and enables an assessment of the cost implications of
different variability realization techniques as a first step towards a cost model
for the reasoned selection of appropriate techniques.

3.1 Introduction

The principal decisions in managing variability within a software product line
(SPL) are made on two levels. On the requirements level the scope of the SPL
must be defined, i.e. it must be identified which features should be variable
within the SPL and decided which variants should be supported. Secondly, it
has to be decided how to implement the variability by selecting appropriate
variability realization techniques [1]. These decisions have to be taken during
the initial development as well as during the further evolution of an SPL.

Decisions on the two levels are rather intertwined. The planned variability
within the SPL influences the choice of variability realization techniques. These
can in turn limit or facilitate adjustments of the scope.

The remainder of this paper is organized as follows. Section 2 depicts the chal-
lenges of managing the variability during evolution of a SPL. Section 3 discusses
influencing factors for the selection of variability realization techniques. Section
4 depicts deficiencies of current costing approaches in gathering the costs im-
plications of variability and proposes a costing approach based on features as
cost objects. Section 5 then describes how this information can be used to
guide variability management decisions. Section 6 provides a brief summary.

3.2 Scoping during SPL evolution

There exist several approaches for the initial definition of the scope [3]. But the
problem of scoping during maintenance and evolution of an SPL is rather unex-
plored. In practice we encounter that SPLs are introduced gradually by exploit-
ing commonalities between products that had been developed in customer

Copyright © Fraunhofer IESE 2006 16

Using Costing Information as
Decision Support
in Variability Management

specific projects. Thus an exhaustive scoping was not performed and scoping
decisions may not be documented or lost during further development.

Typical risks associated with initial scoping are a too big or too small definition
of the scope [4]. During evolution of a product line we rather face the problem
of an increasing variability within the scope. Several reasons may lead to the in-
troduction of new variants of features. Due to deadline pressure it may often
be faster to produce a customer specific solution instead of spending additional
effort on investigating chances for reuse and coordinating necessary changes
with other product developments. Fulfilling new customer requests with new
customer specific features may be motivated by the concept of customer orien-
tation and disregard of the follow-up costs. A large amount of variability is ac-
companied by an increasing technical and cognitive complexity. So the offering
of features can not completely be communicated to the customer. Similarities
of customer requests to existing features will be difficult to re-cognize, so simi-
lar features will unconsciously be developed several times.

Summarized, variability becomes a major cost driver, since each customer spe-
cific feature must be maintained, integrated in subsequent releases, tested
separately and possibly considered during deployment, user training and cus-
tomer support. A problem is that these costs are not transparent. Therefore it is
not possible to balance the follow-up costs against the value that a specific fea-
ture offers to the customers.

3.3 Selection of variability realization techniques

Since the scoping activity analyses potential products and possible future exten-
sions, this information is a basic guidance for the selection of variability realiza-
tion techniques. For example it should be considered to how many products a
specific feature will be relevant. If it is necessary in most of the products a vari-
ability mechanism should be selected that allows easy configuration of this fea-
ture during application engineering. If the feature is only needed in a few
products it may suffice to provide a realization technique that requires product
specific development, e.g. specializing particular classes.

Besides the scoping decisions there are some other influencing factors that will
be described in the following.

3.4 Requirements of the application domain

There typically exist non-functional requirements of the application domain
which discourage the use of certain variability realization techniques. As an ex-
ample performance requirements can rule out variability realization techniques

Copyright © Fraunhofer IESE 2006 17

Using Costing Information as
Decision Support
in Variability Management

with runtime binding. Memory constraints may require a binding before start-
up time.

Furthermore there may be the requirement to allow easy reconfiguration or
upgrade of the system, possibly even at runtime, which necessitates a runtime
binding of the variability.

Fritsch et al. describe an approach to evaluate variability realization techniques
according to qualities, like extensibility or performance [5]. But an evaluation in
general is difficult since the fulfillment of a quality depends on other influenc-
ing factors like the architectural context and the sound application of the vari-
ability realization technique.

3.4.1 Existing architecture

The variability realization techniques that are already used in the existing prod-
uct line architecture have to be taken into account. Relying on established
techniques reduces the complexity within the architecture, compared to the us-
age of a many different realization techniques. Furthermore those techniques
and their implications may be better understood by the developers.

Also the presence of legacy components within the SPL can rule out the usage
of novel variability realization techniques like aspect oriented programming.

3.4.2 Organization

Different organizational models can be applied to SPL development, dependent
on factors like the size of the product line or the physical location of the staff
[6]. Choosing appropriate variability realization techniques can substantially re-
duce the necessary coordination efforts between different development units.
For example a domain engineering unit can support a certain variant feature by
providing alternative architectural components. During application engineering
only one variant has to be selected. Thus the complexity visible to application
engineering units is reduced and the interfaces between the development units
are kept small.

Nevertheless application engineering units may need some flexibility for product
specific adaptations. Choosing variability realization techniques that are open
for adding variants during application engineering can help to define the points
where product specific adaptations are allowed, while other variant features
can be kept under control of the domain engineering unit. This can help to
limit the growth of variability within the product line, which may be caused by
the independent development of similar features for different products within
the SPL.

Copyright © Fraunhofer IESE 2006 18

Using Costing Information as
Decision Support
in Variability Management

3.4.3 Follow-up costs

The selection of variability realization techniques has a large influence on the
costs of subsequent activities. Some techniques may have higher initial devel-
opment costs in domain engineering, but therefore allow a fast development of
new variants during application engineering.

Costs for product derivation and testing are recurring costs in each release cycle
of a product. Using variability realization techniques that allow a configuration-
based product derivation, these costs will probably be lower compared to vari-
ability realization techniques that require the development and maintenance of
product specific assets.

Costs for deployment of a product are recurring costs for each customer site
and for each product release or update. The installation at the customer site
may be more or less complex, partly influenced by the applied variability realiza-
tion techniques. If complex configuration steps are necessary, an expert might
be needed for installation on customer site, while in other cases an automatic
installation is possible.

Furthermore maintenance costs are affected, since the selection of variability
realization techniques influences testability and comprehensibility. For example
using preprocessor directives can lead to a scattering of variation points, which
makes debugging and changing the software more difficult.

Summarized, there are many influencing factors on the follow-up costs of vari-
ability decisions, such as the number of customers, the number of products and
their release cycles, as well as the amount of change requests during evolution.

3.4.4 Current practice

In current practice selection of variability realization techniques is rather based
on ad hoc decisions or primarily influenced by the techniques already used in
the architecture as well as by non-functional requirements from the application
domain, as far as they have been identified. Other factors remain unconsidered
due to insufficient scoping during evolution and no transparency on the follow-
up costs of variability decisions. The multitude of influencing factors compli-
cates the construction of a cost model that would enable a reasoned selection
of variability realization techniques. Therefore sound decision criteria for the se-
lection of variability realization techniques, as well as for scoping during evolu-
tion are lacking. We believe that gaining more clarity on the cost implications of
variability will help to overcome this situation.

Existing cost models for SPL development rather follow a top down approach
and support SPL investment decisions on a high level (see [2] for an overview).

Copyright © Fraunhofer IESE 2006 19

Using Costing Information as
Decision Support
in Variability Management

Gathering more accurate information on the costs of variability can provide
complementary input for these models as a first step towards the development
of a cost model for the reasoned selection of appropriate variability realization
techniques.

3.5 Costing approaches

3.5.1 Deficiencies in traditional costing methods

Traditional costing methods in software development usually allocate costs ei-
ther to customer projects, maintenance projects or internal development pro-
jects. This may suffice for accounting and budget control. But with multiple re-
use the relationship between the direct labor hours that went into development
and the costs of software breaks down[7]. Significant costs are incurred by the
reuse infrastructure. Neither the benefits of reusing assets within application
engineering, nor the costs of introducing additional variabilities can therefore
be gathered with these costing methods.

3.5.2 Activity based costing

Activity based costing was originally developed in the context of manufacturing
industry, motivated by problems in managing an increasing variety within the
product portfolio[8][9]. It was recognized that traditional costing systems failed
to allocate the overhead costs caused by additional product variants in a rea-
sonable way, since these costs are allocated to products on a per-unit basis.
This leads to suboptimal decisions in portfolio definition and product construc-
tion, due to an unconsciously cross-subsidization of rather exotic products.

Rather than viewing work products as direct consumers of overhead resources,
activity based costing introduces the activities of the production process to
stand in between work products and consumed resource costs. This allows a
more accurate allocation to the cost objects consuming the activities, e.g.
products, services or customers. The improved cost transparency can guide de-
cisions to establish profitable customer relationships, e.g. by changing the con-
struction of products, changing the prices, reconfiguring or replacing products,
improving production processes, or eventually abandon a product completely.

3.5.3 Activity based costing in software development

Analogously to the cost anomalies in manufacturing the costs of developing
and maintaining an SPL are for the greater part indirect or overhead costs,
which can not easily be allocated to a certain product or customer.

Copyright © Fraunhofer IESE 2006 20

Using Costing Information as
Decision Support
in Variability Management

Can an activity based costing approach be applied to software development?
Fichman and Kemerer have proposed the adoption of activity based costing to
component based software development, to address the need for economic in-
centives for investments into reusability [7].

While the relevant activities can be identified based on defined development
processes, it is not evident what should be the primary cost objects. The alloca-
tion of activity costs to customers or software components respectively raises
many difficulties. It is not clear how development and maintenance costs of
core assets can be distributed to customers. The use of software components as
cost objects is problematic when there is no direct relation of an activity to a
certain component, e.g. activities like requirements engineering or system test-
ing.

3.5.4 Features as cost objects

As described before, the number of customer specific features has a large im-
pact on costs. Therefore one can analyze which features are standard features
that are relevant for most customers and which features can be seen as more
exotic features, since they are only included in products for one or a few cus-
tomers. Gathering the costs caused by those exotic features more accurately,
would help to attain more clarity on the influence of variability on costs. There-
fore we propose the use of features as the primary cost object for activity based
costing in SPL development. Feature models describe the commonalities and
variabilities within an SPL [10][11]. So this approach can capture the costs asso-
ciated to those variabilities. Figure 3 gives an overview of the cost assignments
that are described in the following.

Personnel costs are dominating the costs of software development. Other costs,
like costs for tools or hardware, can be apportioned to the personnel costs.
Therefore it may suffice to concentrate on personnel costs and differentiate be-
tween hourly wages according to the qualification level required for an activity.
Existing change request management systems, task management systems or
time registration systems provide a basis for the resource costs assignment to
activities, since they basically enable a detailed gathering of labor hours for
most activities.

Since features are visible in all phases of the development life cycle, most de-
velopment assets, like requirements, software components, test cases, docu-
mentation, change requests and even support calls can be linked to one or
more features. Thus the cost for most activities can be distributed to features as
cost objects.

A catalogue of relevant activities can be developed based on a defined devel-
opment process, including for example activities like requirements engineering,

Copyright © Fraunhofer IESE 2006 21

Using Costing Information as
Decision Support
in Variability Management

design, implementation and test during the initial development of a new fea-
ture, as well as activities during evolution of a feature, like the handling of
change requests and bug reports and the development of product-specific ad-
aptations of features. To enable an analysis of the cost structures it should be
differentiated between activities in domain engineering and application engi-
neering and furthermore between activities associated to the initial develop-
ment of a feature and further maintenance activities.

It will not in all cases be possible to allocate the costs of each activity to a single
feature, e.g. initial requirements engineering activities which can be associated
to several features. But since a feature model typically contains concept fea-
tures to allow a hierarchic structuring of the model, such costs may be allocated
to a concept feature that structures a set of features associated with the activ-
ity. In other cases it can be reasonable to distribute the costs of an activity to
more than one feature, e.g. if the interaction of features is the subject of a
maintenance activity. So this should allow the allocation of most of the former
indirect costs, like maintenance costs of core assets, to features.

There will nevertheless be activities that can not be allocated to features. Either
an association to a feature or a set of features can not be identified, e.g. for
management activities, or gathering the related costs would be impractical or
too expensive, e.g. the assignment of the costs of documentation activities to
features. These remaining costs must be allocated to projects as before.

To enable a further allocation of the cost from features to customers, an as-
sessment of the importance or value of the provided features to the different
customers is necessary. It might not be possible to express this value in mone-
tary units, but it suffices to assess the contribution of a feature to user satisfac-
tion on a simple scale of values. Techniques like the Kano method [12] or Qual-
ity Function Deployment [13][14] may be applied to this purpose. The assign-
ment of the costs of a feature to the customers can then be based on the dif-
ferent importance of the feature to its customers.

Copyright © Fraunhofer IESE 2006 22

Using Costing Information as
Decision Support
in Variability Management

Figure 3: Features as cost objects

3.6 Using costing information in variability management

The depicted approach to costs enables an improved cost transparency. A bet-
ter understanding of the relation between initial development costs of a feature
and its follow-up costs can improve future cost estimation and guide the pric-
ing of development and maintenance contracts. The costing information can
also guide variability management decisions in several ways.

3.6.1 Guidance of scoping decisions

The allocation of activity costs during development and evolution to features
will give a more realistic view on the costs associated to a feature. If costly fea-
tures are identified, it must be analyzed which importance or business value
these features provide to the customers, and which profits or competitive ad-
vantage is gained for the development organization by offering these features.

Features which are not that important for the customers but generate high ad-
ditional costs can be identified. They can either be replaced by existing similar
features, modified in a manner that allows a better fit to the SPL architecture,
or can possibly be abandoned completely. If a feature is important for certain
customers, it must be examined up to which extent the customers can be
charged with the real costs.

In all cases the importance of a feature or customer for the market strategy has
to be considered. It can be a reasonable decision to take a loss in order to open

Copyright © Fraunhofer IESE 2006 23

Using Costing Information as
Decision Support
in Variability Management

or develop a market. But to decide on the strategy, there must be some estima-
tion where and how much money is lost.

3.6.2 Support of selection of variability realization techniques

More accurate information on costs will enable to analyze the cost structures
associated to a feature and its variants. It can be gathered which costs are
spent for the initial development of a feature, for the development of new vari-
ants of this feature, for maintenance of this feature and its variants, and even-
tually for testing in subsequent releases. Furthermore it can be gathered how all
of these costs are distributed between domain engineering and application en-
gineering. Moreover the influence of change requests on these costs can be re-
trieved.

An investigation of the cost implications of different variability realization tech-
niques can be based on comparisons of the cost structures for different fea-
tures and its variants and searching for regularities or recurring patterns. For
example an analysis of the distribution of maintenance costs between domain
engineering and application engineering may help to identify which realization
techniques require high maintenance efforts within application engineering and
which techniques leave most of the maintenance work within domain engi-
neering thereby possibly reducing overall maintenance costs. It can also be in-
vestigated, if there are variability realization techniques which facilitate the de-
velopment of new variants.

Furthermore these observations may enable better estimations of future costs,
e.g. the costs for developing a new variant of a feature, the costs of product
derivation, or the maintenance costs of existing features.

All together, the empirical observations enabled by the described costing ap-
proach facilitate a better understanding of the cost implications of variability.
Therefore this can be a first step towards the development of cost model for
the reasoned selection of variability mechanisms.

3.7 Further work

In our further work we aim at developing a detailed model for a costing ap-
proach based on features as cost objects. Within the context of an ongoing in-
dustry cooperation project we will conduct a case study on gathering cost in-
formation in an SPL development process. To provide appropriate tool support,
the collection of costing information should be integrated with our existing tool
set for feature modeling [15].

Copyright © Fraunhofer IESE 2006 24

Using Costing Information as
Decision Support
in Variability Management

3.8 Summary

Scoping decisions during the evolution of a software product line, as well as the
selection of variability realization techniques are in current practice rather based
on ad hoc decisions. The difficulties in steering the variability and selecting ap-
propriate realization techniques lead to increasing maintenance costs. We be-
lieve that one cause of this problem is a lack of sound information on the costs
implications of variability.

This resembles a problem suffered in manufacturing industry. Given an in-
creased number of product variants, traditional costing approaches were un-
able to provide a sound cost allocation and therefore lead to wrong decisions in
product portfolio definition and product construction. This problem was ad-
dressed with the development of new costing approaches like activity based
costing.

In this paper we propose the application of activity based costing to software
product line development using features as primary cost objects. Features pro-
vide a natural basis for allocating costs and are anchored in existing techniques
for variability modeling.

Bringing together cost information based on features as cost objects and the
assessment of the customer value of features provide a sound guidance for
scoping decisions. Furthermore the cost implications of the selection of variabil-
ity realization techniques can be investigated to obtain an empirical basis for
the development of a cost model for the reasoned selection of variability
mechanisms.

3.9 References

[1] Svahnberg, M., J. van Gurp, J. Bosch (2004): A taxonomy of variability re-
alization techniques. Software – Practice and Experience. Wiley Intersciene,
Chichester.

[2] Clements, P.C., J.D. McGregor, S.G. Cohen (2005): The Structured Intuitive
Model for Product Line Economics (SIMPLE). CMU/SEI-2005-TR-003, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

[3] Schmid, K. (2003): Planning Software Reuse – A Disciplined Scoping Ap-
proach for Software Product Lines. PhD Theses in Experimental Software Engi-
neering, vol 12, Fraunhofer IRB Verlag, Stuttgart.

[4] Clements P., L. Northrop (2001): Software Product Lines: Practices and Pat-
terns, Addison Wesley, Boston, Massachusetts.

Copyright © Fraunhofer IESE 2006 25

Using Costing Information as
Decision Support
in Variability Management

[5] Fritsch, C., A. Lehn, T. Strohm (2002): Evaluating Variability Implementa-
tion Mechanisms. In Schmid K., Geppert B. (Eds.) Proceedings of the Second In-
ternational Workshop on Product Line Engineering PLEES'02, IESE-Report No.
056.02/E. Fraunhofer IESE, Kaiserslautern.

[6] Bosch, J. (2000): Design and Use of Software Architectures: Adopting and
Evolving a Product Line Approach, Pearson Education, Harlow.

[7] Fichman, R., C. Kemerer (2002): Activity Based Costing for Component-
based Software Development. Information Technology and Management, vol 3
(1/2), 137-160. Springer, Netherlands.

[8] Schuh, G. (2005): Produktkomplexität managen – Methoden, Strategien,
Tools. (in German) Hanser Verlag, München.

[9] Kaplan, R.S., R. Cooper (1997): Cost and Effect. Harvard Business School
Press, Boston, Massachusetts.

[10] Kang K., S. Cohen, J. Hess, W. Novak, A. Peterson (1990): Feature-
Oriented Domain Analysis (FODA) Feasibility Study. CMU/SEI-90-TR-021,
ADA235785, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, Pennsylvania.

[11] Lee, K., K.C. Kang, J. Lee (2002): Concepts and Guidelines of Feature
Modeling for Product Line Software Engineering. In Gacek C. (Ed.) Proceedings
of the 7th International Conference on Software Reuse: Methods, Techniques,
and Tools, ICSR-7, Austin, Texas. 62-77. LNCS 2319, Springer, Berlin.

[12] Kano, N., N. Seraku, F. Takahashi, S. Tsuji (1996). Attractive quality and
must be quality. In J. D. Hromi (Ed.) The best on quality (Vol. 7). 165-186. ASQ
Quality Press, Milwaukee, Wisconsin.

[13] Akao, Y. (1988): Quality Function Deployment QFD: Integrating Cus-
tomer Requirements into Product Design. Productivity Press, Portland, Oregon.

[14] Helferich, A., G. Herzwurm, S. Schockert (2005): QFD-PPP: Product Line
Portfolio Planning Using Quality Function Deployment. In Obbink, H., Pohl, K.
(Eds.) Proceedings of the 9th International Software Product Line Conference,
Rennes. 162-173. LNCS 3714, Springer, Berlin.

[15] von der Maßen, T., H. Lichter (2004): RequiLine: A Requirements Engi-
neering Tool for Software Product Lines. In van der Linden, F. (Ed.) Software
Product-Family Engineering, 5th International Workshop, PFE 2003, Siena. 168-
180. LNCS 3014, Springer, Berlin.

Copyright © Fraunhofer IESE 2006 26

Module Structures and SPL
Variability

4 Module Structures and SPL Variability

Philipp Schneider, Phonak Group

During the last two years I participated in the development and application of a
SPL for hearing instrument fitting software. One core aspect of its architecture
is the module view, because most of the required variability was realized by ap-
plying well known structural patterns. This paper examines how effective these
patterns could be applied to release half a dozen fitting software variants.

4.1 Context

When we started with the SPL the main focus was on the “right” module struc-
ture which would allow us to build future fitting applications. We where con-
vinced that this, what I call “Lego approach to variability”, would help us to re-
alize most of our variability requirements. Like many other teams we put a lot
of emphasis on defining the software modules and their interfaces. How to de-
fine module structures is well known and documented in the pattern commu-
nity. The resulting architecture helped us to deliver a set of highly successful fit-
ting software applications. The coarse grained module structure gave us some
important level of variability, but in many cases we had to augment the struc-
tural patterns with other variability mechanisms, to support finer grained vari-
ability requirements.

In the following paper I would like to present the structural patterns of our SPL
architecture and share our experience on how effective these patterns could be
applied to solve our variability requirements.

4.2 Separation of Presentation and Business Logic

4.2.1 Forces and Structure

The presentation is often the only thing which needs to be changed to create a
new brand or to address a different market segment. It is crucial to separate
the presentation aspects from functional business logic aspects. It is important
to consider all presentation aspects, including error messages from lower layers
and data items which are stored in a database and should be presented differ-
ently according to the chosen locale. To be able to release a new product with
a different user interface, presentation and the business logic should be placed
in separate software modules.

Copyright © Fraunhofer IESE 2006 27

Module Structures and SPL
Variability

Figure 4: Separation of presentation and business logic

4.2.2 Experience

• It really pays of to separate the presentation of your application into a sepa-
rate module. In most cases it might make sense to exclude the presentation
from the SPL, because it usually needs to be tailored to a specific application.
But even if the presentation is excluded from the SPL, at least a common
user interface framework will be required, to serve as a skeleton for the
presentation layer.

• Key is how the presentation is bound to the business. What happens very
quickly is that different application developers start to share “glue” code
and small utilities, which encapsulate what they consider “ugly” module in-
terfaces. In this case it is important to respond to the demand from the SPL
users and either refactor the “ugly” interfaces or to put these code elements
into shared libraries, which can then become part of the SPL.

• Internationalization and localisation is an important aspect of a presentation
layer. We strongly suggest to use existing variability mechanisms already pre-
sent in your programming environment (like .NET satellite assemblies), in-
stead of rewriting a custom solution. This will allow you to use existing 3rd
party tools.

4.3 Encapsulate Knowledge about 3rd Party Modules

4.3.1 Forces and Structure

There are two possible approaches to treat 3rd party modules. You can con-
sider them integral part of your technological choice and use them everywhere,
or you can try to encapsulate them in one module. If you do not encapsulate a
3rd party module, it must be available on all your target systems. If you are
afraid this might limit the scope of your core assets to much, you can choose to
write an adapter. This is expensive, but allows you to exchange that technology
by simply rewriting the adapter.

Copyright © Fraunhofer IESE 2006 28

Module Structures and SPL
Variability

3rd Party
Module

Application

3rd Party
Module

Application

3rd Party Adapter

Figure 5: Usage of an adapter to encapsulate 3rd party modules

4.3.2 Experience

• Some modules are encapsulated completely behind adapters. This would
make it easier to port the SPL to a target platform, where these encapsu-
lated modules are not available. A side effect of using adapters is that the
developers of the SPL are not exposed to the 3rd party module at all. This
has a psychological effect: developers tend to ignore the underlying 3rd
party modules and forget to look for bugs in those modules.

• In the future I would be more careful to use an adapter. The adapter cer-
tainly locates all the code which is dependent one the 3 rd party module in
one place, but usually the interfaces just take care about the data mapping
and neglect behavioural aspects. I would recommend using adapters only if
your SPL needs to support several different 3rd party module configurations.
Otherwise the effort to develop an adapter is too high.

4.4 Composition

4.4.1 Forces and Structure

The “Lego” approach towards a SPL is to provide individual modules, which are
then integrated to create different applications. By choosing different modules,
different variants can be created. The Lego approach works wonderfully for
electronic circuits or any hardware components.

M1 M2 M3

Application A

M1 M2

Application B

Figure 6: Composition of software modules

Copyright © Fraunhofer IESE 2006 29

Module Structures and SPL
Variability

4.4.2 Experience

• We really thought that SPL users would be able to choose the right modules
and integrate them into different applications. After three different applica-
tions this really never happened. The users of the SPL explained that they
prefer to start with a working application. Therefore they copy an existing
application and then strip it slowly until they have the requested behaviour.
This is much easier then starting with individual modules which first need to
be assembled to do something useful.

• Through composition the users of the SPL can choose if they want a certain
feature or not. In our experience composition is to clumsy, to allow to refine
the overall behaviour otherwise, then to turn on or off certain features.

• Another big challenge for variability through composition is the definition of
the module interfaces. How are you going to exchange information between
the modules? If you decide to use typed, synchronous interfaces, the types
in the interfaces will constrain you on how you will be able to plug the
modules together.

4.5 Layering

4.5.1 Forces and Structure

Most systems use layering, to group modules together which operate on the
same abstraction layer. If a layer deals with a certain aspect of the system, it can
be replaced by a different implementation to create a variant of the product.

M2 M3

M1

M4 M5

Layer A

Layer B

Layer C

Figure 7: Layering of modules

Copyright © Fraunhofer IESE 2006 30

Module Structures and SPL
Variability

4.5.2 Experience

If you plan to replace a layer in the SPL, we urge you to use a strict layering! In
our SPL the presentation layer is allowed to communicate with the two top lay-
ers below it. This reduced the number of data transformations required, but
coupled the presentation tightly to the business logic layers. For the future we
plan to reduce this coupling by following a strict layering for the presentation
layer.

4.6 Runtime configuration

4.6.1 Forces and Structure

To allow fine grained configuration of a module it can offer a configuration in-
terface. Such an interface is usually realized using XML to describe the variabil-
ity. In the case of runtime configuration, the module will load the configuration
at execution time, and adapt its behaviour accordingly. Depending on how
much needs to be configurable, the module configuration might only contain
key/value definitions, or even implement part of an algorithm, which is then in-
terpreted (or precompiled) at runtime. To allow backwards and forward com-
patibility of applications, the configuration has to be carefully versioned and
managed.

M1
Core

M2
Core

Application A

A.M1 Config A.M2 Config

M1
Core

Configuration

M2
Core

M1 Config M2 Config

Runtime Variation
Point .

Figure 8: Runtime configuration of modules

4.6.2 Experience

• A well defined module structure, together with runtime configuration will
allow you to satisfy most of your variability requirements. But be careful to
plan beforehand, where and how you will store your configurations. Make

Copyright © Fraunhofer IESE 2006 31

Module Structures and SPL
Variability

the configurability of a module part of its specification and only offer what is
requested as a variation point.

• Make sure to not break the module encapsulation with the configuration.
Do not create configurations which cut across modules! If you really require
a configuration file which cuts across modules, make sure to only include
configuration items which are required by all modules.

• Implement a consistent error handling, for all possible configurations errors.
Make sure that each module includes some self test, to check its configura-
tion.

• In large systems additional configuration tools will be required to maintain
the configuration (we wrote more code for such tools than for the actual
core assets). Such tools will do static checking of values, provide versioning
for configuration items and help SPL users to “fine-tune” their core assets
during system integration.

4.7 Build time configuration

4.7.1 Forces and Structure

Instead of resolving variation points at runtime you can use your build environ-
ment to create module and products variants at build time. Usually the build
environment will require a build command, which fully qualifies the requested
module or product variant. Many different approaches to qualify a module or
product are possible (feature lists, scripts, variant models).

M1
Core

Build
Variant M1-1= { M1Core + V1 + V2}
Variant M1-2 = { M1Core + V3 + V2}

Variant1

BuildTime Variation
Point

Variant2

Variant3

M1
Core

M1
Core

Variant1

Variant2

Variant2

Variant3

Figure 9: Creation of module variants at build time

Copyright © Fraunhofer IESE 2006 32

Module Structures and SPL
Variability

4.7.2 Experience

• Build time variation points proved very powerful to create automatically a
range of different installation CDs. But we also learned that the build scripts
tend to get very complex. I strongly suggest you look out for tool (a variant
configurator) before you start developing your own build scripts.

• Make sure that your variant configurator spits out the final package which
you will install on the clients machine - automated everything! Maybe you
would like to allow clients of the build environment to choose the variant, to
reduce build times during development.

• Next time we start a project, we will start with the variant configurator. We
hope that this will help us to reduce runtime configuration to a minimum.

4.8 Interface, implementation and factory

4.8.1 Forces and Structure

If you would like to allow users of the SPL to change the behaviour by offering
alternative implementations you can supply a configurable factory, which will
choose the configured implementation at runtime.

Interface I1
M1

I2
Application A

M2I1->M1
I2->M2

Factory

Interface I1
AppB.I1

I2
Application B

M2I1->AppB.I1
I2->M2

Factory

Figure 10: Usage of factory, to choose implementation at runtime

4.8.2 Experience

• Be careful with typed interfaces, because these will form a common module
which has to be updated, every time an interface changes.

Copyright © Fraunhofer IESE 2006 33

Module Structures and SPL
Variability

• Although all our modules are created through a configurable factory, we
never used this functionality to create a product variant. We only used this
variability to try out new algorithms or to allow researchers, to try out new
features.

4.9 Configurable module factory

4.9.1 Forces and Structure

In many cases it might make sense to create a module with a different interface
at runtime. This allows clients, through reflection, to code dynamically against
the available features in an interface. In such a situation a configurable factory
can create a module, by reading both the interface and the behavioural con-
figuration.

Core

Application A
Configurable

Factory

Core.M1-> ConfigM1

Core

Application B
Configurable

Factory

Core.M2-> ConfigM2

InterfaceM1

InterfaceM2

ConfigM1

ConfigM2

M1

M2

Figure 11: Using a configurable factory to change interface and behaviour

4.9.2 Experience

• In our context this proved to be a very powerful pattern to create modules
which represents different hardware devices. The clients of these modules
use reflection to query which features are available, and can create like that
reflective presentations.

• On the other hand this pattern has a huge impact on memory consumption
and start-up time, because the whole representation of the module needs to
be created at runtime.

• Another nice side-effect is that some updates of the hardware devices can
be represented purely as a new configuration.

Copyright © Fraunhofer IESE 2006 34

Module Structures and SPL
Variability

4.10 Façade and session state

4.10.1 Forces and Structure

In most systems the complexity lies in the interaction between the different
modules. To be able to make these interactions variable, they need to be local-
ized in one module, so that this module can be replaced by a different imple-
mentation. In more advanced implementations such a module might delegate
some responsibility to a configurable workflow engine.

M2 M3M1

M4

Application

Facade

Figure 12: Usage of façade to simply interface to application

4.10.2 Experience

Originally, the façade was not considered part of the SPL because it is tied
closely to the workflow and functionality of the application. But when we im-
plemented the second application based on the SPL, it was decided to reuse the
façade. This was mainly due to the complexity of the façade (usually all the
code which does not belong the either the presentation or a specific module
tends to end up in the façade). But this now makes it very difficult, to offer
radically different workflows for both applications.

4.11 Framework

4.11.1 Forces and Structure

If the SPL defines a template architecture which is the same for all variants, it
makes a lot of sense to encode this knowledge in a framework, which will call
the modules in the right order.

Copyright © Fraunhofer IESE 2006 35

Module Structures and SPL
Variability

Framework

M1 M2 M3

Application

Facade

Figure 13: Framework which encapsulates the component interactions

4.11.2 Experience

• Today we can reuse 85-90% of the lines of code between products. This is
mainly due to a large and powerful framework, which controls all the mod-
ule interactions and provides the base abstractions.

• But the framework also ties all the modules together (at least in the runtime
view). In our case this is not so bad because in most products we need all
the modules anyway. We now started to split the framework apart, to allow
clients which only would like to use one or two modules, to be able to re-
use only part of the framework.

4.12 Summary

The following table summarizes our experience with the variability of the pre-
sented module structures, in the context of out fitting software product line.

Pattern Benefit
(High/Medium/Low)

Comment

Separation of presenta-
tion and business logic

High Crucial if SPL needs to support differ-
ent presentation layers.

Encapsulate knowledge
about 3rd party modules

Medium Allows locating code dependent on
3rd party in one module. This mainly
improves portability of SPL.

Composition Low Composition of modules does not
allow the level of granularity we re-
quired.

Layering Low Replacing a complete layer will re-
quired major refactoring of layers
above.

Copyright © Fraunhofer IESE 2006 36

Module Structures and SPL
Variability

Runtime configuration High Key pattern to realize module vari-
ants. Costs performance, but allows
maintaining one code base. Requires
major investment in powerful toolset
to allow system integration to main-
tain configurations.

Build time configuration High Important pattern to create different
deployments. Not used heavily, be-
cause we did not have major re-
source constraints in our platform.

Interface, Implementation,
Factory

Low This pattern was only used to allow
try out new algorithms. Not used to
generate new product variants, be-
cause we wanted to maintain one
code base.

Configurable module
factory

High This pattern basically combines the
power of runtime configuration with
a factory. Allows to implement reflec-
tive interfaces.

Façade and session state Medium Important to decouple presentation
layer from business logic. Represents
a placeholder for code which does
not belong to the presentation or to
one module. Requires continuous
refactoring!

Framework Low The framework basically represents
the architecture. Sometimes we feel,
that the framework constrains us to
much.

4.13 References

[Jacobson] Jacobson, I.; Griss, M.; & Jonsson, P. Software Reuse: Architecture,
Process, and Organization for Business Success. Reading, MA: Ad-
dison-Wesley Longman, 1997.

[Gamma] Gamma, E.; Helms, R.; Johnson, R.; & Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Ad-
dison-Wesley, 1995.

[Anasta] Anastasopoulos, M. & Gacek, C. Implementing Product Line Vari-
abilities (IESE-Report No. 089.00/E, V1.0). Kaiserslautern, Germany:
Fraunhofer Institut Experi-mentelles Software Engineering, 2000.

Copyright © Fraunhofer IESE 2006 37

Module Structures and SPL
Variability

[Bosch 00] Jan Bosch, Design & Use of Software Architectures, Addison
Wesley, 2000.

[Bach] Felix Bachmann, Len Bass, Managing Variability in Software Archi-
tectures

[Hillside] Gerard Meszaros, Jim Doble, A Pattern Language for Pattern Writ-
ing http://hillside.net/patterns/writing/patternwritingpaper.htm

Copyright © Fraunhofer IESE 2006 38

A first step towards a framework
for the automated analysis of
feature models

5 A first step towards a framework for the automated analysis of
feature models

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés
University of Seville

{benavides, sergio, trinidad, aruiz}@tdg.lsi.us.es

Feature modelling is a common mechanism for variability management in the
context of software product lines. After years of progress, the number of pro-
posals to automatically analyse feature models is still modest and the data
about the performance of the different solvers and logic representations used
in such area are practically non-existent. Three of the most promising proposals
for the automated analysis of feature models are based on the mapping of fea-
ture models into CSP, SAT and BDD solvers. In this paper we present a per-
formance test between three off-the-shelf Java CSP, SAT and BDD solvers to
analyse feature models which is a novel contribution. In addition, we conclude
that the integration of such proposals in a framework will be a key challenge in
the future.

5.1 Introduction

Feature Models (FMs) are one of the most common variability mechanisms.
Good tool support is needed to debug, extract information and in summary
analyze FMs in order to select them as a variability mechanism in a Software
Product Line (SPL) approach. A FM represents all possible products of a SPL in a
single model using features. FMs can be used in different stages of develop-
ment such as requirements engineering [10], [11], architecture definition or
code generation [1], [3]. A FM is a tree-like structure and consists of: i) relations
between a parent feature and its child features. ii) cross-tree constraints that
are typically inclusion or exclusion statements of the form “if feature F is in-
cluded, then feature X must also be included (or excluded)”.

Automated analysis of FMs is an important challenge in SPL research [1], [2]. It
can be performed using off-the-shelf solvers to automatically extract useful in-
formation of the SPL such as the number of possible combinations of features,
all the configurations following a criteria, finding the minimum cost configura-
tion, etc. Although there have been some promising proposals based in the
representation of FMs as a Constraint Satisfaction Problem (CSP), boolean SAT-
isfiability problem (SAT) and Binary Decision Diagrams (BDD) the performance
of the solvers working with such representations is unknown for the SPL com-
munity.

In a previous work, we presented a performance comparison of two CSP java
solvers analysing FMs [8]. In this paper we go further integrating different

Copyright © Fraunhofer IESE 2006 39

A first step towards a framework
for the automated analysis of
feature models

solvers and logic representations. First we give a complete mapping for the
three solvers (BDD, SAT and CSP) and then we present a performance compari-
son of them. To the best of our knowledge, this is the first test that measures
the performance of solvers dealing with different logic representations of FMs.

The remainder of the paper is structured as follows: in Section 1.2 the auto-
mated analysis of FMs is outlined and details on how to translate a FM into a
CSP, BDD and SAT are presented. Section 1.3 focuses on the results of the ex-
periment. Finally we summarize our conclusions and describe our future work
in Section 1.4.

5.2 Automated analysis of Feature Models

Once a FM is translated into a suitable representation it is possible to use off-
the-shelf solvers to automatically perform a great variety of operations such as
calculating the number of possible combinations of features, retrieving configu-
rations following a criteria, finding the minimum cost configuration, etc [6].

There is a great variety of techniques and tools that can be used in the auto-
mated analysis of FMs. This paper focus on three well known problems in the
area of automated reasoning: Constraint Satisfaction Problems (CSP), Boolean
Satisfiability Problems (SAT) and Binary Decision Diagrams (BDD). All those rep-
resentations have not been yet fully adopted in the automated analysis of FMs.
In the next sections we will give a brief overview of each of them and finally we
will introduce how translating a FM into a CSP, SAT and BDD.

5.2.1 Constraint Satisfaction Problem

Constraint Programming can be defined as the set of techniques such as algo-
rithms or heuristics that deal with CSPs. A CSP consists on a set of variables, fi-
nite domains for those variables and a set of constraints restricting the values of
the variables. A CSP is solved by finding states (values for variables) in which all
constraints are satisfied. CSP solvers can deal with numerical values such as in-
teger domains. The main ideas concerning the use of constraint programming
on FM analysis were stated in [6], [7].

5.2.2 Boolean Satisfiability Problem (SAT)

A propositional formula is an expression consisting on a set of boolean variables

(literals) connected by logic operators),,,,(↔→∧∨¬ . The propositional satisfi-
ability problem (SAT) consists on deciding whether a given propositional for-
mula is satisfiable, that is, if logical values can be assigned to its variables in a
way that makes the formula true.

Copyright © Fraunhofer IESE 2006 40

A first step towards a framework
for the automated analysis of
feature models

The problem is restricted by using the propositional formulas in conjunctive
normal form (CNF), that is, propositional formulas composed by a conjunction
of clauses in which each clause is a disjunction of literals

(e.g.))65()43()21((LLLLLL ∨∧∨∧∨). Every propositional formula can be
converted into an equivalent formula in CNF by using logical equivalences. The
basic concepts about the using of SAT in the automated analysis of FMs were
introduced in [1].

5.2.3 Binary Decision Diagrams (BDD)

A Binary Decision Diagram (BDD) is a data structure used to represent a boo-
lean function. A BDD is a rooted, directed, acyclic graph composed by a group
of decision nodes and two terminal nodes called 0-terminal and 1-terminal.
Each node in the graph represents a variable in a boolean function and has two
child nodes representing an assignment of the variable to 0 and 1. All paths
from the root to the 1-terminal represents the variable assignments for which
the represented boolean function is true meanwhile all paths to the 0-terminal
represents the variable assignments for which the represented boolean function
is false.

Although the size of BDDs can be reduced according to some established rules,
the weakness of this kind of representation is the size of the data structure
which may vary between a linear to an exponential range depending upon the
ordering of the variables. Calculating the best variable ordering is an NP-hard
problem. In the context of the automated analysis of FMs there are some tools
that claim the internal use of BDDs [9].

5.2.4 Mapping

Rules for translating FMs to constraints are listed in Figure 1. In all cases the no-
tation more common in the bibliography has been used. The final representa-
tion of the FM is the conjunction of the translated relations following the rules
of Figure 14 plus an additional constraint selecting the root which is included in
all products.

5.3 Experimental Results

The experiments focused on a performance comparison of three off-the-shelf
Java solvers working with CSP, SAT and BDD in order to test how these repre-
sentations can influence in the automatic analysis of FMs. The comparison re-
sults were obtained from the execution of a number of FMs mapped as CSP,

Copyright © Fraunhofer IESE 2006 41

A first step towards a framework
for the automated analysis of
feature models

BDD and SAT in three of the most popular Java solvers within the research
community: JaCoP2 (CSP), JavaBDD3 (BDD) and Sat4j4 (SAT).

RELATION CSP BDD SAT

M
A

N
D

A
TO

R
Y

O
PT

IO
N

A
L

O
R

A
LT

ER
N

A
TI

V
E

IM
PL

IE
S

EX
C

LU
D

ES

A B

A B

CP ↔

PC →

)...(21 nCCCP ∨∨∨↔

BA→

)(BA∧¬

))...((
))...((
))...((

121

12

21

PCCCC
PCCC
PCCC

nn

n

n

∧¬∧∧¬∧¬↔
∧∧¬∧∧¬↔

∧∧¬∧∧¬↔

−

)()(PCCP ∨¬∧∨¬

PC ∨¬

BA∨¬

BA ¬∨¬

)(...)(
)()...(

2

121

PCPC
PCCCCP

n

n

∨¬∧∧∨¬
∧∨¬∧∨∨∨∨¬

)()()(
)()(...)(

)()(...)(
)...(

11

2232

1121

21

PCPCCC
PCCCCC

PCCCCC
PCCC

nnnn

n

n

n

∨¬∧∨¬∧¬∨¬
∧∨¬∧¬∨¬∧∧¬∨¬
∧∨¬∧¬∨¬∧∧¬∨¬

∧¬∨∨∨∨

−−

P

C

P

C

CP =

0
)0(

=
=

C
Pif

0
)0(

>
>

B
Aif

0
)0(

=
>

B
Aif

0,...,0,0

}..1{),...,(
)0(

21

2,1

===

>

n

n

CCC
else

ninCCCsum
Pif

0,...,0,0

}1..1{),...,(
)0(

21

2,1

===

>

n

n

CCC
else

inCCCsum
Pif

P

C1 C2 Cn

P

C1 C2 Cn

Figure 14: Mapping

5.3.1 The Experiment

We used four groups of 50 randomly generated FMs. Each group included FMs
with a number of features in an specific range ([50-100),[100-150),[150-200)
and [200-300)) with a double aim: test the performance of small, medium and
large instances and working out averages from the results in order to avoid as
much exogenous interferences as possible. After formulating each one as a
CSP, BDD and SAT, we proceeded with the execution. Each FM was executed
several times increasing the number of cross-tree constraints from one until the
25% of the number of the features in the FM in order to find out how de-
pendencies influence in the performance. The dependencies were added ran-
domly as well, but checking that the same feature can not appear in more than

2 http://www.cs.lth.se/home/Radoslaw_Szymanek/
3 ttp://javabdd.sourceforge.net
4 http://www.sat4j.org

Copyright © Fraunhofer IESE 2006 42

A first step towards a framework
for the automated analysis of
feature models

one cross-tree constraint and that a feature can not have a cross-tree constraint
with any of its ancestors. Averages were obtained from all the FMs in each
range with the same percentage of cross-tree constraints. Table 1 summarizes
the characteristics of the experiments.

N. of Features N. of instances Dependencies
[50-100) 50 [0%-25%]
[100-150) 50 [0%-25%]
[150-200) 50 [0%-25%]
[200-300] 50 [0%-25%]

Table 1: Experiments

As exposed in [6], [7], there are some operations that can be performed. For
our experiments we performed two operations: i) finding out if a model is satis-
fiable, that is, if it has at last one solution and ii) finding the total number of
configurations of a given FM. The first one is the simplest operation while the
second is the hardest one in terms of performance because it is necessary to
work out the total number of possible combinations. The data extracted from
the tests were:

• Average memory used by the logic representation of the FM (measured in
Kilobytes).

• Average execution time to find one solution (measured in milliseconds).
• Total number of solutions, that is, the potential number of products repre-

sented in the FM.
• Average execution time to obtain the number of solutions (measured in mil-

liseconds).

In order to evaluate the implementation, we measured its performance and ef-
fectiveness. We implemented the solution using Java 1.5.0_04. We ran our
tests on a WINDOWS XP PROFESSIONAL SP2 machine equipped with a 3Ghz In-
tel Pentium IV microprocessor and 512 MB of DDR RAM memory.

5.3.2 The Results

The experimental comparison revealed some interesting results. The first evi-
dence was that JavaBDD is on average 96% faster than JaCoP and 75% faster
than Sat4j finding one solution. However, JavaBDD revealed a memory usage
on average 928% higher than JaCoP and 1672% higher than Sat4j. On the
other hand, although JaCoP and Sat4j showed a similar memory usage, SAT
representation showed better results in both aspects, memory and especially in
time. The performance of the solvers was similar in the four groups of experi-
ments. Figure 15 and 16 presents the results for the group of FMs with a num-
ber of features between 100 and 150.

Copyright © Fraunhofer IESE 2006 43

A first step towards a framework
for the automated analysis of
feature models

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Percentage of Dependencies

M
em

o
ry

(K
B

)

Memory BDD Memory CSP Memory SAT

Figure 15: Memory Usage

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Percentage of Dependencies

T
im

e
(m

s
)

Time BDD Time CSP Time SAT

Figure 16: Average time to get one solution

In fact, Figure 15 can be confusing in the sense that in the worst case the mem-
ory usage is insignificant (in the order of 2 Mb) but this behavior seems to be
exponential with the number of features and dependencies. For instance, in the
range of (200-300) features, we found some cases where the memory used by
the solver was around 300 Mb. We think that in bigger FMs (e.g. 1000 fea-
tures) this can be even a bigger problem. What Figure 15 try to stress is the dif-
ference in the use of memory of the three solvers.

The results obtained from finding the total number of configurations of a given
FM showed a great superiority of JavaBDD. While JaCoP and Sat4j were com-
putationally incapable of performing that operation in a reasonable time in
most of the cases, JavaBDD lasted 5312 ms to work out the solutions
of the worst case.

34107.7 x

Finally, we found some unexpected results or outliers in the data obtained from
the experiments with JaCoP and JavaBDD. On the one hand, JaCoP showed in a

Copyright © Fraunhofer IESE 2006 44

A first step towards a framework
for the automated analysis of
feature models

few consecutive executions a huge number of backtracks and consequently a
great time penalty. On the other hand, JavaBDD revealed in a few experiments
a huge memory usage which seemed to increase exponentially with the num-
ber of dependencies. We are investigating the possible causes of these behav-
iors [5].

5.3.3 Discussion

The great superiority of JavaBDD on finding the total number of solutions is be-
cause for calculating the number of solutions, in general, CSP and SAT solvers
have to retrieve all the solutions (which is a #P-complete problem [12]) mean-
while BDD solvers use efficient graph algorithms to calculate the total number
of solutions without the need of calculating all the solutions. The huge memory
usage of BDD solvers depends on the variable ordering for representing the
BDD. As stated earlier, the size of BDDs can be reduced with a good variable
ordering, however, calculating the best variable ordering is a NP-hard problem.

To the best of our knowledge, there is only a proposal to include feature attrib-
utes in the automated analysis of feature models [6]. This proposal uses CSP
solvers for that aim and we are not aware of any result where BDD or SAT
solvers could be used to deal with feature attributes in order to maximize or
minimize values.

As a result of the test, we claim that there is not an optimum representation for
all the possible operations that can be performed on FMs. Therefore, we think
that a framework for the automated analysis of feature models is needed. The
framework will be designed to be open to other solvers where formal semantics
of feature models will play a fundamental role [13]. The development of such a
framework is the seed of our ongoing research [4].

5.4 Conclusion and Future Work

In this paper we integrated the use of different solvers in the automated analy-
sis of FMs. We presented how to translate a feature model into a CSP, SAT and
BDD and we performed a comparative test between three off-the-shelf Java
solvers managing with each representation. The results showed that using
BDDs for determining satisfiability in a FM is much faster than using SAT or
CSP. On the other hand, FMs mapped as BDDs required a bigger memory us-
age in comparison with CSP and SAT. The test also revealed that while FMs
mapped as SAT and CSP are computationally incapable of finding the total
number of configurations in most of medium and large size FMs, FMs mapped
as BDDs can get it in a very low time.

Copyright © Fraunhofer IESE 2006 45

A first step towards a framework
for the automated analysis of
feature models

We think that there is not an optimum representation for all the possible opera-
tions that can be performed on FMs, therefore a framework for the automated
analysiss of feature models is needed.

5.5 Acknowledgements

We thank Don Batory and Jean-Christophe Trigaux for their helpful comments
on an earlier draft of this paper.

5.6 References

[1] D. Batory. Feature models, grammars, and propositional formulas. In Soft-
ware Product Lines Conference, LNCS 3714, pages 7–20, 2005.

[2] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis of feature
models: Challenges ahead. Communications of the ACM, Conditionally ac-
cepted, 2006.

[3] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise refinement.
IEEE Trans. Software Eng., 30(6):355–371, 2004.

[4] D. Benavides, A. Durán, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A
framework for the automated manipulation of software product lines. In
preparation.

[5] D. Benavides, A. Ruiz-Cortés, B. Smith, Barry O’Sullivan, and P. Trinidad.
Computational issues on the automated analyses of feature models using
constraint programming. International Journal of Software Engineering and
Knowledge Engineering, in preparation, 2006.

[6] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on fea-
ture models. LNCS, Advanced Information Systems Engineering: 17th Inter-
national Conference, CAiSE 2005, 3520:491–503, 2005.

[7] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint program-
ming to reason on feature models. In The Seventeenth International Con-
ference on Software Engineering and Knowledge Engineering, SEKE 2005,
2005.

[8] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using java csp
solvers in the automated analyses of feature models. LNCS, to be asigned:to
be asigned, 2006.

Copyright © Fraunhofer IESE 2006 46

A first step towards a framework
for the automated analysis of
feature models

[9] K. Czarnecki and P. Kim. Cardinality-based feature modeling and con-
straints: A progress report. In Proceedings of the International Workshop on
Software Factories At OOPSLA 2005, 2005.

[10] S. Jarzabek, Wai Chun Ong, and Hongyu Zhang. Handling variant require-
ments in domain modeling. The Journal of Systems and Software,
68(3):171–182, 2003.

[11] M. Mannion. Using First-Order Logic for Product Line Model Validation. In
Proceedings of the Second Software Product Line Conference (SPLC2), LNCS
2379, pages 176–187, San Diego, CA, 2002. Springer.

[12] G. Pesant. Counting solutions of csps: A structural approach. In IJCAI,
pages 260–265, 2005.

[13] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Feature Diagrams:
A Survey and A Formal Semantics. In Proceedings of the 14th IEEE Interna-
tional Requirements Engineering Conference (RE’06), Minneapolis, Minne-
sota, USA, September 2006.

Copyright © Fraunhofer IESE 2006 47

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

6 Version management tools as a basis for integrating Product Deri-
vation and Software Product Families

Jilles van Gurp, Christian Prehofer
Nokia Research Center, Software and Application Technology Lab

{jilles.vangurp|christian.prehofer}@nokia.com

This paper considers tool support for variability management, with a particular
focus on product derivation, as common in industrial software development.
We show that tools for software product lines and product derivation have
quite different approaches and data models. We argue that combining both
can be very valuable for integration and consistency of data. In our approach,
we illustrate how product derivation and variability management can be based
on existing version management tools.

6.1 Introduction

The last ten years have seen an increasing interest in software product lines [1].
This has started from different approaches such as generative programming [2],
feature-oriented design [4], and programming [6]. By now, there is a large
amount of research on software product lines and variability management,
which has led to several tools and various industrial experience, e.g. for mobile
phones [3].

This paper considers tool support for variability management, with a particular
focus on product derivation, as common in industrial software development.
The purpose of product derivation in a product family is to construct a software
product from a base platform consisting of architecture, design and reusable
code. The product derivation process consists of selecting, pruning, extending
and sometimes even modifying the product family assets. Additionally, in many
companies which practice product family development, this is not a one time
activity but a process that has an iterative nature:

• Usually, both product family and derived products evolve independently.
They each have their own roadmaps and deadlines. However, it may be de-
sirable to propagate changes from the product family to already derived
products (e.g. bug fixes or new features) at certain points in time.

• As outlined in [9], repeated iterations are often required as understanding of
the product requirements progresses.

We discuss in the following tool support for software product lines and product
variation. For instance, common tools for product derivation are version man-
agement systems, such as Subversion [11][12]. We show that both areas have
quite different approaches and data models. We argue that combining both

Copyright © Fraunhofer IESE 2006 48

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

can be very valuable for integration and consistency of data. In our approach,
we sketch how product derivation and variability management can be based on
existing version management tools.

6.1.1 Tool support and product derivation

To support product derivation, various research papers have proposed using
variability models and tools. Some of these approaches have been applied suc-
cessfully in practice as well. The problem of describing and representing vari-
ability in these models is well covered in the research field. Essentially the tool
support for this can be broken down into two categories (though some tools
arguably fit in both categories):

• Build oriented tools. Tools that integrate into the build process. Examples
of such tools include KOALA [10] and PROTEUS [7]. These tools enable the
selection and configuration of components and generating glue code.

• Documentation oriented tools. Tools that focus on documenting the pro-
vided variability and that provide traceability of requirements and variation
points to code. A good example of this is e.g. COVAMOF [9] and VARMOD
[8]. These tools are primarily used to guide the (manual) process of product
derivation.

Both categories of tools are very useful in their own right. Most of the above
research has mostly been centered on the requirements and variability aspects.
However, the process of product derivation (i.e. exploiting the provided variabil-
ity in the software product family to create product variants) is only partially
supported by tools.

Product derivation is about more than this. It includes:

• Selecting components. Reusing components provided by the software prod-
uct family.

• Overriding components. Replacing provided components with alternative
implementations (provided by the software product family or product spe-
cific).

• Modifying provided components. Sometimes product requirements conflict
with product family requirements. Adapting such code in the derived prod-
uct is a solution that despite its disadvantages is preferred in many compa-
nies.

• Providing new variants for existing variation points (e.g. implementing com-
ponent interfaces)

• Adding product specific components and architecture.
• Configuring reused, modified and product specific components.

Copyright © Fraunhofer IESE 2006 49

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

We observe that none of the variability management tools fully supports all of
these activities. Secondly, we observe that the product derivation process, like
the rest of the development process, is iterative. In other words, it is not a one
time activity but a recurring activity during the evolution of a product.

6.2 Supporting product derivation with version management

The solution we propose involves exploiting functionality provided in common
version management tools. The advantages of doing this are:

• Version management tools are used anyway in development organizations
so it is a relatively easy transition for development teams to start using these
tools for product derivation as well.

• Version management tools are the place to keep track of relations between
artifacts (typically components) both in space (branches) as in time (revi-
sions). Derived components can be seen as product specific branches of
product family component.

Notice that version management works on any development artifacts (directory,
a file, or an entire subsystem). We identify files or directories with components
for simplicity.

In version management terms, product derivation is equivalent to creating a
branch (or branches) of the main product platform and then committing prod-
uct specific changes on these branches. However, this is not how version man-
agement tools are currently used in many product family using organizations.
Instead products are usually created by copying (or generating configurations)
artifacts from the product family and then adding product specific artifacts. This
is especially problematic when product specific changes need to be made to the
copied artifacts.

This is very similar to the notion of having multiple branches of the same code
base in a version repository. A version management system supports this type
of functionality by:

• Keeping track of the changes
• Allowing for changes to be merged from one branch to another

6.2.1 Subversion

There are roughly three generations of version management systems:

Copyright © Fraunhofer IESE 2006 50

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

• Individual file based systems like RCS. Manage individual files. These systems
are rarely used these days.

• Systems that can version groups of files (CVS and many commercial version
management systems). While still popular, these systems lack many of the
features that would enable using them for product derivation.

• Change-set oriented version management systems. These include systems
like Subversion and GIT. The key difference is that rather than versioning in-
dividual files (like CVS) changes to the complete system are versioned with
all its aspects including file system manipulation, symbolic link creation,
meta-information modification and file changes etc. The delta between two
revisions of the system in the version management system is called a change
set.

Subversion [11][12] is a good example of a third-generation version manage-
ment system. For the remainder of this paper we will assume Subversion or
similarly capable, change set oriented version management system when we re-
fer to version management. Our approach requires many of the features com-
mon in this new generation of version management tools. A few essential fea-
tures are:

• File system based rather than file based. It can version all file system ac-
tivities, including deletion, moving, linking and copying. For example, the
history of a renamed file includes all commits before it was renamed; the re-
name; and all commits after it was renamed.

• Copy by reference. Copies are always by reference. The consequence of
this is that a copy preserves version history and that making copies in the
version repository is both fast and cheap in using server-side storage (unlike
CVS where version history is not preserved and copying actually results in a
full copy by value on the server).

• Flexible repository layout. Branching and tags are implemented as copies
(by reference). Unlike many second generation versioning systems, branch-
ing and tagging are not special operations. For example, creating a new
branch from trunk amounts to making a copy of a specific revision of the
trunk directory to the branches directory. Subversion repositories (by conven-
tion, not by rule) contain directories with the names trunk, branches and
tags. However, whether these directories are located directly under the root
or deeper in the directory structure is up to the repository maintainer. In
fact, using the subversion move operation it is trivial to change the directory
layout if needed.

• Properties. Subversion supports annotations by associating properties
(name value pairs) with any artifacts under version management. Of course
changes to properties are also properly versioned (so they property manipu-
lation is part of the version history).

Copyright © Fraunhofer IESE 2006 51

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

6.2.2 Information models

The information model used by most variability tools is very different from that
used by version management tools such as subversion. In the context of prod-
uct derivation, both models are relevant. Therefore, we provide a brief outline
of both in this section.

As outlined in the introduction the purpose of most variability tooling is to sup-
port product derivation either by documenting the variability in the software
and/or by automating parts of the derivation process (e.g. component configu-
rations; build configurations). Most approaches are centered on requirements,
features and development artifacts. The information used by such tools consists
of:

• Feature models. A common way to model variability is to construct feature
diagrams with variant features. These models may be textual or graphical.

• Mapping of features to requirements.
• Mapping of variant features to design and implementation level artifacts.

Especially the build oriented tools require this information in order to sup-
port the derivation process.

The information model of version management systems on the other hand is
concerned with managing the changes of files and directories. The information
it manages consists of

• A tree of directories, files and associated meta data properties. Usually the
tree structure is derived from the logical architecture. For example, each di-
rectory represents a particular subsystem or module.

• In subversion, the meta data properties mentioned under 1 are used to rep-
resent various properties related to versioning (revision number; commit
message; data and time) the file content (character used for new lines in text
files; the mime-type of the file content; etc). Additionally files and directories
may be annotated using custom properties. Subversion does not do any-
thing with these properties (except for tracking changes to this data) but
they may be used in scripts or custom applications that integrate the subver-
sion programming API (bindings for C, python and Java exist).

• Storing change sets between revisions of the versioned tree. In subversion,
each commit to the version repository is stored internally as a delta to the
previous revision of the repository (and unlike CVS, the revision always refers
to the entire contents of the repository instead of artifacts in the repository).

Copyright © Fraunhofer IESE 2006 52

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

6.2.3 Integrating both information models

As can be seen from the description above, both information models have dif-
ferent purposes. Although there may be little overlap in both, consistency can
be an issue. Furthermore, product derivation support that goes beyond the
regular branching and merging functionality, requires integration of these in-
formation models.

There are two strategies for doing this:

• Integrate version management information in existing variability tooling (e.g.
by storing subversion URLs and revision numbers of relevant artifacts in the
repository).

• Store variability model information and mappings into the version manage-
ment repository.

The latter strategy may be supported using subversions annotation feature.
Since version management systems store development artifacts this concerns
mostly storing the mapping of features and variability models to development
artifacts. Using, for example, a "mandatory" property component directories
corresponding to non optional features in the feature model could be marked
as such. Similarly, a "depends-on" property might be used to indicate feature
dependencies on other components in the repository. In this way, the informa-
tion is directly stored with the corresponding code, which can help in avoiding
potential inconsistencies when working with different data bases.

Copyright © Fraunhofer IESE 2006 53

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

6.2.4 Using the information model

spf
X - Mandatory, implements F1
Y - Optional, excludes Z, implements F2
Z - Optional, excludes Y, implements F2

product1
X copy of /spf/X,
Z copy of /spf/Z

product2
X copy of /spf/X

revision 1

Copyright © Fraunhofer IESE 2006 54

Y copy of /spf/Y

create two products by copying components
from spf. Note: the constraints are copied
along but not listed in the copies here.

spf
X - Mandatory, implements F1
Y - Optional, excludes Z, implements F2
Z - Optional, excludes Y, implements F2

product1
X copy of /spf/X,
Z copy of /spf/Z

product2
X copy of /spf/X

revision 1

Y copy of /spf/Y

spf
X - Mandatory, implements F1
Y - Optional, excludes Z, implements F2
Z - Optional, excludes Y, implements F2

product1
X copy of /spf/X,
Z copy of /spf/Z

product2
X copy of /spf/X

revision 1

Y copy of /spf/Y

create two products by copying components
from spf. Note: the constraints are copied
along but not listed in the copies here.

spf
X' - Mandatory , implements F1
Y - Optional, excludes Z , implements F2
Z' - Optional, excludes Y , implements F2

product1
X
Z@ (change @)

product2
X@ (change @)

revision 2

Y

modify X and Z in the spf and create product
specific change for Z in product1 and X in
product2

spf
X' - Mandatory , implements F1
Y - Optional, excludes Z , implements F2
Z' - Optional, excludes Y , implements F2

product1
X
Z@ (change @)

product2
X@ (change @)

revision 2

spf
X' - Mandatory , implements F1
Y - Optional, excludes Z , implemen
Z' - Optional, excludes Y , implemen

Y

modify X and Z in the spf and create product
specific change for Z in product1 and X in
product2

ts F2
ts F2

product1
X' (apply changes /spf/X, 1-2)
Z@' (apply changes /spf/Z, 1-2)

product2
X@

revision 3

spf
X' - Mandatory , implements F1
Y - Optional, excludes Z , implemen
Z' - Optional, excludes Y , implemen

Y

update product1 with the changes
in the spf between revision 1 and 3

ts F2
ts F2

product1
X' (apply changes /spf/X, 1-2)
Z@' (apply changes /spf/Z, 1-2)

product2
X@

revision 3

Y

update product1 with the changes
in the spf between revision 1 and 3

spf
U - Optional, implements F3
X' - Mandatory, implements F1
Y' - Optional, excludes Z, implements F2,

depends U
Z' - Optional, excludes Y, implements F1

product1
X'
Z@'

product2
X@
Y

revision 4

the spf is refactored slightly so that Y now
depends on a new component U

spf
U - Optional, implements F3
X' - Mandatory, implements F1
Y' - Optional, excludes Z, implements F2,

depends U
Z' - Optional, excludes Y, implements F1

product1
X'
Z@'

product2
X@
Y

revision 4

the spf is refactored slightly so that Y now
depends on a new component U

spf
U - Optional, implements F3
X' - Mandatory, implements F1
Y' - Optional, excludes Z, implements F2,

depends U
Z' - Optional, excludes Y, implements F1

product1
X'
Z@'

product2
X@
Y

revision 5

The changes to X and Y are now applied to
product2. Tool support detects that product2
now violates constraints

spf
U - Optional, implements F3
X' - Mandatory, implements F1
Y' - Optional, excludes Z, implements F2,

depends U
Z' - Optional, excludes Y, implements F1

product1
X'
Z@'

product2
X@
Y

revision 5

The changes to X and Y are now applied to
product2. Tool support detects that product2
now violates constraints

spf
U - Optional, implements F3
X' - Mandatory, implements F1
Y' - Optional, excludes Z, implements F2,

depends U
Z' - Optional, excludes Y, implements F1

product1
X'
Z@'

product2
X'@
Y'
U (copy from /spf/U, 5)

revision 6

The constraint violation is solved by copying U
from revision 5

spf
U - Optional, implements F3
X' - Mandatory, implements F1
Y' - Optional, excludes Z, implements F2,

depends U
Z' - Optional, excludes Y, implements F1

product1
X'
Z@'

product2
X'@
Y'
U (copy from /spf/U, 5)

revision 6

The constraint violation is solved by copying U
from revision 5

Figure 17: Example version management for product derivation and families

To illustrate how product derivation would work with such an integrated in-
formation model, we run through a small example scenario based on an imagi-
nary SPF that we follow through a few revisions, as shown in Figure 17 above.

In revision 1, an SPF (software product family) directory is created and a few
components are (X, Y and Z) are added. Using subversion properties it is speci-
fied that X is a mandatory component and implements feature F1. Similarly, Y
and Z are optional and are variants of the same feature F2. Since a product can
use only one of the implementations of F2, both implementations Y and Z ex-
clude each other.

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

Furthermore, revision 1 includes two product derivations in the form of two di-
rectories in the repository (product1 and product2). Copies from SPF have been
made of X and Y for product1 and X and Z for product2. Although we do not
show this explicitly, the properties on the SPF components are copied as well.
This allows us to use a tool to validate the constraints (in this case there are no
violations).

In revision 2, we do some maintenance on the SPF. This results in changes to
/SPF/X and /SPF/Z. We indicate these changes using a ‘. Additionally product
engineers make a product specific change to /product1/Z and /product2/X.
These changes are indicated with a @.

In revision 3, product1 is updated with the changes made to the SPF in revision
2. /product1/Z now has both the product specific changes and the SPF changes.
It might be possible that these changes are conflicting in which case the conflict
would have to be resolved. It is worthwhile to point out that this conflict could
have been identified (using a so-called dry-run for the merge of the changes on
all the derived product components) already in revision 2 when the change was
made to SPF/Z. In a real product family, the ability to analyze the impact of im-
portant changes on derived products is of course a very important feature any
potential conflicts might result in these changes to be reconsidered or in some
kind of upgrade strategy for the affected products.

In revision 4, some more refactoring is done on the SPF. A component U is
added and some changes to Y result in a dependency between Y and U.

In revision 5, product2, which is still based on the revision1 of the SPF, is up-
dated with the changes to X and Y. This results in a situation where constraints
are violated.

Revision 6 resolves the constraint violation by copying U to product2.

The scenario above can be enhanced with tool support based on the informa-
tion in the version repository. For example, constraints validation could be
automated and run before each commit; as part of a nightly build or even inte-
grated into the IDE. Similarly, impact analysis of changes on the SPF could be
supported by trying to merge the changes to each of the derived products.
These are just two simple but extremely useful ways to provide tool support us-
ing subversion.

6.3 Conclusions and future work

In this article we have outlined first ideas for complementing existing tools for
product derivation based on software variability modeling with version man-
agement functionality in order to better support the derivation of software

Copyright © Fraunhofer IESE 2006 55

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

products. Our approach is especially appropriate in situations where it may be
expected that:

• Derived products may include modifications to the components that they are
derived from.

• Changes made to the product family after the initial derivation takes place
need to be propagated to derived products.

The main purpose of this position paper is to shape our ideas with respect to
future work:

• Provide a more formal definition of the information models.
• Explore additional opportunities for automating product derivation steps.
• Build layer of tools on top of subversion and existing variability tools and

validate concepts using a case study.
• Explore advantages of using distributed version management systems where

change sets are pulled rather than pushed, a notion that shifts control from
product family developers to product developers.

6.4 References

[1] J Bosch, Design and use of software architectures: adopting and evolving a
product-line approach, - 2000 - ACM Press/Addison-Wesley Publishing Co.,
New York, NY K.

[2] Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[3] Savolainen, J. Oliver, I. Mannion, M. Hailang Zuo, Transitioning from
product line requirements to product line architecture, Computer Software
and Applications Conference, COMPSAC 2005.

[4] Kang, C. K., Lee, J., Donohoe, P., Feature-Oriented Software product line
Engineering, 2002, IEEE Software, 19, 4, 58-65.

[5] P. Sochos, I. Philippow, and M. Riebisch. Feature-Oriented Development of
Software Product Lines: Mapping Feature Models to the Architecture. In
Object-Oriented and Internet-Based Technologies. 2004.

[6] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In
ECOOP’97, 1997.

Copyright © Fraunhofer IESE 2006 56

Version management tools as a
basis for integrating Product
Derivation and Software Product
Families

[7] E. Tryggeseth, B. Gulla, R. Conradi, Modelling Systems with Variability us-
ing the PROTEUS Configuration Language, Lecture Notes In Computer Sci-
ence Vol. 1005, Springer-Verlag, pp 216 - 240, 1995.

[8] Pohl, K.; Böckle, G.; van der Linden, F.: Software Product Line Engineering
– Foundations, Principles, and Techniques. Springer, Heidelberg 2005.

[9] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, Jan Bosch: Modeling Depend-
encies in Product Families with COVAMOF. ECBS 2006: 299-307.

[10] R. van Ommering, Building product populations with software compo-
nents, proceedings of the 24rd International Conference on Software Engi-
neering, pp. 255-265, 2002.

[11] C. Michael Pilato, Ben Collins-Sussman, Brian W. Fitzpatrick, Version Con-
trol with Subversion, O'Reilly Media, 2004, available at svnbook.red-
bean.com

[12] The Subversion Project Home, http://subversion.tigris.org

Copyright © Fraunhofer IESE 2006 57

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

7 Coherent Integration of Variability Mechanisms at the Require-
ments Elicitation and Analysis Levels

Nicolas Guelfi *, Gilles Perrouin**

 *Laboratory for Advanced Software Systems, University of Luxembourg,
Luxembourg, nicolas.guelfi@uni.lu

**Computer Science Department, University of Namur,
Belgium, gilles.perrouin@uni.lu

Early phases of product line development can be separated in requirement elici-
tation and analysis. The former provides an abstract and informal description of
the product line, while the latter provides a technical specification as precise
and as complete as possible. The major problems we face are to define the con-
tent of each phase for optimal development cycle and to provide consistency
between those phases. This paper aims at integrating product line variability
mechanisms between requirements elicitation and analysis levels. First, we pre-
sent a requirements elicitation template based on use case variants. Then,
product analysis phase is done using a generative mechanism starting from the
core analysis assets and specifying the variation covered by the use case vari-
ants. These mechanisms are coherently related by means of consistency rules
and the same approach is employed to integrate feature models with the analy-
sis phase. Finally elements for variability integration reasoning are derived on
the basis of these rules.

7.1 Introduction

Variability [1] is a key notion for product line (PL) engineering and, as a result,
various mechanisms have been proposed to cope with variability at all stages of
product line development [2,3]. However, industrial research [4,5] has shown
that variability mechanisms selection, although having a great impact in terms
of flexibility and performance (at implementation stage), is the result of an of-
ten arbitrary choice. Furthermore, the same research states that the interaction
between such mechanisms at various levels has not been sufficiently studied.
The contribution of this paper addresses this lack at the requirements elicitation
and analysis levels. This is done by examining the integration relationships be-
tween elicited requirements described in terms of a simple template we defined
or depicted using a generic type [6] of feature diagrams [7] and the analysis
model provided by the FIDJI methodology [8]. This methodology addresses the
development of distributed JAVA applications in a product line context. New PL
members are derived by transformation from an existing structure, called archi-
tectural framework [8] (AF) which includes the core assets of the product line
organized in a reference architecture.

Copyright © Fraunhofer IESE 2006 58

mailto:nicolas.guelfi@uni.lu
mailto:gilles.perrouin@uni.lu

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

Section 7.2 presents our requirements elicitation template defined to describe
informally product lines and illustrates its usage on an example. Section 7.3 de-
scribes how these requirements can be precisely defined with the help of an
analysis model and model transformation operations. Section 7.4 presents con-
sistency rules integrating requirements elicitation and analysis variation mecha-
nisms. It then discusses factors affecting variability mechanisms selection dis-
covered while elaborating these rules. Section 7.5 presents some related work
while Section 7.6 concludes this paper and outlines some future directions.

7.2 Requirements Elicitation Template

In this section, we present an informal yet structured template called REQuire-
ments Elicitation Template (REQET) that is fully described in [9]. Its main pur-
pose is to describe PLs requirements at the very early stages of their develop-
ment. The template comprises two sections: the Domain Elicitation Table
(DOMET) and the Use Case Elicitation Template (UCET). We illustrate this tem-
plate with a “Hello World” PL whose members display a welcome message in
several languages according to user choice and in some cases quote local writ-
ers.

7.2.1 Domain Elicitation Table

The role of the DOMET is to provide the necessary information to understand
all the possible variants concerning data (domain concepts) amongst PL mem-
bers. It takes the form of a data dictionary depicted using a tabular notation as
shown on Table 1 below:

Concept
Name

Var Type Description Dependencies

LuMessage Alt

Contains the Luxembourgish
welcome message: “Moien”.

Exclusive with respect to
FrMessage

FrMessage Alt Contains the French welcome
message: “Bonjour”

Exclusive with respect to
LuMessage

LuxQuotes Opt List of quotes from famous
Lxembourgish writers.

This concept requires
LuMessage.

LangKey Mand Contains unique language key
defined for each language,
here “lu” or “fr”

Depends on the language
defined in the PL, here
“LuMessage” and “FrMes-
sage”

Table 1: Domain Elicitation Table (DOMET)

Concept Name labels the concept via a unique identifier. Var Type column is
filled with the following keywords:

Copyright © Fraunhofer IESE 2006 59

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

• Mand: means that the concept is mandatory in the product line and hence
must be present in all PL members,

• Alt: represents one of the alternative concepts that has to be chosen for a
given PL member,

• Opt: represents an optional concept that may be omitted.

Description is an informal explanation of the concept purpose, while De-
pendencies column exposes any kind of relationship with other concept(s)
such as generalization/specialization, related alternative or optional concepts
etc. The nature and meaning of these dependencies is intentionally not speci-
fied to allow a flexible description. For example, in our “Hello World” PL, ac-
cording to Table 1, we have the three following possibilities; one product in
which only the Luxembourgish message is present, one in which only the
French message is present and finally one in which, in addition to the Luxem-
bourgish message, citations from Luxembourgish writers are available. It has to
be noted that the domain table is partial; mandatory concept(s) that are not re-
lated to any variation description are not part of the DOMET and are simply
written as plain text in the use case descriptions. Concepts of the DOMET are
not represented in any graphical notation (UML class diagram…) for two rea-
sons. The first one is, as these concepts form a subset of the whole PL ones
they do not give the “big picture” of the PL. The last one is that there is no
codification of the relationships expressed in the dependencies column so that
syntax and semantics of the relationships within the diagram would have to be
defined differently for each PL. In fact, we believe that the objective of the
DOMET is to prepare a precise and complete analysis of the PL concepts by pro-
viding incomplete and informal information mainly dedicated to variations un-
derstanding.

7.2.2 Use Case Template

The second and last section of our template describes the behavior of PL mem-
bers by means of use cases. We chose the widely accepted template given by
Cockburn [10] and adapted it to support PL specificities according to [11,12].
The UCET is defined as follows:

• UID: An unique identifier for the use case, such as ‘UCXX’ where X is a digit
e.g. ‘UC01’,

• Use Case Name: A short active verb phrase summarizing use case goal, e.g.
“Display localized welcome Messages”,

• Var Type: One of {‘Mand’, ‘Alt’, ‘Opt’}. Mand represents mandatory behav-
ior that all products should support, Alt represents a behavioral choice (other
alternative use case are mentioned within brackets) and finally Opt repre-
sents a facultative behavior. In our PL, UC01 is mandatory,

• Description: A longer statement of use case goal if needed,

Copyright © Fraunhofer IESE 2006 60

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

• Actors: Participating actors of the use case, e.g. “User”

• Dependency: Dependencies with other use cases (inclusion, extension…),

• Preconditions: Conditions that must hold prior to use case execution, e.g.
“Application has been launched”,

• Postconditions: Conditions that must hold after use case execution, e.g. “A
message has been displayed to the user”,

• Main Scenario: Standard and most frequent behavior decomposed in steps,
e.g. “1. User enters (lu)[V1] language key, 2. Application displays
welcome message (Moien)[V2] and may be a citation (“Wou d'Uelzecht
durech d'Wisen zéit, Duerch d'Fielsen d'Sauer brëcht Wou d'Rief
laanscht d'Musel dofteg bléit,Den Himmel Wäin ons mëcht.”, Michel
Lentz, 18715)[V3] to the user”, parentheses here denote the scope of
the variant and the value given represents the “default” value for data or
behavior the variant is related to,

• Alternative Scenario: Alternative or less frequent behavior6, e.g. “2a. Ap-
plication displays the national flag when the current date is the
one of the selected country national celebration”. Due to space rea-
sons, additional concepts required by this alternative are not shown here

• Non Functional: Quality attributes required if any, e.g. “The message
should be displayed in less than 1 second ”

• Variation Points Description: Explain here the variation points (variants)
introduced in the use case text via labels of the form: V1…Vn. Variants may
concern data or behavior:

• V1: Type:Alt, Concerns:Data, values={lu,fr},
• V2: Type:Alt, Concerns:Data, values={if V1=lu then LuMes-

sage…},
• V3: Type:Opt Concerns:Data, values={if V1=lu then pick

randomly a quote from the list defined in LuxQuotes}.

It is worth noticing that we do not consider alternative scenarios as a mean to
document variability within the use cases; alternative scenarios have always to
be supported by the product if the uses cases are mandatory or explicitly cho-
sen. It is however possible to define variation points within an alternative sce-
nario.

7.2.3 REQET Validation

The intent of the REQET is to focus on the variations the PL offers. Hence it is
important to ensure a certain degree of coherence amongst the variation de-
scription within the template. For instance, the same concept (LuMessage) can
be used obligatorily in a use case (consider a new mandatory use case that

5 Part of the Luxembourgish National Anthem. See

http://www.gouvernement.lu/tout_savoir/histoire_monarchie/hymne_national/index.html for translations.
6 It has to be noted that in some cases it is interesting to distinguish alternatives from exceptions in order to

handle the latter properly (e.g. Fault Tolerant systems). Domain specific extensions to the template may be
developed for such a need.

Copyright © Fraunhofer IESE 2006 61

http://www.gouvernement.lu/tout_savoir/histoire_monarchie/hymne_national/index.html

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

would display user’s name following the luxembourgish welcome message) and
as alternative in an other one (e.g. in UC01 above). In the DOMET of this such
extended PL, we would have to choose between Alt and Mand; we suggest
that it is the strongest usage (Mand) that should be reported in the DOMET
hence providing useful information to product line developers. Intra-use case
validation rules may also apply; if a concept seems mandatory within an op-
tional use case description, this concept should be considered as optional for
the PL. We can apply the same kind of validation rules to the behavioral de-
scriptions within a use case. More on REQET validation is given in [9].

7.3 The FIDJI Approach to Product Line Analysis

In this section we sketch FIDJI prescriptions for performing the analysis of a PL.
A more detailed description is given in [13].

FIDJI methodology builds on the natural synergy one can notice between
frameworks and PLs [8]. It uses model transformation to instantiate and to de-
rive architectural framework elements to produce the final product ones at all
stages of its development. Hence models of the AF and those of a product use
exactly the same notation and all the variability information is encoded using a
composition of model transformation operations.

7.3.1 Analysis Model

The FIDJI analysis model [13] proposes the following notational elements:

• Domain Concepts: concepts of the domain are represented in a OMG’s
UML 2.07 class diagram. Concepts are mapped into classes with attributes
but without method. There are also regrouped in a table describing their
purposes and relationships like a “standard” data dictionary,

• Use Cases: Use cases are following Cockburn’s template [10] where we add
OMG’s OCL 2.0 expressions for pre, postconditions and scenarios steps. For
each use case, contextual information for all OCL expressions is given via a
use case component diagram (represented using UML 2.0 component nota-
tion as shown in Figure 18). A use case component describes the domain
concepts handled by a particular use case and operations associated to it,

• Operations: Operations represent units of behavior that are composed to
form the AF functionality. Operations descriptions are also following a tem-
plate detailing domain concepts they handle and defining their behaviors in
terms of OCL pre/postconditions.

7 For all OMG’s specifications see http://www.omg.org

Copyright © Fraunhofer IESE 2006 62

http://www.omg.org/

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

<<component>>
HelloWorldAF

<<signal>>
EnterMessageDisplay

IAF

+saySomething(message : String)
+saySomethingRequest()

<<signal>>
MessageDisplay

-isVal : boolean = false
-message : String

-message : String

Figure 18: Use Case Component

As noted above we do not provide any dedicated notation related to variants
within the AF analysis model, we rather use model transformation operations
and product line boundaries constraints as explained below.

7.3.2 Implementing PL Variants with Model Transformations

In FIDJI, we use model transformations for two purposes: refinement and deri-
vation. Refinements are vertical transformations that relate models at several
levels of abstraction (analysis, design…) while derivations are horizontal trans-
formations defining models of the product based on the one of the architec-
tural framework at a given abstraction level. In the remaining of this Section we
will focus on derivation as it represents the FIDJI way of implementing variabil-
ity.

Although it is possible to describe derivations using standard model transforma-
tion languages constructs such as OMG’s QVT, we found useful to define high
level transformation operations that suits the structure of FIDJI models and
eases the analyst’s job. These operations cover addition, removal and update of
model elements for every FIDJI model (analysis, design). These operations are
declaratively defined in terms of OCL 2.0 pre/postconditions. For example,
Figure 19 below gives the (incomplete) definition of an operation that creates a
classifier in a model according to a reference to this model, the classifier name
and its UML 2.0 classifier subtype.

Copyright © Fraunhofer IESE 2006 63

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

addClassifier(m:Model
className:String,type:Type

>post:m.ownedType -

exists(c|oclIsTypeOf(type)and

c.name = className)

Figure 19: addClassifier Operation Specification

FIDJI model transformation operations are combined imperatively to form a
transformation program, as shown in Figure 20 below. This program operates
on the elements defined in Figure 18 by copying them as a whole in a new, ini-
tially blank, model and updates some elements by changing their names. The
selection of variants for a particular product is then made by the analyst who
combines transformation operations in the program.

Model transformation operations together with the imperative language which
allows to compose them are currently been defined. We believe they represent
a handy way to derive product models from architectural framework ones. Fur-
thermore, since the variability is deduced from the program and not from the
AF models a more flexible product line development is possible. Actually, prod-
ucts that do not belong explicitly to the original product line may be easily
reached via a new transformation program. However, all transformation pro-
grams are not acceptable for two reasons. The first one is technical, when the
analyst decides to remove or update one model element in his model, depend-
ing model elements may be impacted. If this impact is too big, he will have to
change a lot of model elements. Thus, he may not benefit from reuse provided
by the architectural framework and encounter difficulties to refine his models
towards the final product implementation. The second reason is conceptual; al-
though an architectural framework may technically allow some of its assets to
be removed, doing so may cross the acceptable boundaries defined for the
product line hence realizing a product that does not belong to the identified
scope the PL addresses. For example although an AF may accommodate to use
FrMessage and LuxQuotes in the same product (displaying a Luxembourgish ci-
tation after a French welcome message), this product would not have any sense
with respect to the original PL and hence should be prohibited. The AF analysis
model provides complete allowed and prohibited transformation programs as
well as constraints concerning some AF analysis model elements. Programs and
constraints are given in the Product Line Boundaries (PLB) package of the AF
analysis model.

Copyright © Fraunhofer IESE 2006 64

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

 * UCCHelloLang \ = {} * \
copyModel(UCCHel oWorldAFl
UCCMyHelloLang

,
);

updClassifier(UCCHelloLang,HelloWorldAF,C
omponent ,
EnterMessageDisplay,Signal,EnterLanguag
eDisplay,Signal);

updClassifierProp(UCCHelloLang,HelloWorld
AF,Component ,
EnterMessageDisplay,Signal,message,Stri
ng,language,String);

updateOpPar(UCCHelloLang,HelloWorldAF,Com
ponent,saySo
uage,String

met
);

hing,message,String,lang

Figure 20: Transformation Program

7.4 Integration of Requirements Elicitation and Analysis via Consistency Rules

In this section, we present how the integration of our REQET with the FIDJI
analysis model of an architectural framework can be achieved by means of con-
sistency rules. We then show that the same approach can be employed to re-
late feature models with FIDJI analysis one and finally, we strive to synthesize
the approach in order to draw some conclusions that may be applied with
other variability mechanisms.

7.4.1 Requirement Elicitation Template & FIDJI Analysis

To REQET elements (concepts, use cases…) corresponds FIDJI analysis modeling
elements or group of elements. Before we can reason on variability mechanisms
integration, we need to state a few conditions.

Firstly, we assume a well-formed template description according to the hints
given in Section 7.2. Secondly, we apply a kernel first approach [12] for the ar-
chitectural framework analysis such that all the mandatory concepts and behav-
iors present in the REQET are mapped to the AF analysis model elements. Fi-
nally, it is also expected that model transformation operations for adding vari-
able concepts and behaviors are also defined. Thus, in the PL exemplified in
Section 7.2, the AF analysis models would include elements corresponding to
the mandatory concept LangKey as well as the required model transformation
operations for creating FrMessage, LuMessage and LuxQuotes analysis corre-
spondences.

Our consistency rules are used to validate the transformation program yielding
the final product line member. Since mandatory concepts and behaviors have
already been processed by the kernel first approach, we focus on alternative
and optional variants:

Copyright © Fraunhofer IESE 2006 65

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

• Rule 1: “For each set of related alternative elements (concepts or be-
haviors) in the REQET, the transformation program should result in
exactly one group of elements that represents one REQET alterna-
tive”.

• Rule2: “To each optional REQET element, its corresponding model
transformation operations can be found in the transformation pro-
gram”.

These two rules work well for individual elements but inter-elements depend-
encies have also to be taken into account. Some dependencies (such as gener-
alization between two concepts) are handled when establishing the mapping
between a PL REQET description and a FIDJI analysis model while for others
such as mutually exclusive optional elements, additional consistency rules
should be defined. As the REQET does not state on the nature of dependencies
that have to be given (it is up to the REQET user to define them informally) it is
not possible to define precise rules; such dependencies have to be handled on a
per case basis.

7.4.2 Feature Models for Requirements Elicitation & FIDJI analysis

Two problems arise when trying to relate feature modeling approaches with
“classical” software engineering approaches, namely “What is a Feature?” and
“Which Feature Notation to choose?”.

Several definitions of the notion of feature have been given in the literature
ranging from “a set of requirements” to “any characteristic of the system that
is relevant for its stakeholders”. In the following, we will retain the definition
given by Bosch: “a logical unit of behavior that is specified by a set of func-
tional and quality requirements” [14]. Therefore features models represent a
way of grouping requirements in a meaningful manner. These groupings may
include diverse elements hardware or software, behavior and the concepts they
are relying on. However we focus only on software related features.

The second problem relates to the various notations given for feature modeling
from the original notation [7] to UML based ones and the semantics that is
conveyed with them. In [6] Schobbens et al proposed a generic language, called
Free Feature Diagram (FFD), able to support most of the approaches for feature
modeling in a formal way. We will focus on the constructs given in this lan-
guage in order for our rules to be easily translated in a specific notation. FFD
proposes the following operators for representing variants:

• Andn: evaluates to true if all the n (n ∈ Ν, n > 0 n represents the operator’s
arity) subfeatures for a feature are present in the final product (mandatory
features). Orn and xorn are defined the same way: for at least one (resp. ex-
actly one) of their n subfeature(s) are (resp. is) selected in the final product.

Copyright © Fraunhofer IESE 2006 66

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

E.g. xorn has the same semantics as the alternative operator we have de-
fined in our template,

• Optn: always evaluates to true, (opt semantics),

• Vp(n..m): (n, m ∈ Ν, n ,m> 0 and m>n) evaluates to true if at least n and at
most m of the sub-features are selected for the product.

Moreover, two binary operators are defined to express dependencies between
features: mutex for mutually exclusive features (|) and requires (=>) for compul-
sory dependencies between features.

To each feature, we associate an ordered set of transformation operations (i.e.
a transformation sub-program) that defines the specification of the features in
the analysis model based on the AF analysis model. As features do not separate
behavior from data, each set of transformations may contain both transforma-
tion operations concerning data (FIDJI analysis concepts) and behaviors (FIDJI
analysis operations). Associating features with model transformations is an ap-
proach that has also been promoted in the Fireworks project [15]. The seman-
tics of the FFD operators enables the definition of the following consistency
rules:

• Rule 1: For all the features that are operands of an andn, their corre-
sponding transformation subprograms must be part of the transfor-
mation program yielding the final product,

• Rule 2: For all the features that are operands of an orn (resp. xorn), at
least one (resp. exactly one) of their corresponding transformation
subprograms must be part of the transformation program yielding
the final product,

• Rule 3: For all the features that are operands of an optn, their corre-
sponding transformation subprograms can be part of the transfor-
mation program yielding the final product,

• Rule 4: For all the features that are operands of an vp(n..m), at least
n and at most m of their corresponding transformation subprograms
must be part of the transformation program yielding the final prod-
uct,

• Rule 5: For all the features that pertain to a mutex relationship, only
one of their corresponding transformation subprograms can be pre-
sent in the transformation program (xorn semantics),

• Rule 6: For all the features that pertain to a requires relationship, all
their corresponding transformation subprograms must be present in
the program (andn semantics),

Copyright © Fraunhofer IESE 2006 67

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

We should also ensure that the PLB package of the AF analysis model is consis-
tent with its related elicitation FFD:

• Rule 7: Every allowed (resp. prohibited) transformation program in
the PLB must (resp. cannot) correspond to a valid path in the feature
diagram.

7.4.3 Synthesis

In this paragraph we expose the factors that influence selection of variability
mechanisms on the basis of the two integrations presented above.

Prior to reasoning about variability selection and integration it is necessary to
relate elements present in the requirement elicitation documents or models
with the analysis specification of core assets. In our examples, we notice that
having the same separation between concepts and behavior, both at the re-
quirements elicitation and analysis levels, eases integration. Feature models re-
quire additional description of the features to be able to relate elements.

One can also remark that the precision and richness of the variability mecha-
nisms offered at the requirement elicitation level impact the soundness of the
integration rules we can define between the two levels. In this case FFDs pro-
vide sound variation operators that make the relationships with transformation
operations at the analysis level straightforward. More work is required in the
case of the REQET since variability mechanisms differ between the domain table
and the use case and have to be coherently managed first before establishing
consistency rules.

Finally, if these two factors are successfully taken into account, it is possible to
use the definition of consistency rules as a key criterion for selecting the vari-
ability mechanisms. For instance, FFDs seems to be suited to automation of core
assets selection for a given product in a well delimited product line (as also illus-
trated by Czarnecki et al. [16]) whereas use case variants, emphasizing on PL
members behavior, provide flexible variation mechanisms useful for identifying
core assets in a coarse grained way in a PL under inception. In both cases, these
rules suggest that a generative approach for PL analysis such as the one FIDJI
proposes is compatible with these two popular variability mechanisms used at
the requirements elicitation level.

7.5 Related Work

Savolainen et al [17] presents similar consistency rules helping management of
constraints between elements at the requirements level (definition of the prob-
lem), the features level (abstract definition of the solution) and the assets level

Copyright © Fraunhofer IESE 2006 68

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

(elements of the architecture). However the same variability mechanism (à la
feature modeling) is adopted at these three levels.

 Gomaa et al. [18] promotes the usage of OCL as a mean to define consistency
checks between several variability mechanisms used in the multiple view ap-
proach that they propose. Nevertheless, they tend to have one-to-one map-
pings between PL elements while we consider one-to-many relationships in our
rules.

Another promising approach to guarantee consistency and traceability of vari-
ability mechanisms amongst PL abstraction levels is proposed in [19]. It consists
of a conceptual model that describes all the variability information related to a
particular feature in a uniform way. However, to our knowledge, details of this
model are not available yet.

7.6 Conclusion

In this paper we highlighted the importance of defining consistency rules to
properly integrate variability mechanisms amongst product line requirement
elicitation and analysis levels. In particular, we introduced a novel template for
requirements elicitation based on use case variants. The integration of our gen-
erative analysis phase has been compared to a generic form of feature models
(FFD). We finally exhibited traceability and precision as first-class factors to suc-
cessful integration and variability selection.

The definition of consistency rules also served to identify some possible im-
provements: the REQET may need to have a global view on the variability
mechanisms it offers. In order to be capable to define consistency rules we
would need more information on the relationships between elements. To ex-
tend the FIDJI methodology at the requirements elicitation level with feature
modeling, we would need to formalize consistency rules between FFD and FIDJI
analysis level. Thus, an automatable approach to PL development based on
such models could also be defined.

7.7 Acknowledgements

We thank our colleagues Barbara Gallina, Andreea Monnat, Cédric Pruski, Pat-
rick Heymans and Jean Christophe Trigaux for their contributions or relevant
comments related to this paper.

Copyright © Fraunhofer IESE 2006 69

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

7.8 References

[1] J. van Gurp; J. Bosch, and M. Svahnberg, On the Notion of Variability in
Software Product Lines, WICSA 2001.

[2] G. Halmans, and K. Pohl, Communicating the Variability of a Software-
Product Family to Customers, Software and Systems Modeling 2(1), 15-36,
2003.

[3] M. Svahnberg; J. van Gurp, and J. Bosch, A taxonomy of variability realiza-
tion techniques, Software Practice and Experience. 35(8), 705—754, 2005.

[4] J. Bosch; G. Florijn; D. Greefhorst; J. Kuusela; H. Obbink, and K. Pohl, Vari-
ability Issues in Software Product Lines, PFE 4, pp. 11—19, 2001.

[5] S. Deelstra; M. Sinnema, and J. Bosch, Experiences in Software Product
Families: Problems and Issues during Product Derivation, SPLC3, pp. 165—
182, 2004.

[6] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps, Feature Diagrams:
A Survey and A Formal Semantics, RE'06, 2006

 [7] K. Kang; S. Cohen, and J. Hess, W. Novak, S. Peterson, Feature-Oriented
Domain Analysis (FODA) Feasibility Study, 1990, Technical report n°
CMU/SEI-90-TR-21, SEI, Carnegie Mellon University.

 [8] N. Guelfi, and G. Perrouin, Using Model Transformation and Architectural
Frameworks to Support the Software Development Process: the FIDJI Ap-
proach, MSEC 2004, pp. 13-22.

[9] B. Gallina, N. Guelfi, A. Monnat, G. Perrouin, A Template for Product Line
Requirement Elicitation, Technical report n° TR-LASSY-06-08, To be pub-
lished, University of Luxembourg.

[10] A. Cockburn, Writing Effective Use Cases Addison-Wesley; 2000

[11] A. Fantechi, S Gnesi, G. Lami and E. Nesti, A Methodology for the Deriva-
tion and Verification of Use Cases for Product Lines, SPLC3, pp255-265,
2004.

[12] H. Gomaa, Designing Software Product Lines with UML, Addison Wesley,
2004

[13] G. Perrouin, Architecting Software Systems using Model Transformation
and Architectural Frameworks, TR-LASSY-06-02, University of Luxembourg.

Copyright © Fraunhofer IESE 2006 70

Coherent Integration of
Variability Mechanisms at the
Requirements Elicitation and
Analysis Levels

[14] J. Bosch, Design and Use of Software Architectures, Addison Wesley,
2000.

[15] M. Ryan, and P. Schobbens, Fireworks: A formal transformation-based
model-driven approach to features in product lines, Workshop on Software
Variability Management for Product Derivation at SPLC 3, 2004

[16] K. Czarnecki, S. Helsen, and U. Eisenecker, Staged configuration through
specialization and multilevel configuration of feature models, Software
Process: Improvement and Practice, 2005, 10, 143-169

[17] J. Savolainen; I. Oliver; M. Mannion, and H. Zuo, Transitioning from Prod-
uct Line Requirements to Product Line Architecture: COMPSAC'05, 2005,
186-195

[18] H. Gomaa, and, M.E. Shin, Multiple-View Meta-Modeling of Software
Product Lines, ICECCS '02, 2002.

[19] Kathrin Berg, Judith Bishop and Dirk Muthig, Tracing Software Product
Line Variability - From Problem to Solution Space, SAICSIT 2005.

Copyright © Fraunhofer IESE 2006 71

Product Line Architecture
Variability Mechanisms

8 Product Line Architecture Variability Mechanisms

Steve Livengood

Software product lines have been adopted by many companies as a way to
achieve significant improvements in quality, cost, and delivery time when a se-
ries of similar software products are to be developed. Effective development of
software product lines requires the creation of a software architecture that cov-
ers the entire product line, providing variation points in the architecture to ad-
dress the variation within the product line. This paper discusses one criterion for
categorizing the types of architectural variation which can occur. This criterion
may be used to assess how such variation mechanisms impact the development
of further product-line assets and of the individual products.

8.1 Product Line Architectures

8.1.1 Background

The Software Product Line approach is an approach to developing and main-
taining a set of common software artifacts (requirements, architecture, designs,
components, plans, etc.) such that they can be used to instantiate many differ-
ent software products (the Product Line) over time (refer to [SPL42] for further
details). Each product uses the common artifacts—the Core Assets—in a pre-
scribed way by configuring or adjusting them and assembling them according
to the rules of a common, product-line-wide architecture. Reuse of the core as-
sets between products is enabled and enforced through preplanned variation
mechanisms.

There is a tendency in many software development organizations to treat the
set of source code as the complete set of core assets. After all, don’t measures
of reuse usually focus on how well source code is reused product-to-product?
But in reality, reuse of higher-level software artifacts is even more important—
and is a key part of the software product line approach. In particular, it is nec-
essary to have a Product Line Architecture (PLA) that defines the overall soft-
ware structure of the entire product line. The PLA is the first point where the
products’ variation is represented in design and the first point where pre-
planned variation mechanisms must be introduced. The specific mechanisms by
which the PLA addresses the variation is somewhat dependent on the architec-
tural style and approach used, however it should be possible to categorize the
types of mechanisms available and to describe their impacts on the develop-
ment of further product-line assets and of the individual products. This paper
provides some initial thoughts on one criterion that can be used to categorize
these mechanisms.

Copyright © Fraunhofer IESE 2006 72

Product Line Architecture
Variability Mechanisms

8.1.2 Product Line Architecture vs. Product Architecture

Bass, et al [SAP03] define the architecture of a system as “the structure or
structures of the system, which comprise software elements, the externally visi-
ble properties of those elements, and the relationships among them.”. Unlike a
traditional system’s architecture, a PLA must over the entire product line, which
includes identifying how the structure, the elements, the properties of the ele-
ments, and the relationships must be used, modified, and/or augmented based
on the variation in the product line.

In contrast to the PLA that spans the entire product line, a Product Architecture
(PA) describes the architecture of an individual product in the product line. A
product’s architecture differs from its PLA by making variant-specific decisions
based on variation points specified by the PLA. In other words, the PLA must
address how the variability in the software requirements (functional and non-
functional) is used to derive the various product architectures.

Figure 21 illustrates the relationship between the PLA and the individual PAs,
and provides an example for the hypothetical product line of printers and multi-
function peripherals.

Product Line ArchitectureProduct Line Architecture

Product Architecture 1

Product Architecture 2

Product Architecture 3

Product Architecture 1Product Architecture 1

Product Architecture 2Product Architecture 2

Product Architecture 3Product Architecture 3

D
om

ai
n

En
gi

ne
er

in
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Product Line: Printers/MFPsProduct Line: Printers/MFPs

Product 1: Copier SCN-2000

Product 2: Printer SP-99

Product 3: Fax SFX-100

Product 1: Copier SCN-2000Product 1: Copier SCN-2000

Product 2: Printer SP-99Product 2: Printer SP-99

Product 3: Fax SFX-100Product 3: Fax SFX-100

D
om

ai
n

En
gi

ne
er

in
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Product Derivation Example Product Derivation

Figure 21: Product Architecture Derivation

8.1.3 Product Families

For complex product lines, PAs are not directly derived from the top-level PLA.
Instead, the product line scope may include products that can be grouped into
logical families based on common variation selections. To facilitate communica-
tion of the PLA and development of specific PAs, it is sometime convenient to
describe the architectures of these families of products; these are called Product

Copyright © Fraunhofer IESE 2006 73

Product Line Architecture
Variability Mechanisms

Family Architectures (PFAs)8 to distinguish them from the full PLA. Each family
resolves some of the variation present in the entire product line, but still has
considerable variation. Figure 22 illustrates this situation by way of an example
for printers and multi-function peripherals.

Product Line ArchitectureProduct Line Architecture

SCN-A

SCN-2000

SCN-NT

SCN-ASCN-A

SCN-2000SCN-2000

SCN-NTSCN-NT

D
om

ai
n

En
gi

ne
er

in
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Copier Product Family
Architecture
Copier Product Family
Architecture

Printer Product Family
Architecture
Printer Product Family
Architecture

Fax Product Family ArchitectureFax Product Family Architecture

SP-99

SP-2006

SP-XP

SP-99SP-99

SP-2006SP-2006

SP-XPSP-XP

SFX-10

SFX-50

SFX-100

SFX-10SFX-10

SFX-50SFX-50

SFX-100SFX-100

Figure 22: Product Family Example

In complex systems, PFAs may be further refined into their own derived PFAs.
For example, a PFA describing printers might be refined into PFAs for network
printers and personal printers, or a PFA describing copiers might be refined into
PFAs for All-in-Ones and Multi-Function Peripherals.

The PLA, the PFAs, and the PAs represent a natural recursive approach to ad-
dressing the variation in the product line. This is a similar approach to the recur-
sive breakdown of complex systems into subsystems, components, modules,
etc. In these types of approaches, interpretation of certain terms depends on
the point of view. Although this paper will specifically discuss addressing varia-
tion in the PLA, these same concepts should apply to addressing variation in the
PFAs. Since either PFAs or PAs may be derived from the PLA, the term derived
architecture will be used to refer to either type of architecture.

8 The term Product Family Architecture is sometimes used interchangeably with Product Line Architecture. In

this paper, this term refers only to variants of the Product Line Architecture that address specific groups of
products by specifying values for some of the variation in the product line.

Copyright © Fraunhofer IESE 2006 74

Product Line Architecture
Variability Mechanisms

8.2 The Unify or Divide Criterion

To be complete, the PLA must address all architecturally significant variation9.
There are many mechanisms for addressing variation at an architectural level
(see [MVSA01] for a discussion of architectural variability mechanisms). There
has also been much work in describing and cataloging mechanisms and pat-
terns (see [NVSPL01] for a discussion of binding levels, binding times, and dif-
ferent patterns). Of the mechanisms and patterns that apply at an architectural
level, we can ask a fundamental question: “When this mechanism is applied,
does it cause the derived architectures to differ from each other?“ The answer
to this question determines whether the mechanism unifies or divides the de-
rived architectures. More specifically, it:

Unifies the derived architectures if the derived architectures are identical
to the PLA with regard to the particular variation.

Divides the derived architectures if the derived architectures are different
to the PLA with regard to the particular variation (that is, the PLA describes a
point of flexibility so that the derived architectures can differ).

Whether or not an architectural variation mechanism unifies or divides the de-
rived architectures has an impact on the further development of core assets. If
one derived architecture is different in some way from another derived architec-
ture, there will be a point of difference in the assets associated with the two ar-
chitectures, and hence a lack of commonality. Conversely, two derived architec-
tures that are unified may be able to share some set of assets. It is believed that
future work could develop a reasoning framework for choosing variability
mechanisms by combining the unify or divde criterion with other criteria.

8.3 Examples

A set of examples may be useful to further understand the unify or divide crite-
rion. The following sections discuss some of the major elements of architecture
with regard to the unifying or dividing criterion. This is not intended to be a
complete compendium of architectural variability mechanisms; it is simply illus-
trative of how the unify or divide criterion can be applied.

8.3.1 Component Relationships & Structure

An architecture breaks the system into components, allocates functionality to
these components, and describes their expected behavior. A part of this de-

9 Depending on the architectural approach, certain variation may not be architecturally significant. For exam-

ple, support for different hardware platforms may be required, but may be handled by mechanisms not of
architectural interest (for example, within the operating system).

Copyright © Fraunhofer IESE 2006 75

Product Line Architecture
Variability Mechanisms

scription is the structural relationship between the components to satisfy the
requirements of the product line. In many product lines it may be possible to
create a component structure that does not vary across the product line. How-
ever, in most cases it will be necessary to address product line variability by pro-
viding for some variation in the component structure.10 This type of variation
can be categorized by whether the PLA unifies the variation or allows the de-
rived architectures to differ.

Unifying Variation

A particular variation is unified at the PLA level with respect to component
structure if the derived architectures have exactly the same component struc-
ture regardless of which variant is present.

One mechanism that fits into this category is component abstraction (typically
achieved via component replacement or plug-in technology). This allows the
PLA to define a fixed component structure even when different components
are used to achieve variation. In this mechanism, the PLA describes a fixed role
in the architecture for a component. This role has functionality assigned to it,
along with a description of how the actual components must vary based on the
variation in the product line. Figure 23 illustrates this approach. In this example,
assume there is product line variability that defines different types of image
processing that needs to be performed. Regardless of this variation, the PLA in-
dicates that the ImageProcess component will interact with the Scan and Print
components.

<<component>>

Scan

<<component,variant>>

ImageProcess
<<component>>

Print

Data Flow

Figure 23: Unified Component Relationships

Dividing Variation

In some cases, the variation in the product line may require the component
structure to differ between different products. In this case, the PLA introduces a
variation point, dividing the derived architectures into groups based on which
variation is used by the derived architectures.

10 Note that the concept of optional components is not specifically included in either of the two cases. In-

stead, it can be addressed in either way—modelling optional components by using a dummy component
variant unifies the variation architecturally while modeling them by altering the structure when the compo-
nent is not needed divides the variation.

Copyright © Fraunhofer IESE 2006 76

Product Line Architecture
Variability Mechanisms

One mechanism that fits into this category is the use of a configurable architec-
ture. In this approach, components are connected in different ways to achieve
different variations. The Unix-style pipe-and-filter architecture is a good exam-
ple of this approach. A similar example is illustrated in Figure 24, where one
variation requires a component structure that performs scaling before contrast
reduction, while another requires contrast reduction before scaling. The result
of these differences is a difference in the component relationships, but not in
the actual components used. In this case, the PLA identifies two possible
choices for the derived architectures11.

<<component>>

Scale
<<component>>

ContrastReduce
<<component>>

Scan

<<component>>

Scan

<<component>>

Print

<<component>>

Print
<<component>>

Scale
<<component>>

ContrastReduce

Data Flow

Figure 24: Divided Component Relationships

An important point to note is that the rigor of the architectural definition does
not impact the categorization of the way in which the variation is addressed.
For example, the PLA may specifically describe all possible configurations based
on the variability in the product line, or it may express rules about potential
configurations based on characteristics of the products. The latter case is much
less rigorous than the former, but is still an example of dividing variation.

8.3.2 Component Interfaces

With the component relationships identified, the next topic is the specification
of the interfaces between the components. In most PLAs, separation of inter-
face from implementation is important. For example, component replacement
is enabled by being able to provide different implementations for the same in-
terface, such that the actual component implementation may be varied without
impact on clients. Also, configurable architectures are enabled by binding cli-

11 To be effective, the PLA must describe the intended ways in which the PLA can be configured. Configur-

able architectures can achieve good flexibility, but when multiple areas of the architecture are configurable,
the combinatorial aspects pose a difficult problem. Different aspects of variation may result in different con-
figuration possibilities for different parts of the architecture, and describing all supported combinations is
neither efficient nor desirable [and it doesn’t readily provide the ability to derive new combinations as
needed]. The introduction of PFAs at this point is a technique that can help express the intent of the PLA ar-
chitect.

Copyright © Fraunhofer IESE 2006 77

Product Line Architecture
Variability Mechanisms

ents to (instances of) interfaces instead of actual components, which is possible
only if the interface is separated from the implementation.

Returning again to the two possible options for addressing variability, remem-
ber that for each variation in the product line, the architect can unify the varia-
tion within the PLA, or he can instead divide the variation by introducing a vari-
ation point in the PLA.

Unifying Variation

One approach that can be taken by the PLA is to fully define an interface such
that no interface difference is introduced in any derived architecture—the inter-
face is designed to cover all possible variations. This unifies the variation with
respect to interfaces in the PLA. But in order to unify the interface definition in
the PLA, the PLA must fully define the semantics of the interface. Consider the
interface defined in Figure 25.

public interface AddressBook {
 AddressBookEntry getEntry(int index)
 throws CommunicationError;
 void addEntry(AddressBookEntry entry)
 throws AddressBookReadOnlyError;
}

Figure 25: Unified Interface

This example illustrates the interface to an address book, which in some prod-
ucts is provided by a local address book, and in other products by interfacing
with an LDAP server. In this case, the interface includes the functionality for
both local address books and for LDAP address books. For example, the Ad-
dressBookReadOnlyError exception is defined for the case where LDAP address
books are used and “add“ functionality is not supported. Likewise, for getting
entries, the CommunicationError exception is defined to handle the case where
the LDAP server cannot be reached. In this example, the interface has been de-
fined to cover all possible variation.

Dividing Variation

An alternate approach is for the PLA to defer some aspects of an interface to a
derived architecture. Depending on the style of architecture, it may be possible
to cover variations by using inheritance (to add or refine methods based on cer-
tain features, or to refine data types), or the definition may simply be different
for different variations. Continuing the same example, two different versions of
the AddressBook interface could be specified based on whether local address
books or LDAP address books were being used. These are illustrated in Figure
26.

Copyright © Fraunhofer IESE 2006 78

Product Line Architecture
Variability Mechanisms

It bears repeating that the rigor of the architectural definition does not impact
the categorization of the way in which the variation is addressed. For example,
the PLA may specifically describe all interface variations based on the variability
in the product line, or it may simply state that the definition of the interface is
deferred to the derived architectures.

For Local address books:
public interface AddressBook {
 AddressBookEntry getEntry(int index)
 void addEntry(AddressBookEntry entry);
}

For LDAP address books:
public interface AddressBook {
 AddressBookEntry getEntry(int index)
 throws CommunicationError;
}

Figure 26: Divided Interface

8.3.3 Component Identification

Continuing the AddressBook example, and independent of whether interfaces
are divided or unified, we could imagine a single AddressBook component in
the structural definition of the system, with the understanding that there would
be at least two flavors: one for LDAP support and one for a local address book.
In the PLA or in some derived architecture, the requirements on these two fla-
vors will be completely defined: what interfaces they must implement, what
form the interfaces must take, what their functional requirements are, and how
they must interact with other components.

Unifying Variation

Figure 27 illustrates one way to represent this situation. In this case, there is a
single component that must support multiple variations—the AddressBook
component itself has variation (that is, it can be built or configured to cover all
possible variants). The implication and probable result will be that one team will
be given the charter to design a component that can be configured or built to
meet the requirements for both variants.

Copyright © Fraunhofer IESE 2006 79

Product Line Architecture
Variability Mechanisms

<<component,variant>>

AddressBook

//
Variant1=LDAPSupport
Variant2=LocalAddressBook

Figure 27: Unified Component Identification

Dividing Variation

Figure 28 illustrates another way to represent this situation. In this case, there
are two components that must support the different requirements. The implica-
tion and probable result will be that two teams will created, each working on a
different component. Although this certainly doesn’t preclude sharing of arti-
facts (for example, code) between these components, such sharing will likely
not be as easy as the unified case, simply because of the division of work.

<<component,variant>>

AddressBook

<<component>>

LDAPAddressBook
<<component>>

LocalAddressBook

Figure 28: Divided Component Identification

8.4 Conclusions and Future Work

In most non-trivial systems, the PLA will use more than one type of variation
mechanism, and in some cases, the same product-level variation may be ad-
dressed by multiple variation mechanisms. For example, to address the different
type of address books that are present, the interfaces may be defined differ-
ently (dividing the interface), while component replacement is used to imple-
ment the local or LDAP functionality (unifying the structure, but dividing with
respect to component identification). The structure of the architecture may

Copyright © Fraunhofer IESE 2006 80

Product Line Architecture
Variability Mechanisms

need to be altered to include additional components (dividing the structure),
for example, to introduce a component to authenticate for LDAP. Having a
framework to categorize the variation mechanisms in this case should provide
to be useful.

This paper has presented one criterion for categorizing types of architectural
variation. This criterion needs to be applied to various product line architectures
to validate its usefulness. The hope is that this criterion can be used to describe
the situations in which the various mechanisms are most appropriate, which
will enable product line architects to make reasoned choices about which type
of mechanism to use. In particular, it would useful if the impact of these differ-
ent types of mechanisms on the development of further assets can be general-
ized. For example, whether component identification is unified or divided, and
if divided, how it is divided, can have a major impact on the success of the
product line effort, and usually falls upon the architects to determine. Unifying
many variations into one component can make the component difficult to de-
velop and maintain; dividing can cause a duplication of effort when there is
much commonality.

8.5 References & Further Reading

[SAP03] Bass, L., Clements, P., & Kazman, R. Software Architecture in Prac-
tice (2nd edition). Addison-Wesley 2003.

[SPL42] Software Engineering Institute. A Framework for Software Product
Line Practice Version 4.2, [see
http://www.sei.cmu.edu/productlines/framework.html].

[MVSA01] Bachmann, F. & Bass, L. “Managing Variability in Software Archi-
tectures. “ Symposium on Software Reusability, Toronto, Canada,
18-20 May, 2001. [see http://www.sei.cmu.edu/plp/variability.pdf].

[NVSPL01] Jilles Van Gurp , Jan Bosch , Mikael Svahnberg, “On the Notion of
Variability in Software Product Lines“, Proceedings of the Working
IEEE/IFIP Conference on Software Architecture (WICSA'01), p.45,
August 28-31, 2001.

8.6 Author

Steve Livengood

s.livengood@samsung.com
s.livengood@thirdrailsoftware.com

Copyright © Fraunhofer IESE 2006 81

Product Line Architecture
Variability Mechanisms

Steve Livengood is the Chief Architect in the Advanced Printing Software Lab
(APSL) of Samsung Electronics, Irvine, CA, USA, which is researching the institu-
tion of a software product line approach for the development of embedded
printer/MFP software. His focus has been on the software architecture aspects
of this project. He has over twenty years of experience in the development of
embedded printer software and product line architectures. He received his BS in
Computer Science from the University of Southern California, Los Angeles, CA
and his MS in Computer Science from National Technological University, Fort
Collins, CO.

Copyright © Fraunhofer IESE 2006 82

Implementing a Variation Point:
A Pattern Language

9 Implementing a Variation Point: A Pattern Language

John M. Hunt and John D. McGregor
Department of Computer Science Clemson University Clemson,

South Carolina 29634-0974, USA

SPL research has provided guidance for variation points at the design level, but
has provided only limited guidance on implementing a variation point. There
are a number of decisions that are easily specified at the design level but re-
quire considerable effort to implement. These include cardinality, making a
feature optional, and feature interaction. Our research attempts to provide
specific guidance on these issues for a Java development environment en-
hanced with XVCL and AspectJ. Guidance is provided in the form of a pattern
language on implementing variation points.

9.1 Introduction

 Implementation has typically been discussed in terms of a list of general tech-
niques, with a focus on the binding time related to the technique. Examples are
Anastasopoulos and Gacek [6] and Svahnberg et al. [7]. This approach is more
helpful to an architect trying to choose a development environment than a de-
veloper trying to live in one. The techniques are discussed in a language inde-
pendent manner, which makes the advice more general, but at the cost of
missing details important to the developer. The semantics of inheritance, for
example, varies widely between languages. Finally, the issues involved with op-
tional features and the effect of feature interaction are not addressed. Other
available research looks at a particular technique, such as skeleton classes [2],
aspects [8], inheritance [9], and other techniques. These papers typically ignore
those types of product line variation which the studied technique has difficulty
handling.

In contrast, our work is about implementing specific, though typical, variation
points. These are implemented using a combination of techniques to best han-
dle different parts of the problem. A limitation of this approach is the need to
work in a particular development environment, in our case Java / J2ME, en-
hanced with some compatible tools such as XVCL and AspectJ.

As a result of this work we have noticed a number of variation point implemen-
tation issues that do not seem to be generally discussed in the literature. These
include:

Copyright © Fraunhofer IESE 2006 83

Implementing a Variation Point:
A Pattern Language

9.1.1 Single vs. Multi Value variation points

If only a single variation can be selected, techniques that naturally form exclu-
sive choices have an implementation advantage. For example, inheritance has
often been recommended as a mechanism to implement variant behavior. A
sub-class is defined for each variation choice. To access the behavior at runtime
an object is instantiated. As Java’s new operator allows only a single class to be
specified, this provides a natural implementation of a single value variation
point. However, this exclusive behavior of the new operator becomes a draw-
back if the variation point allows multiple values. Using inheritance for the multi
value case requires a collection of objects, one for each variant selected, which
in turn requires the implementation to mange the collection [Lee2004]. Other
techniques differ in the advantages / disadvantages that they provide in these
two cases. For example, aspects are designed to act independently of each
other. This is a disadvantage in the single value case, as they will not naturally
exclude each other, but an advantage in the multi value case where more than
one aspect can be active without additional management.

9.1.2 Optional Features

If an optional feature is omitted from a product, the code related to this feature
should be cleanly and completely omitted from the product. For many tech-
niques, recommended in the literature to implement variants, this is not possi-
ble. For example, if inheritance is used to implement variants the code can not
be completely omitted. We will either create a subclass with empty methods or
we will not create the object. If we do not create the object we will need run-
time code to check for a null reference. This problem is generally shared by
component approaches [10].

9.1.3 Feature Interactions

Feature interaction involves two features call them - F1, F2. Assume F1 is a fea-
ture in the product. If F2 is added to the product, then the behavior of the sys-
tem may be different then it would have been with only F1. For example, in our
research, which uses arcade style games for its domain, we have a feature
called “practice mode”. If practice mode is included in the product and the user
selects to be in practice mode then the scoring is disabled and an unlimited
number of tries at scoring is allowed.

Feature interactions have not generally been discussed as part of variation point
implementation; however, they constitute one of the ways that products vary
as features are selected for a product variant. If we accept that the variation
point is the place in the product where we see the consequences of feature

Copyright © Fraunhofer IESE 2006 84

Implementing a Variation Point:
A Pattern Language

choices then feature interaction should be part of variation point design and
implementation.

Feature interaction has been understood in a variety ways in different fields of
software engineering, primarily in telecommunications [11]. Our approach to
feature interactions is based on work by Lee and Kang [10], and takes advan-
tage of a design pattern that they present. We extend their work several ways:
Our work is at the variation point / implementation level rather than a feature /
design level. As a result we are working with the problems of handling feature
variants and optional features while handling feature interactions. Finally, Lee
and Kang limit their discussion to component approaches while we are looking
at how aspects and frames can supplement components.

We want to leave the code related to handling feature interaction out of the
product if the particular set of features chosen does not interact with each
other. It is preferable to keep the code handling the interaction separate from
code implementing the feature. A given feature may be affected by more than
one other feature, and thus take part in multiple feature interactions. Thus, if
we have not kept the code to handle the interactions separate, a new version
of each feature will be needed for each possible combination of feature interac-
tions.

Given these variation point implementation issues we wish to provide advice to
the core asset developer. It is desirable to make the advice applicable to many
situations, yet detailed enough to provide useful guidance. The format we use
to provide this advice is a pattern language. “A pattern language is a structured
method of describing good design practices within a particular domain. Pattern
languages are used to formalize decision-making values whose effectiveness
becomes obvious with experience but that are difficult to document and pass
on to novices. They are also effective tools in structuring knowledge and under-
standing of fundamentally complex systems without forcing oversimplification”
[12]

9.2 A Pattern Language for Variation Points

Name: Implement a Variation Point

Pre-Condition: In the course of implementing a variant SPL feature we realize
the need to provide for variation at a particular point in the code; that is, we
recognize the need to implement a variation point.

Problem: SPL research has provided guidance for variation points at the design
level, but has provided only limited guidance on implementing a variation
point. Much of this guidance has been deliberately language independent to

Copyright © Fraunhofer IESE 2006 85

Implementing a Variation Point:
A Pattern Language

make it more general. This results in guidance that does not deal with the lan-
guage limitations with which a developer must cope.

A variation point must provide the opportunity to select a particular value from
a set of variants. Depending on the problem addressed, and thus the design for
solving the problem, the selection might be limited to a single value or open to
include multiple values in the same product. This difference is simply expressed
at the design level using a feature model. However, implementations for single
and multi value selection will differ from each other. Advice on these differ-
ences has not typically been provided. At the design level features may be op-
tional, meaning that they may be omitted from the product. However, the
problems of omitting code related to an optional feature completely from an
implementation are rarely addressed. Feature interaction is not normally dis-
cussed in relation to variation points. However, feature interaction requires that
an implementation modifies its behavior depending upon the features selected
for a given product. Since we would like to limit the effect of the feature selec-
tion on an implementation to the variation points, we must cope with feature
interaction as part of the variation point implementation.

Implement a Variation Point

Impl. VP Cardinality
Manage

Feature Interaction Impl. Optional VP

Impl. Single Value VP

Bind Single Value Early

Java Componets

Impl. Optional VP Early

Impl. Optional VP

Impl. Multi Value VP

Bind Multi Value Early

Bind Multi Value on Load

Selection Proxy

Figure 29: Overview of the Implement a Variation Point Pattern Language

Implementation advice for developers should address the consequences of
these three types of design choices - cardinality, optionalness, and feature in-
teraction.

Therefore:

Solution: Our pattern language provides advice for handing these three differ-
ent types of design decisions that affect a variation point. They are:

Copyright © Fraunhofer IESE 2006 86

Implementing a Variation Point:
A Pattern Language

• Implement Variation Point Cardinality

• Implement Optional Variation Point

• Manage Feature Interactions

Either Implement Variation Point Cardinality or Implement Optional Variation
Point may be done first. Manage Feature Interactions should be done after the
other two. All variation points must address cardinality; hence, will use Imple-
ment Variation Point Cardinality. Variation points related to mandatory feature
will not need to Implement Optional Variation Point. Not all features interact
with other features, so not all variation points will need to Manage Feature In-
teractions.

Constraints: This pattern language provides advice specific to implementing a
variation point using Java. Two additional tools will be discussed that are com-
patible with Java - XVCL, a language independent general purpose tool that we
use as a pre-processor, and AspectJ, which provides an aspect extension to the
Java language. While we use XVCL, the techniques we discuss should be appli-
cable to any pre-processor.

9.3 Name: Implement Variation Point Cardinality

Problem: For some features only one value at a time may be selected. For ex-
ample, a car must have exactly one transmission; however this may be either a
manual or an automatic transmission. In other cases selecting multiple values at
the same time is possible. A car’s sound system may (or may not) have a radio,
a CD player and a tape deck. The implementation of the variation point must
be able to support the cardinality of features specified in the design.

Little distinction has been made between implementing a single value variation
point as opposed to a multi value variation point. An example of the differences
can be seen in the widely discussed approach of using inheritance to implement
the variants. To isolate the client code from the choice of a particular variant we
can write the client code in terms of the specification provided by the parent
class and implement the variations as sub-classes. For the single selection case
we hold a reference of the parent type and instantiate one of the sub-classes.
This naturally gives us a single choice. However, in the case of a multi selection
variation we need to create an object for each selected variant. We will need to
hold these in a collection which will then have to be managed. Yet, the addi-
tional problems of managing the collection are typically ignored when inheri-
tance is recommended as a way of implementing variants.

A mechanism that can manage multiple selected values can also manage a sin-
gle value. Thus, it could be argued that only the multi value case needs to be
considered. However, using a multi value mechanism for a variation point that
holds only a single value imposes unnecessary costs. These costs occur both in

Copyright © Fraunhofer IESE 2006 87

Implementing a Variation Point:
A Pattern Language

terms of program execution, requiring additional memory and CPU cycles; and
cognitive costs to the programmer, due to more complex code. Separate advice
specifically for the single value variation point will be provided.

Therefore:

Solution: Based on the product design the developer first notes if a single or
multi value variation point is called for. If the design specifies that only a single
variant may be selected for a product then Implement a Single Value Variation
Point. If the design specifies that multiple variants may be selected for a prod-
uct then Implement a Multi Value Variation Point.

Name: Implement a Single Value Variation Point

Pre-Condition: The design allows for several possible choices at this site in the
code and only one of these choices may be included in a particular product.

Problem: The design allows for several possible choices at this variation point;
however, we wish to isolate the client code outside the variation point from
changing when different variants are selected. Aspects are not recommended
for this case because they do not naturally exclude each other.

Therefore:

Solution: If an early binding time is acceptable and the variant requires small
amounts of code that appears in only a few places, consider Bind Single Value
Early.

Both inheritance and interface implementation can be used to build features
and to isolate which variant of a feature is selected from client code. The ap-
proach to prefer is largely dependent on the architectural context of the prod-
uct. Both inheritance and a Java language interface provide a natural way to
limit selection to a single variant. For inheritance, this is done by having the
sub-class that provides the variant extends a parent class used by the client
code. For Java language interface, this is done by having the class that provides
the variant implement the interface. In this case, the client holds a reference to
the interface and instantiates one of the classes that implement the interface.
Chose an interface definition that will suffice for all the variants; which should
simplify having each variant work with a parent class or interface. This should
be possible in the single selection case as the variants should be substitutes for
each other. Both inheritance and Java language interface select a variant by in-
stantiating an object. This means that the binding time may be as late as run-
time, if the selection is from a closed set of variants known at construction
time. It is possible in Java, but not J2ME, to extend these to an open set of vari-
ants by using reflection to instantiate classes not known at construction time.
Selection and instantiation of variants may be centralized using the GOF Factory
Pattern, and made available throughout the code using parameterization.

Copyright © Fraunhofer IESE 2006 88

Implementing a Variation Point:
A Pattern Language

9.4 Name: Implement a Multi Value Variation Point

Pre-Condition: The design allows for several possible choices at this site in the
code and more than one selection may be included in the product.

Problem: The design allows for several possible choices at this variation point;
however, we wish to isolate the client code outside the variation point from
changing when different variants are added to the product. The implementa-
tion must support multiple selections being included and active in the product
at the same time.

Therefore:

Solution:

If an early binding time is acceptable and the variant requires small amounts of
code that appears in only a few places Bind Multi Value Early.

If a later binding time is desired Bind Multi Value on Load may work if there are
appropriate places to hook on aspects.

If places to hook aspects can not be found, or if runtime binding is required,
then a Selection Proxy may be used.

9.5 Name: Implement Optional Variation Point

Pre-Condition: The variation point belongs to an optional feature.

Problem: If the feature has been omitted from a particular product variant we
should completely omit the related code at the variation point without leaving a
trace of the feature. Note that the binding time of including or omitting a fea-
ture may be different than the binding time of selecting a variant. For example,
we can decide that a particular product variant will include a scoreboard at
construction time, but allow the user to select which type of scoreboard will be
displayed at runtime.

Therefore:

Solution: If we know whether to include the feature at construction time Im-
plement Optional Variation Point Early.

If there is a suitable program construct, such as a call that can be used as a
hook for an aspect, and a binding time of program load is acceptable to decide
if the feature is included Implement Optional Variation Point.

Copyright © Fraunhofer IESE 2006 89

Implementing a Variation Point:
A Pattern Language

9.6 Name: Manage Feature Interactions

Pre-Condition: The variants for a variation point have been implemented. The
developer for the variation point code has realized that this variation point will
affect another existing variation point.

Problem: Feature interaction involves two features - F1, F2. If F2 is added to the
product, then the behavior of F1 changes depending on the state of F2. An ex-
ample from the PPL is to consider the scoreboard as a feature whose behavior is
changed if the practice mode is added to the product.

When implementing feature interaction, we want to leave the code related to
the feature interaction out of the product if the feature that introduces the in-
teraction is left out of the product. Preferably we would like to implement the
interaction in such a way that a feature is not aware of interacting features. A
given feature may be affected by more than one feature, and thus take part in
multiple feature interactions.

Therefore:

Solution: Use aspects to implement the feature interaction without affecting
the feature implementation code. This is a great advantage in avoiding code
tangling between features and one that only aspects were able to deliver. Mul-
tiple feature interactions can be implemented by defining aspects for each,
which has the nice property that they can be unaware of each other.

Place the feature interaction code in its own Java package. Write an AspectJ
point cut to add the needed calls to each of the variation points in the feature
affected by the feature interaction, the point cut file is added to the package
containing the feature interaction code. Produce a jar file containing the pack-
age. Including the jar on the command line running the program, along with
the AspectJ runtime jar file, will cause the feature to install itself into the prod-
uct at program load time. Note that the feature code does not need to be
modified to add the feature interaction code.

This pattern can be extended to handle multiple feature interactions. We as-
sume that the different interactions involving the feature are independent of
each other, but each feature needs to have an opportunity to check the state it
is concerned with before the default behavior for the variation point executes.
This functionality is provided by adding a declare precedence keyword to the
point cut file of the modifying feature.

Consequences:

To control the addition of the feature the code must be organized into its own
package and the build process must produce a jar file.

Features may be added without modifying existing code.

Copyright © Fraunhofer IESE 2006 90

Implementing a Variation Point:
A Pattern Language

Features may be omitted as late as program load time.

The code must have program features, such as methods, that can serve as
hooks for the point cuts. Aspects are not designed to insert code at arbitrary
points in the program.

9.7 Name: Implement Optional Variation Point Early

Problem: We wish to completely omit an optional feature from the code with-
out leaving a trace. We know by construction time if the feature is being in-
cluded in the product.

Therefore:

Solution: Use XVCL to cleanly omit the variation point’s code while inserting
the variation point at an arbitrary place in the code. Begin by creating two
frames; one containing the code related to the feature at this variation point,
the other frame has no content. An adapt command using a XVCL variable is
placed at the variation point. Set the variable to choose between the frames
with the feature related code and the empty frame. Select the empty frame to
omit the feature code from this variation point. An empty frame has the effect
of inserting a single space into the code which will not cause any Java code
generation.

Consequences:

The choice to include the feature must be made during the build phase, prior to
compilation.

Sample Code:
<set var=``SCOREBOARDTYPE'' value=''Digital''/>

. . .

<adapt x-frame=``?@SCOREBOARDTYPE?BV.XVCL''/>

Related Patterns:
Providing multiple frames and related variables extends this pattern to Bind Sin-
gle Value Early.

Include an empty frame as a choice to allow a multi selection feature to be
omitted from the product, thus combining this pattern with Implement Op-
tional Variation Point Early.

Copyright © Fraunhofer IESE 2006 91

Implementing a Variation Point:
A Pattern Language

9.8 Name: Bind Single Value Early

Problem: We wish to select from among different variants to implement a
variation point. Selections are mutually exclusive.

Therefore:

Solution: Create a frame to hold the code for each variant. An adapt com-
mand using a XVCL variable is placed at the variation point. Setting the variable
chooses a particular variant by including its frame.

Consequences:
The choice of which variant to include must be made at during the build phase,
prior to compilation.

Sample Code:
<set var=‘‘SCOREBOARDTYPE’’ value=’’Digital’’/>
. . .
<adapt x-frame=‘‘?@SCOREBOARDTYPE?BV.XVCL’’/>

Related Patterns:
Include an empty frame as a choice to handle optional features as described by
Implement Optional Variation Point Early.
To allow multiple selections to be chosen at the same time Bind Multi Value
Early.

9.9 Name: Bind Multi Value Early

Problem: We wish to select one or more variants from a set of possible vari-
ants.

Therefore:

Solution: Create a frame to hold the code for each variant. The name of the
frame for each variant to be included is set into a XVCL multi var. XVCL multi
var’s allow a list of values. An XVCL while command feeds each of the selec-
tions from a multi var into an adapt command.

Consequences:
The choice of which variant to include must be made at during the build phase,
prior to compilation.

Efficient code is automatically produced when only one variant is selected.

Copyright © Fraunhofer IESE 2006 92

Implementing a Variation Point:
A Pattern Language

Sample Code:
<set-multi var="ServiceChoices"
 value="SVPauseUn,SVSaveLoad,..."/>
. . .
<while using-items-in="ServiceChoices">

 <adapt x-frame="?@ServiceChoices?.XVCL"/>

</while>

Related Patterns:
To insure an exclusive selection from a set use Bind Single Value Early.

Including an empty frame as a choice extends this pattern to handle optional
features as described by Implement Optional Variation Point Early.

9.10 Name: Implement Optional Variation Point

Problem: We wish to completely omit an optional feature from the code with-
out leaving a trace.

Therefore:

Solution: Place the optional feature code in its own Java package. Write an
AspectJ point cut to add the needed calls to each of the variation points af-
fected by adding the feature, the point cut file is added to the feature’s pack-
age. Produce a jar file containing the package. Including the jar on the com-
mand line running the program, along with the AspectJ runtime jar file, will
cause the feature to install itself into the product at program load time.

Consequences:
To control the addition of the feature the code must be organized into its own
package and the build process must produce a jar file.

Features may be added with modifying existing code.

Features may be omitted as late as program load time.

The base code must have program features, such as methods, that can serve as
hooks for the point cuts.

Related Patterns:
Breaking code for a feature into multiple packages and jar files results in Bind
Multi Value on Load.

Copyright © Fraunhofer IESE 2006 93

Implementing a Variation Point:
A Pattern Language

9.11 Name: Bind Multi Value on Load

Problem: We wish to select one or more variants from a set of possible vari-
ants.

Therefore:

Solution: Use aspects to implement the multi-selection case, each aspect can
be added independently without concern for being an exclusive choice. Aspects
install themselves, this is particularly useful if multiple points in the code are af-
fected. Place code for each separately selectable feature in its own Java pack-
age. Write an AspectJ point cut to add the needed calls to each of the variation
points affected by adding the feature, the point cut file is added to the fea-
ture’s package. Produce a jar file for each selection containing the package. In-
clude the jar on the command line when running the program to install the fea-
ture at program load time.

Consequences:
To control the addition of the feature the code must be organized into its own
package and the build process must produce a jar file.

Selections may be added with modifying existing code.

Selections may be omitted as late as program load time.

The base code must have program features, such as methods, that can serve as
hooks for the point cuts. Aspects are not designed to insert code at arbitrary
points in the program.

The case where only one selection is made is handled in an efficiently without
additional coding.

Related Patterns:
If there is a single selection to be either included or omitted this approach be-
comes Implement Optional Variation Point.

9.12 Name: Selection Proxy

Problem: We wish to select one or more variants from a set of possible vari-
ants. Binding time for our selection may be as late as runtime.

Therefore:

Solution: Separate the different selections into separate classes to make the
inclusion of different choices modular. These classes should be accessed in a
consistent way. Either sub-class off of a common parent class, which will allow
the parent class to act as a common interface; or have each of the classes im-

Copyright © Fraunhofer IESE 2006 94

Implementing a Variation Point:
A Pattern Language

plement the same Java language interface. In either case, instantiate one object
for each choice resulting in a set of objects at runtime.

The set is hidden from the client code making it appear as a single object. The
details of the accessing the collection are hidden from the client code using Se-
lection Proxy. While the variants in the multi selection case are related to each
other, they may not be substitutes for each other as they are in the single selec-
tion case. This may make it difficult to provide a single interface definition for
all of the variants. If a single interface definition is not naturally available it may
complicate both the inheritance and interface implementations.

Create a proxy object that holds and controls access to the set of variant ob-
jects. This could also be considered an example of a facade pattern; however,
the interface provided in this application has an essentially one-to-one mapping
with the contained variant objects, rather than providing the simplified conven-
ience interface normally associated with a facade. The client makes a call on the
proxy object which searches the collection for the appropriate variant, passes
the call onto it, and returns the results back to the caller.

Consequences:
This approach has a number of runtime inefficiencies including: The creation of
multiple objects (proxy, collection, and one for each variant). An extra call for
each access, one on the proxy object, one on the variant object. The time re-
quired to search the collection for the right variant. The need to marshal and
un-marshal parameters and return values from a general form for the proxy to
a specific form for the variant.

This pattern causes additional classes of runtime errors, such as not finding a
requested variant in the collection.

Additional code is required to avoid the runtime costs of the collection when
only a single variant of the set is included in the product.

Variants can be added even during runtime from either a closed set known at
build time or by using reflection may add new variants after build time.

9.13 References

[1] M. Anastasopoulos, “Personalized cost-efficient product line implementa-
tion,” Franhofer Institute, Tech. Rep. IESE-Report 056.04/E, 2004.

[2] T. J. Brown, I. Spence, P. Kilpatrick, and D. Crookes, “Adaptable compo-
nents for software product line engineering,” in Software Product Line
Conference, ser. LNCS, G. J. C. ed., Ed., vol. 2379. Springer, 2002, pp.
154–175.

Copyright © Fraunhofer IESE 2006 95

Implementing a Variation Point:
A Pattern Language

[3] D. Muthig and T. Patzke, “Generic implementation of product line com-
ponents,” in Revised Papers from the International Conference NetOb-
jectDays on Objects, Components, Architectures, Services, and Applica-
tions for a Networked World, ser. LNCS, no. 2591. Springer- Verlag,
2002, pp. 313 – 329.

[4] D. Muthig and C. Atkinson, “Model-driven product line architectures,” in
Software Product Line Conference, ser. LNCS, no. 2379. Springer, 2002,
pp. 110–129.

[5] G. C. Murphy, A. Lai, R. J. Walker, and M. P. Robillard, “Separating fea-
tures in source code: An exploratory study,” in 23rd International Confer-
ence on Software Engineering (ICSE’01), 2001.

[6] M. Anastasopoulos and C. Gacek, “Implementing product line variabili-
ties,” in Symposium on Software Reusability, 2001, pp. 109 –117.

[7] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability reali-
zation techniques,” Software Practice & Experience, vol. 35, no. 8, pp.
705 – 754, July 2005.

[8] M. Griss, “Implementing product-line features with component reuse,” in
International Confernce on Software Reuse. Springer-Verlag, June 2000,
pp. 137–152.

[9] B. Keepence and M. Mannion, “Using patterns to model variability in
product families,” IEEE Software, vol. 16, no. 4, pp. 102–108, July/August
1999.

[10] K. Lee and K. C. Kang, “Feature dependency analysis for product line
component design,” in International Conference on Software Reuse, ser.
LNCS, no. 3107, 2004, pp. 69–85.

[11] A. Mehta and G. T. Heineman, “Evolving legacy system features into fine-
grained components,” in ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering. New York, NY, USA: ACM Press,
2002, pp. 417–427.

[12] Wikipedia, “Pattern language,” Wikipedia, The Free Encyclopedia, May
2006.

Copyright © Fraunhofer IESE 2006 96

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

10 On the Architectural Relevance of Variability Mechanisms
in Product Family Engineering

Arnd Schnieders

In this paper we derive the need to represent variability mechanisms already in
product family architectures based on an analysis of the main stakeholder use
cases in product family development. We also sketch an approach for integrat-
ing variability mechanisms into product family architectures for process oriented
systems.

10.1 Introduction

Variability mechanisms are techniques for adapting software development arti-
facts. Up to now, in product family engineering research, mainly implementing
variability mechanisms like e.g. conditional compilation [SvB00] or parameteri-
zation [ClN01] for realizing the adaptation support in generic (i.e. adaptable)
implementation artifacts, have been in the center of interest. However, we
think that variability mechanisms should already be regarded during the devel-
opment of the product family architecture, since they can have a considerable
impact on the properties of the product family later. Moreover, variability
mechanisms are also required for providing an efficient adaptation support for
the product family architecture itself. In this paper based on an analysis of the
main stakeholder use cases in product family development we derive the need
to represent variability mechanisms already in the product family architecture.
We also outline an approach for variability mechanism centric product family
architecture modeling for process oriented systems.

Section 10.2 gives an overview of the main product family engineering stake-
holders and their use cases, which are analyzed regarding the role of variability
mechanisms in section 10.3. Based on this analysis we derive the need for
product family architecture variability mechanisms in section 10.4. In section
10.5 we outline a corresponding approach for process oriented systems. In sec-
tion 10.6 we give a short summary of the paper contents as well as an outlook
to future research.

10.2 Stakeholder Groups Related to Product Family Engineering

This section gives an overview of the main product family engineering stake-
holders and their use cases, which provide the basis for analyzing the architec-
tural relevance of variability mechanisms in section 10.3. In the following we
roughly distinguish between the roles customer, business manager, architect,
and engineer as done by most of the product family methods [Mat04].

Copyright © Fraunhofer IESE 2006 97

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

The customer selects a product configuration mainly based on the generic re-
quirement artifacts.

The responsibilities of the business manager comprise making strategic and
economic decisions related to the product family development. These particu-
larly refer to product family scoping and pricing issues. The scope of the prod-
uct family first of all depends on the features, which are desired for the product
family members due to market strategy considerations. Second, it is guided by
economic considerations. The product family members have to have sufficient
commonalities in order for the product family approach to pay off ("economies
of scope" [Boh96]). We assume that the price for an application orients itself
towards the features requested by the customer. These may comprise features,
which have not been regarded by the product family infrastructure so far.

The central task of the architect is to design a product family architecture that
balances the potentially conflicting system requirements as good as possible ac-
cording to their priorities. The system requirements comprise on one hand the
customer specific requirements regarding the application(s) under development,
which can refer for example to the performance, security, availability, or usabil-
ity of the systems. Additionally, there are so called development requirements
[Bos00], which comprise requirements regarding the maintainability, minimal
complexity, reusability, flexibility, evolvability, testability, and time to market of
the development artifacts. Development requirements also refer to the system
architecture itself, i.e. the system architecture itself shall be maintainable, flexi-
ble, etc. For a family oriented software development especially the development
requirements flexibility, evolvability, and maintainability have a high priority
[PBL05]. Additionally, product family engineering artifacts shall support inter
product variability. Support for inter product variability comprises easy applica-
tion specific configuration of generic development artifacts and the optimal re-
use of common system parts within the product family.

Since the architect knows the structure of the product family much better than
the business manager, he has also a deeper insight into the amount of com-
mon and variable parts the product family will contain and the additional effort
required for realizing the product family variability. Thus, he can support the
business manager in setting the scope of the product family. The architect can
also support the pricing activity by giving estimations concerning the costs for
the generation of customer specific products based on the product family infra-
structure.

The engineer creates generic implementation artifacts according to the product
family architecture. During application development, the configured product
family architecture serves for the engineer as the blueprint for configuring the
generic implementation artifacts. Even though in the ideal case the configura-
tion of the design and implementation artifacts can be performed automati-
cally, normally these manual configurations and adaptations are still required.

Copyright © Fraunhofer IESE 2006 98

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

The use case diagram in Figure 30 gives an overview of the use cases, which
have been discussed in this section.

Figure 30: Use Cases of Product Family Architecture Stakeholders

10.3 Variability Mechanisms in Product Family Engineering

This section points out the architectural relevance of variability mechanisms
based on a systematic analysis of the use cases shown in Figure 30.

Select Product Configuration. The customer selects a product configuration
based on the generic requirements artifacts.

Product Family Scoping/Pricing. As already discussed in section 10.2 the an-
swer to the question whether a product family pays off or not depends consid-
erably on the amount of commonality between the members of the product
family as well as on the ability to exploit them. The basis for the optimal exploi-
tation of commonalities between product family members has to be set with
the product family architecture. The degree up to which the commonalities be-
tween the product family members can be exploited also depends on the vari-
ability mechanisms selected for realizing the product family variability. Consider
for example the variability mechanism polymorphism, which allows for the in-

Copyright © Fraunhofer IESE 2006 99

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

vocation of varying subsystem implementations via an invariant subsystem in-
terface [Gom05, GoW04, GBS01]. The reuse properties of this variability
mechanism shall be illustrated by a UML Activity diagram [OMG05], where the
CallBehaviorAction in Figure 31 represents the subsystem interface for two al-
ternative subsystem implementations represented by the Activities in Figure 32.

Get User
DataUser

Name
User
Data

Figure 31: Common Interface for Variant Implementations

In the example shown in Figure 32 the encapsulation of varying implementa-
tions leads to redundancy of the Actions Check Data Validity and Correct Data
in the implementations Get User Data - No Account and Get User Data - Ac-
count resulting in a suboptimal exploitation of commonality. The portion of re-
used elements could be increased by only replacing and omitting the variable
elements. Such a fine-grained kind of reuse is for example possible by applying
the variability mechanism conditional compilation [FLR02].

Get User Data – Account

Correct
Data

Get User
Data from

DB

Check
Data Validity

User Name User Data

Get User Data – Account

Correct
Data

Get User
Data from

DB

Check
Data Validity

User Name User Data

Get User Data – No Account

Correct
Data

Get
User Data

Check
Data Validity

Store User
Data

User NameUser Name User Data

Get User Data – No Account

Correct
Data

Get
User Data

Check
Data Validity

Store User
Data

User NameUser Name User Data

Figure 32: Variant Implementations of Common Interface

The potential economic benefit of a product family development is mainly capi-
talized on during application engineering. The effort for configuring the generic
product family artifacts according to the customer requirements and thus the
overall effort for application engineering also depends on the variability mecha-
nisms used for realizing the product family variability. Parameterization for ex-
ample is a very efficient way for the easy configuration of generic product fam-

Copyright © Fraunhofer IESE 2006 100

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

ily artifacts. However, the prerequisite for parameterization is that all possible
variants are provided in the subsystem's code [SvB00, BaB01, Gom05]. In very
large and complex systems, the utilization of parameterization can support the
efficiency of the configuration process. The customization of an SAP-ERP sys-
tem for example would be even more costly if it would not be realized primarily
by changing the values of configuration parameters. Variability mechanisms like
user exits or modifications are therefore preferably avoided [BHM01].

Concerning the case that some customer requirements haven't been regarded
by the product family so far, the variability mechanisms can also have a consid-
erable impact on the effort required for extending the product family by the
new customer requirements. Parameterization for example doesn't support well
the extension of the product family by additional features. The problem is that
extensions require adaptations in any place in the system, where the optional or
alternative behavior is performed in dependency on the parameter value. In this
respect polymorphism is a much better choice, since the variability is encapsu-
lated in interfaces and new features can be added more easily by adding addi-
tional implementations as long as they stick to the invariant interface.

Design Product Family Architecture. The main task of the architect is to
transfer the product family requirements into a corresponding product family
architecture. The choice of a variability mechanism can thereby impact the cus-
tomer specific, as well as development related properties of the implementation
artifacts described by the product family architecture.

Parameterization for example on one hand allows for reconfigurations after the
system has already been installed. On the other hand, this requires that also the
code of the deactivated variants remains in the implementation artifacts after
configuration. This leads to higher memory requirements as well as to a possi-
ble runtime performance decrease due to the need for selecting the right vari-
ant at runtime. Thus, for implementing product lines of performance and
memory critical systems the variability mechanism conditional compilation
would be a better choice in this respect. However, from the perspective of
maintainability and evolvability conditional compilation isn't the best choice,
since the variability is spreaded over the code. Conditional compilation also
doesn't allow for such a flexible configuration as parameterization, since it re-
quires a recompilation of the system in case of reconfiguration.

In this section only the impact of the variability mechanisms on the properties
of the implementation artifacts has been discussed so far. However, the prod-
uct family architecture itself represents an important generic development arti-
fact that also requires variability mechanisms for realizing the product family
variability according to the product family architecture development require-
ments. The corresponding discussion will be postponed to section 10.5 after a
set of variability mechanisms for product family architectures (for process ori-
ented systems) has been identified.

Copyright © Fraunhofer IESE 2006 101

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

Create Generic Implementation Artifacts. Based on the product family ar-
chitecture the engineer develops the generic implementation artifacts. There-
fore, he needs to know the variable parts of the system as well as the technique
for realizing the variability appropriately.

Configure Generic Implementation Artifacts. Ideally, the generic software
development artifacts can be configured fully automatically according to the
application requirements. However, this requires that full configuration auto-
mation is provided by respective tool chains and that at the time of the applica-
tion development all application specific artifact parts have already been cre-
ated. Otherwise, manual configuration effort is unavoidable. Therefore, the en-
gineer requires information concerning the place at which the generic imple-
mentation artifacts have to be adapted (i.e. the variation points), how the ap-
plication specific adaptations (i.e. the variants) look like, and which kinds of ad-
aptations have to be done. Does he only have to set a parameter value? Or are
there any modules, which have to be exchanged? Or maybe he just has to
change a separate line of code? So, the engineer also has to know the variabil-
ity mechanism to apply for configuration.

10.4 Architectural Relevance of Variability Mechanisms in Product Family Engineering

As shown in section 10.3 the variability mechanism selected for variability reali-
zation can have an impact on the scoping and pricing considerations of the
business manager. This information should therefore be presented to the busi-
ness manager in a preferably concentrated and descriptive form. A product
family architecture model would serve well for this purpose. Moreover, the de-
sired system properties are typically balanced thoroughly by the architect during
the design phase. Due to their impact on the system properties, variability
mechanisms have to be taken into consideration during the design of the prod-
uct family. Finally, the (configured) product family architecture serves as the
main blueprint for the requirement compliant implementation and configura-
tion of the implementation artifacts. Therefore, the (configured) product family
architecture also needs to provide information about which variability mecha-
nisms to apply.

To sum up these considerations, we think that information concerning the re-
alization of the product family variability should be provided by the product
family architecture.

The representation of variability mechanisms in the product family architecture
hasn’t been analyzed systematically up to now. Most related approaches regard
variability mechanisms only at model level and only sporadically [Cla01, Gom05,
Rvd05, ZHJ03]. A conceptual description of variability mechanisms for process
models can be found in [BeK04]. However, a concrete notation as well as con-

Copyright © Fraunhofer IESE 2006 102

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

siderations regarding the implementation is missing. Both aspects are covered
in [JGJ97], but the selection of variability mechanisms is only exemplary.

10.5 Variability Mechanism Centric Process Family Architectures

In this section we outline an approach for variability mechanism centric process
family architectures and analyze the impact of the process family architecture
variability mechanisms on the development related properties of the process
family architecture.

For representing variability mechanisms in product family architectures for
process oriented systems (in the following also denoted as process family archi-
tectures) we have identified a set of architectural variability mechanisms and
have mapped them to UML Activity diagrams [Sch06], State Machines [Sch06a],
and BPMN [ScP06]. The variability mechanisms can be categorized into basic
variability mechanisms and variability mechanisms, which are derived from
other variability mechanisms. Basic variability mechanisms are stand-alone
mechanisms, which don't require any other variability mechanisms. Basic vari-
ability mechanisms comprise encapsulation of varying sub-processes, parame-
terization, addition/omission/replacement of single elements, and data type
variability. Concerning the second category of derived variability mechanisms
we can further divide this category into variability mechanisms derived by re-
striction and by combination. Process inheritance and extension are two exam-
ples for variability mechanisms derived by restriction and design patterns are an
example for variability mechanisms derived by combination.

During product family implementation these variability mechanisms represented
in the process family architecture are then mapped to respective variability
mechanisms used for implementing the variability. Our approach therefore also
supports a more model-driven process family development. How the variability
mechanisms are implemented depends of course on the application domain as
well as on the programming language, which is outlined for example in [Sch06]
for the variability implementation in C or in [ScP06] for the variability implemen-
tation in Java.

As mentioned already in section 10.3 apart from the impact on the system
properties resulting from the mapping of the process family architecture vari-
ability mechanisms to implementing variability mechanisms, they also have an
impact on the development related properties of the process family architecture
itself. The variability mechanism encapsulation of varying sub-processes for ex-
ample supports the maintainability of the architecture, since the variability can
be identified more easily due to its reduction to a clearly separated region (bet-
ter separation of concerns). Encapsulation of variability also supports the reuse
of encapsulated subprocess variants in other projects as well as the evolvability
of the architecture, since new variants can be added easily as long as they stick

Copyright © Fraunhofer IESE 2006 103

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

to the subprocess interface. However, encapsulation not always leads to the
optimal reuse of common architecture parts as already discussed in section
10.3. Addition/omission/replacement of single elements and data type variabil-
ity perform better in this respect. They support the flexibility of the architecture
by allowing for more fine-grained adaptations. On the other hand by spreading
the variability over the process family architecture they make maintenance
harder. The flexibility of the architecture also depends on the availability of ap-
propriate adaptation techniques. Using variability mechanisms, the architect can
realize an optional activity for example by either adding or deleting the activity
(variability mechanism addition/omission/replacement of single elements) or by
defining an extension point (variability mechanism extension) into which the
optional encapsulated behavior can be integrated. While the first technique
would probably lead to a more efficient implementation, since no placeholder
for the optional behavior would remain in the code, the latter one better sup-
ports the evolvability of the architecture. In addition to the variability mecha-
nisms introduced here, new variability mechanisms with different properties can
be defined by deriving them by combination or restriction. For example, as al-
ready discussed in section 10.2, the derivation of structurally correct process
variants from the process family architecture is an important issue in process
family engineering. So, a new variability mechanism can be derived that guar-
antees for the preservation of the structural correctness during configuration.
This holds for example for the variability mechanism Activity diagram inheri-
tance [ScP05] that restricts the addition/omission/replacement of single ele-
ments to a subset of correctness-preserving transformations. For families of ser-
vice-oriented applications a new variant of the variability mechanism encapsula-
tion of varying sub-processes could be derived that restricts the possible sub-
process (i.e. service) implementations to those service implementations provid-
ing the required functionality. The necessarily required functionality can be de-
scribed by a process model. The suitability of potential service implementations
can now be evaluated by comparing them to this process model using a bisimu-
lation checker. However, this requires that formal process descriptions exist for
the potential service implementations.

Figure 33 shows an example for a variant-rich Activity diagram where variability
is modeled following our approach by showing the variation points (stereotype
«VarPoint»), the variants which can be bound to the variation points (stereotype
«Variant»), and the variability mechanism assigned as a third stereotype con-
necting the variants with their variation point. Additionally, the binding time
can be displayed by means of a tagged value (tagged value key bt) of the vari-
ability mechanism stereotype and, if necessary, the implementing variability
mechanism may be uniquely identified by adding an identifier (tagged value key
id). The system requirements a variation point implements can be represented
by means of a tagged value (tagged value key feature) of the variant stereo-
type, which can hold a list of system requirements.

Copyright © Fraunhofer IESE 2006 104

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

Book journey

«Implementation»

get user
data

«VarPoint»

get user data
without login

«Variant»

get user data
with login
«Variant»

«Implementation»

PaymType
= cred_card

reservation
process

reservation
process

get payment
information

«Variable»PaymType

PaymType
= co_acc_st

«Parameterization»

get payment
information

«Variable»PaymType

PaymType
= co_acc_st

«Parameterization»

Figure 33: Example for Variant-Rich Activity Diagram

Figure 34 shows an Activity diagram variant that has been derived from the
variant-rich Activity diagram in Figure 33. The example shows that the engineer
can still deduce from the diagram which kind of configurations have to be done
at which places in the system.

Book journey

«Implementation»

get user
data

«VarPoint»

get user data
without login

«Variant»

reservation
process

reservation
process

get payment
information

«Variable»PaymType

PaymType
= cred_card

«Parameterization»

get payment
information

«Variable»PaymType

PaymType
= cred_card

«Parameterization»

Figure 34: Activity Diagram Variant

10.6 Conclusions

In this paper, based on the requirements of their main stakeholders, we have
motivated the need for representing variability mechanisms in product family
architectures. We have also outlined an approach for modeling variability
mechanism centric product family architectures for process-oriented software in
UML.

Open issues for future research comprise a more systematic and comprehensive
collection of properties derivable from the architectural representation of the
variability mechanisms identified in section 10.5. We also want to analyze the
correlation between the variability mechanisms for variant-rich processes and
the properties of the derivable processes, such as their structural correctness.

Copyright © Fraunhofer IESE 2006 105

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

10.7 References

[BaB01] F. Bachmann and L. Bass. Managing Variability in Software Archi-
tectures. In Proceedings of SSR’01. ACM Press, 2001.

[BeK04] J. Becker and R. Knackstedt, editors. Wissensmanagement mit Ref-
erenzmodellen: Konzepte für die Anwendungssystem- und Organi-
sationsgestaltung (Knowledge Management with Reference Mod-
els: Concepts for Application System and Organization Design, in
German). Physica, Verlag, Heidelberg, 2004.

[BHM01] L. Brehm, A. Heinzl, and M. L. Markus. Tailoring ERP Systems: A
Spectrum of Choices and their Implications. In Proceedings of
HICSS’01, 2001.

[Boh96] K. Bohr. Handwörterbuch der Produktionswirtschaft (Concise Dic-
tionary on Production Management, in German), 2nd ed., ser. En-
zyklopädie der Betriebswirtschaftslehre. Schäffer-Poeschel, 1996,
vol. 7.

[Bos00] J. Bosch. Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

[Cla01] M. Clauss. Modelling Variability with UML. In Proceedings of
Young ResearchersWorkshop GCSE’01, the 3rd International Sym-
posium on Generative and Component-Based Software Engineer-
ing, Erfurt, Germany, 2001.

[ClN01] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering. Addison-Wesley, 2001.

[FLR02] C. Fritsch, A. Lehn, R. Rashidi, and T. Strohm. Variability Implemen-
tation Mechanisms: A Catalog (Internal Paper). Robert Bosch
GmbH, Tech. Rep., 2002.

[GBS01] J. van Gurp, J. Bosch, and M. Svahnberg. On the Notion of Variabil-
ity in Sofware Product Lines. In Proceeedings of WICSA 2001, Au-
gust 2001.

[Gom05] H. Gomaa. Designing Software Product Lines with UML: From Use
Cases to Pattern-based Software Architectures. Addison-Wesley
Professional, 2005.

[GoW04] H. Gomaa and D. Webber. Modeling Adaptive and Evolvable Soft-
ware Product Lines Using the Variation Point Model. In Proceedings
of HICSS’04. IEEE Computer Society Press, 2004.

Copyright © Fraunhofer IESE 2006 106

On the Architectural Relevance
of Variability Mechanisms
in Product Family Engineering

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software Reuse:
Architecture, Process and Organization for Business Success. Addi-
son Wesley Longman, Harlow, England et al., 1997.

[Mat04] M. Matinlassi. Comparison of Software Product Line Architecture
Design Methods: COPA, FAST, FORM, KobrA and QADA. In Pro-
ceedings of ICSE’04. IEEE Computer Society, 2004.

[OMG05] OMG. UML 2.0 Superstructure Specification. August 2005.

[PBL05] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer,
2005.

[Rvd05] M. Rosemann and W.M.P. van der Aalst. A Configurable Reference
Modelling Language. BPM Center Report BPM-05-10, BPMcen-
ter.org, Eindhoven University of Technology, 2005.

[Sch06] A. Schnieders. Variability Mechanism Centric Process Family Archi-
tectures. In Proceedings of ECBS’06. IEEE Computer Society Press,
2006.

[Sch06a] A. Schnieders. Modeling and Implementing Variability in State Ma-
chine Based Process Family Architectures for Automotive Systems.
In Proceedings of SEAS’06. ACM Press, 2006.

[ScP05] A. Schnieders and F. Puhlmann. Activity Diagram Inheritance. In
Proceedings of BIS’05, 2005.

[ScP06] A. Schnieders and F. Puhlmann. Variability Mechanisms in E-
Business Process Families. In Proceedings of BIS’06, ser. Lecture
Notes in Informatics (LNI), vol. P-85. Gesellschaft für Informatik,
2006.

[SvB00] M. Svahnberg and J. Bosch. Issues Concerning Variability in Soft-
ware Product Lines. In Proceedings of IW-SAPF-3. Springer-Verlag,
2000.

[ZHJ03] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. Towards a UML
Profile for Software Product Lines. In PFE, pages 129–139, 2003.

Copyright © Fraunhofer IESE 2006 107

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

11 Good Practice Guidelines for Code Generation in Software
Product Line Engineering

Neil Loughran, Iris Groher and Awais Rashid

The creation of generalized software artifacts is a crucial element in the devel-
opment of a software product line. Code generation is a technique that allows
such assets to be made more reusable in other contexts. However, guidelines
for the creation of such ‘core assets’ using code generation are something not
explicitly addressed in the literature. While there is an abundance of material
which discusses variability per se, there is still a scarcity of information pertain-
ing to how best to apply code generation in order to facilitate the development
of generalized assets. In this paper we offer some general guidelines for creat-
ing highly reusable software components based upon our experiences of using
code generation variability techniques in an aspect-oriented software product
line.

11.1 Introduction

Product line engineering [1] is an approach which facilitates the development of
a highly reusable and adaptable software architecture that targets a particular
business domain. Potentially, the reuse of software assets allows high quality
applications to be delivered quickly and to within economic constraints. The
creation of reusable software artifacts is therefore one of the primary aims.

In this paper we illustrate our experiences of software product line development
using aspect-oriented programming (AOP) [2], traditional variability mechanisms
(i.e., inheritance, conditional compilation and so forth) and code generation
[3][4][5] with the intention of eliciting guidelines and patterns. The guidelines
we present are by no means exhaustive, complete or, in some cases, entirely
earth shatteringly novel. Indeed, many of the guidelines could be described as
basic common sense, or suggestions for providing some insights to the devel-
oper. Therefore they should be taken as means to motivate the research, dis-
cussion and promote the need for such guidelines to be made more explicit.

Our experiences lead us to believe that following explicit guidelines when com-
bining AOP, traditional variability techniques and code generation, results in
software that is flexible to adapt to new contexts while maintaining the princi-
ples of modularity, maintainability and evolvability.

Copyright © Fraunhofer IESE 2006 108

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

11.2 Code Generation

In recent years there has been a re-emergence of interest in a code-generation
driven approach to developing software. The term ‘code generation’ in days
gone by was used to describe the process of turning source code into assembly
code. Additionally, many programmers would use code generation routines
(e.g., macros) to also automate the generation of frequently used assembly
language subroutines. Code generation in the modern sense typically means
the production of the programming code itself, or to put it simply, code which
generates code. The input model (often called a domain specific language or
DSL) will be of a much higher level of abstraction (e.g., XML script, graphical
language, etc.), mapping to domain specific features and properties, encapsu-
lating the complexity and finer details of program code. This allows developers
and system configurators to concentrate on domain specific configuration de-
tails and variabilities.

It is often required that we need to go beyond language level variability
mechanisms (e.g., inheritance, conditionals, generics etc.) in order to imple-
ment specific kinds of variabilities. This is especially true in a software product
line or model driven development (MDD) [6] context. Code generation pro-
motes an MDD approach to software generation, where the model (e.g. our
specification of variabilities) drives the application generation.

For example, suppose a software developer wanted to develop a reserva-
tion/booking product line which could be adapted to the different needs of
customers. A reservation can be made for practically anything, from a holiday
or hotel booking to even a hairdressing appointment. These kinds of scenarios
would require different kinds of data structures, GUI forms, data views and
backend database tables at the very least. However, on the whole, a great deal
of the application code in the domain will be common to all products e.g.,
main business logic, majority of GUI code, etc. Code generation does not limit
itself to just the creation of program code; it is possible that many different arti-
facts (e.g., configuration scripts, tests, documentation, SQL, etc.) can be pro-
duced from a single suitable high level abstraction.

Moreover, code generation doesn’t preclude language level variability mecha-
nisms. Indeed, as detailed in Section 11.3, we have found that the appropriate
usage of both code generation and language level variability techniques can
greatly diminish the problems that they have when used in isolation.

The following subsections illustrate a variety of the different code generation
approaches that are in use, and assesses their relative merits and demerits.

Copyright © Fraunhofer IESE 2006 109

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

11.2.1 Brute Force Generation

Brute force code generation is a term coined by Kathleen Dollard in [4]. It refers
to the embedding of program code within a program. Figure 35 demonstrates
a simple ‘Hello’ generator which takes parameters from the command line and
adds them to the embedded program which is then subsequently written to a
file. While the example is no doubt very trivial, it demonstrates the simplicity of
the approach.

Figure 35: Brute Force Approach

The brute force approach is useful for small scale concerns which are not likely
to change much, if at all, in their lifetime. However, as the size of a program in-
creases, the code within code approach gets very difficult to visualize and main-
tain. Nonetheless, the approach is easy to comprehend and doesn’t require
special parsing tools.

11.2.2 Template-based Generation

The template based approach involves the creation of specially written code
templates that are then processed via a generator which performs a transfor-
mation to generate output. A specification file containing the customizations is
often used to drive the technique (as shown in Figure 36). Code templates con-
tain program code combined with directives for providing functionality such as
iteration, setting and getting of meta values, program segmentation and condi-
tionals, to name but a few. The generator reads in both the specification and
required template files and outputs the appropriate program code based upon
the developer’s requirements.

Copyright © Fraunhofer IESE 2006 110

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

TemplatesTemplates

GENERATORSpecificationSpecification Generated
Output

Generated
Output

TemplatesTemplates

GENERATORSpecificationSpecification Generated
Output

Generated
Output

Figure 36: Template-based Generation

There are a wide variety of template languages available such as XSLT [7], XVCL
[8], CodeSmith [9], Velocity [10] and XPand [11] to name but a few techniques.
Many techniques use XML or XML-like notations in order to mark the code. The
example in Figure 37 illustrates an XVCL-like template to create classes, fields
and associated setter and getter methods. By providing parameters (in this
case, name of TABLE, and TYPE and NAME lists) to the template from a sepa-
rate configuration file, a class can then be generated.

<frame name = “TABLE”>

class <value-of expr = “TABLE”/> {
<while using-items-in = “TYPE,NAME”>
private <value-of expr = “TYPE”/> <value-of expr = “NAME”/> ;

public void set<value-of expr = “NAME”/> (<value-of expr = “TYPE”/> s) {
<value-of expr = “NAME”/> = s;

}
public <value-of expr = “TYPE”/> get<value-of expr = “NAME”/> {

return <value-of expr = “NAME”/>
}

</while>
</frame>

Figure 37: Example of Class Generation Template

The template based approach has the advantage of having the code external-
ized from the generation mechanism. This allows the code to be effectively
maintained and evolved. However, a generator must be utilized or specially
written to work with the templates in order to provide the necessary transfor-
mations.

11.2.3 Annotation Pre-processing

Languages such as Java provide an annotation mechanism for adding meta-
data to source code. JavaDoc [12] was an early example of using annotations in
the automation and creation of class documentation. XDoclet [13] uses annota-
tions (although they call them attributes) for the creation of boiler plate code
and configuration files. While the technique was originally developed with J2EE

Copyright © Fraunhofer IESE 2006 111

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

[14] beans in mind, it has now developed into a fully fledged general purpose
code generation engine.

Since the release Java 5 [15], annotations have developed into a language level
feature in their own right, allowing user defined annotations to be created. The
annotations can then be parsed via the annotation processing tool (APT), which
is somewhat equivalent to the template-based generation approach discussed
earlier in Section 11.2.2. The key difference here being that annotations only al-
low external artifacts to be created and not transformations to the source code
in which they are located. It is interesting to note that annotations have be-
come a popular and convenient method of providing AOP [16] [30].

11.2.4 Reflection-based Generation

Reflection based code generation facilitates the generation of code based upon
executing context. For example, an application could discover at run time, the
structure of data has changed thus requiring changes in its persistent nature
(e.g. generation of SQL). In particular, code generation provides a workaround
for the restrictions imposed by Java reflection, which is limited to introspection.
As stated in [17], it is possible to generate code based upon currently executing
context, then automatically compile and execute/load that code thus simulating
behavior changing capabilities. In a similar fashion, the persistence aspect in
[18] contains a ‘brute force’ implementation for generating SQL code based
upon introspection of the applications data structures. Reflection based code
generation is useful when certain information can only be ascertained at run
time.

11.2.5 Pre-processor and Template Meta-programming

Languages such as C and C++ make great usage of a pre-processing facility. A
pre-processor reads in a source file which is annotated with directives and then
performs inclusion (e.g. #include), conditional compilation (e.g., #ifdef, #if-
ndef etc.) and macro substitution (e.g., #define) as appropriate. The pre-
processor is often seen as a specialized code generation mechanism for sup-
porting among others, portability between different target platforms and vari-
ants in a product line. Many programmers try to get around the need for a pre-
processor by using static final variables in conditional statements, thus relying
on the compiler to perform the necessary code optimizations on unreachable
statements. Similarly, it is often said that modern programming languages such
as Java have largely obviated the need for a pre-processor. However, in the
product line context, e.g., mobile phones, the need for a pre-processor is still
very much in evidence in dealing with vendor and device specific APIs. The
J2ME platform still needs to deal with how different vendors implement specific

Copyright © Fraunhofer IESE 2006 112

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

types of graphics and sound. Even the APIs for making a mobile phone vibrate
can be quite different.

Template meta-programming [19] allows the compiler to act as an interpreter
thus allowing programs to be generated at compile-time. Figure 38, illustrates a
factorial function using template meta-programming.

template <int N>
struct Factorial
{
 enum { value = N * Factorial<N - 1>::value };
};

template <>
struct Factorial<0>
{
 enum { value = 1 };
};

Figure 38: Template Meta-programming

Passing an integer (e.g., Factorial<7>) into the template instructs the compiler
to generate and optimize (if needed) the appropriate code before it is turned
into binary. Template meta-programming can be seen as a convenient way of
creating programs from smaller programs, although the syntax can be rather
esoteric and difficult to maintain.

11.2.6 Summary and Discussion

The brute force approach is particularly useful for encapsulating functionality
that is unlikely to change too much but suffers from scalability issues. There-
fore, it is generally only useful for well contained concerns rather than complete
applications.

The template-based approach provides a much clearer alternative which is scal-
able and evolvable, but requires tools to be written for processing the tem-
plates. While general purpose languages are available which can help in this re-
gard, the languages often don’t provide the necessary abstractions for a par-
ticular domain. However, most general purpose languages can work on any
kind of textual artifact (e.g., code, scripts, documentation, etc), thus providing a
convenient way to implement variants on all kinds of different artifacts.

Annotation based approaches provide a convenient way of generating useful
artifacts that support the application (e.g., descriptor files, scripts etc). How-
ever, at present, annotations do not allow the source code in which they exist
to be transformed.

Reflective code generation is an interesting way to generate code dynamically,
based upon application context. However, the technique (when used with Java)

Copyright © Fraunhofer IESE 2006 113

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

still does not give us the complete vision of reflective capabilities. Nonetheless,
the technique is a promising one and we believe offers up some interesting
new research avenues.

The C/C++ pre-processor has been the standard method of configuring variants
in the industry for some time now. Template meta-programming offers a pow-
erful way of using code generation in the C++ language. However, the tech-
nique is not easy to use in practice and is language specific.

One thing that has not been mentioned so far has been the different perspec-
tives of the creator (i.e., the person who creates the artifacts) and user (i.e., the
person who utilizes the artifacts for their own needs). It is highly likely in prac-
tice that these will be different people. The user of the artifact may only be in-
terested in configuration details and require domain specific abstractions. Code
generation techniques can facilitate such approaches by only exposing variants
to the user.

On the whole code generation has the potential to be very flexible allowing any
kind of parameterization on a wide variety of artifacts. It shields the user of the
artifact from its underlying complexity by exposing only domain concepts.

However, the technique is certainly not without its disadvantages:

• Static validation of the templates is not often possible.
• Potential decrease in comprehensibility and evolvability.
• Compile-time and run-time errors refer to generated code not templates.
• General purpose languages don’t always provide the abstractions needed for

given domains.
• Debugging heavily annotated templates is very difficult.

In the next section we describe guidelines that we have found useful which go
some way in to rectifying the above demerits.

11.3 Guidelines and Patterns for Software Generation

In this section we provide guidelines that we believe can facilitate the use of
code generation.

Before going any further let us present the following maxim:

Maxim. We want to create high quality, reusable assets which are easy
to create, adapt and evolve with acceptable levels of performance.

Copyright © Fraunhofer IESE 2006 114

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

We have attempted some categorization of the guidelines although this is
merely to help with their organization. Therefore, many of the guidelines tend
to crosscut categories. Additionally, it should also be noted that many of the
guidelines we propose are based upon the template-based generator approach
as detailed in Section 11.2.2.

11.3.1 Identification

The first thing to decide is whether a code generation approach is an appropri-
ate solution to the problem at hand. If the problem involves a lot of repetition
and variability, then it’s highly likely that code generation can provide the nec-
essary solution. A one-off application is probably not going to be an appropri-
ate use of code generation.

Identifying where code generation can be utilized in the software product line
context is an important activity. At its most basic we can simply take existing
legacy code, identify the variants and then parameterize code appropriately.
However, while this approach can work, it may not be the most appropriate for
a product line which is likely to evolve.Certainly, there may need to be a signifi-
cant amount of refactoring and redesign involved.

Repetitive processes are excellent candidates for code generation. Such exam-
ples of repetitive tasks exist in the relational database world where there are
lots of schemas, relationships, SQL queries, domain objects, data access objects
(DAO), descriptors and so forth.

Commonality and variability analysis [20] can facilitate the identification of do-
main concepts, vocabularies and concerns. In creating a product line from
scratch we have found through our own experiences that it is more fruitful to
identify concerns and aspect candidates as early as possible using aspect-
oriented requirements engineering (AORE) principles [21]. The EA-Miner tool
[22], a natural language processing tool, can help in this regard by discovering
concerns and aspect candidates in requirements documents.

Aspects greatly help with the simplification of code generation by facilitating
modularization and thus reducing much of template language meta-code. This
is most noticeable when dealing with crosscutting and tangled conditional di-
rectives. Aspects can be part of both the common and variable parts of an ap-
plication framework. Indeed, aspects can benefit from being variable in them-
selves.

Feature modeling [23] provides a way to model variant features diagrammati-
cally, therefore providing a way to explicitly state configuration details. Com-
mon and variable elements can be delineated in order to aid configurability.

Copyright © Fraunhofer IESE 2006 115

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

11.3.2 Creation

The first guideline for the creation of code generation artifacts is “use common
sense”. Code generation permits a great deal of flexibility, but it should be
used carefully and scope should be clearly defined and adhered to.

In order to aid composability it is important to separate variable and common
content from one another. This can be done using language level variability
techniques such as inheritance, virtual classes, partial classes and so forth.
However, the use of a code generation approach does not preclude the use of
language level variability mechanisms. In essence, code generation should be
used to complement the variability mechanisms that are available natively in the
language. Therefore, a developer should use language level variability mecha-
nism where they are sufficient in order to keep as much code as possible under
the control of the IDE and compiler. This can facilitate debugging and syntacti-
cal correctness of the program.

In certain scenarios code generation may be used for generating a subset of a
program (e.g., persistence tier, domain objects, GUI, etc.) rather than an entire
application. Therefore, respect must be given to handcrafted code by modular-
izing it away from generated code [4].

A basic, though not ‘hard’, guideline that we have found beneficial, is to keep
each code generation artifact at the same modularity as the intended gener-
ated output. In other words, there should ideally be a 1:1 mapping of tem-
plates to the generated classes. The exceptions to the rule being classes which
contain other classes (i.e., inner classes, multiple classes in a single file) and par-
tial classes as in C#. If the intent is to generate a class, then the template for
generating that class should not be split into arbitrary fragments of text (e.g., a
method implementation) in separate files. This improves debugging support
whereby compile time and run time errors can be tracked down to a particular
template.

If there is a need to break up a module (e.g., module is becoming too large)
then this should be accommodated using inheritance, aspects, patterns, partial
classes and so forth.

It is possible to utilize code generation in order to provide variability features
that aren’t supported natively in the language. For example, the Java language
does not support parameterized mixin inheritance [24]. We can emulate this
behavior using code generation by simply parameter sing the inheritance pa-
rameter accordingly, as shown in Figure 39. Thus the parameter (indicated us-
ing <@baseClassA>) will select a different base class.

Copyright © Fraunhofer IESE 2006 116

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

class A extends <@baseClassA> {

// impl..

}

Figure 39: Parameterized Mixins using Code Generation

Similarly it is possible to lessen code generation conditional compilation direc-
tives using a number of techniques. If the variants are well contained then we
can use language level variability mechanisms and parameterization together. In
Figure 40 we use a compiler optimization trick which removes the appropriate
unreachable code.

private static final String vendor = <@vendor>;

public void foo() {

if(vendor == “NOKIA”) {…impl…}

else if (vendor == “SIEMENS”) {…impl…}}

else if (vendor == “ERICSSON”) {…impl…}}

etc..

}

Figure 40: Using Compiler Optimization and Code Generation

If the variants exhibit a crosscutting nature (e.g. persistence) then aspects can
be utilized to modularize the features. The aspects can then also be generalized
via code generation if required. For example a persistence feature, which may
be optional, can benefit from being generalized to allow for different schemas,
relationships and drivers to be expressed.

It can be worthwhile constraining the range of possible parameters that are
passed to the generation mechanism. Mapping such constraints from the fea-
ture model can be done in a variety of ways, using XML or an IDE. For example,
pure::variants [25] allows the mapping of such constraints to be made explicit,
giving feedback to the developer if an incorrect configuration or parameter is
included.

Templates should ideally be created from something that is known to work.
Therefore, the developer should create an example of the kind of artifact that
they want to generate, test it then reify or refactor this into an appropriate
template and test again.

In our experience, templates can get very complex if they try and do too much.
Therefore, if a template is starting to get too complex the developer should
consider refactoring it or creating a new template to simplify the code. Doing
so can ease configuration details as well as the evolution of the asset itself.

Copyright © Fraunhofer IESE 2006 117

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

11.3.3 Quality

The generated application should be of an equal or higher quality to a hand-
written one. It should allow effective testing and be maintainable [4]. It is often
stated that code generators produce bad code. While there is certainly evidence
of generators which generate thousands of lines of ugly hard to understand
code (e.g., the GUI generator in Visual C++), we are of the opinion that by fol-
lowing our guidelines, a developer can go some way to dispelling such state-
ments. Indeed, when it comes down to it, there is nothing to stop people writ-
ing bad code in any language.

11.3.4 Comprehensibility

One of the main problems of using a code generation approach is the compre-
hensibility of the heavily annotated templates. As previously stated, using lan-
guage variability mechanisms such as inheritance to separate variability ‘hot-
spots’ from the common code can improve the situation dramatically.

Particularly with XML approaches, the developer should be able to create speci-
fications that specify their intentions. Therefore, strive for a structured data
model in the specification in order to simplify the specification itself and the
templates.

Convention over configuration principles allow for default values in order to
ease configuration and specification details [26].

The use of an adapter can improve intelligibility and provide more domain spe-
cific abstractions. For example, a simple parser can be written that converts
meta-tags that the developer wants to use into that used by a general purpose
code generator such as XSLT.

Code beautifiers (on both the templates and generated code) can be utilized to
ensure the readability of code. Many IDE tools offer this option explicitly.

11.3.5 Usage

Editing of generated code should be avoided unless there is a systematic way in
which to integrate the fix back into the templates. However, such ‘round trip’
engineering tools are very difficult to provide in reality.

In [4] Dollard maintains that it should be possible for anyone to regenerate the
code as a ‘one click’ process. This also makes the distinction that the person
who is responsible for the generation code may not be the person who was re-
sponsible for its creation.

Copyright © Fraunhofer IESE 2006 118

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

The use of tool support in the creation and generation stages is vitally impor-
tant. An IDE such as Codesmith [9] facilitates template creation by allowing
previews of the generated code as the developer is creating the template itself.
The Eclipse platform [28] has a lot of support for a variety of MDD and code
generation tools due to the availability of plug-ins.

It is useful to generate other kinds of artifacts other than code. For example,
templates which generate HTML and WordML [27] can describe the structure
of the system as it evolves. Any changes to the model propagate to all artifacts
giving immediate feedback to the developer.

11.3.6 Maintenance and Evolution

As change is the only certainty, the developer must have control of the general-
ized assets (i.e., the templates) so that they can be evolved to fit the needs of
the future [4]. For this reason, in general it is preferable to use templates, rather
than embedding programs within programs.

11.4 Code Generation in a Model-Driven Aspect-oriented Framework

This section describes our experiences of using the code generation approach in
an aspect-oriented framework.

11.4.1 Object-oriented Frameworks

Object-oriented frameworks [29] modularize common core behavior in an ap-
plication domain while exposing variation points via inheritance. This separation
of common and variable functionality allows application developers to concen-
trate on just the customizable content rather than the whole system. The
framework is therefore abstract and incomplete until a developer creates a sub-
class by hand which concretizes the variation point to their own requirements.

11.4.2 Aspect-oriented Frameworks

Aspect-oriented frameworks build upon object-oriented frameworks by allow-
ing otherwise crosscutting features of the system to be modularized as aspects.
These crosscutting features can be internal to the core framework or part of the
variabilities. By using an AOP language, such as AspectJ [30], customization
points for aspects (i.e., pointcuts) can be defined in abstract aspects. Aspects
can then use these pointcuts in order to provide an implementation. Using ab-
stract aspects for pointcut declarations purposely restrict the available points to

Copyright © Fraunhofer IESE 2006 119

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

which aspects can bind to the framework core, thus reducing the likelihood for
errors (e.g., incorrect binding sites).

11.4.3 Generative Aspect-oriented Framework

Using AOP and OO to handle variants provides a lot of flexibility and improves
modularity. However, in order to fulfill their usefulness in a software product
line context those aspects and classes often need to be generalized (i.e. via
code generation). Code generation and AOP have often been seen as compet-
ing techniques for solving similar problems. However, the collaborative work
between European partners within the AOSD-Europe project [31] highlighted a
number of cases where code generation and AOP were combined together in
order to simplify the creation of key concerns [32], notably persistence, ad-
vanced transaction management, schema type versioning and caching amongst
others. Combining AOP with code generation improves evolution of concerns
by allowing otherwise crosscutting features to be modularized in one place.
Additionally, any changes to the model are propagated throughout the code
hence it’s suitability in the MDD context. Figure 41 illustrates how the configu-
ration model selects specified features and generates the variable part accord-
ingly.

variable part

<template>

framework core

configuration model

generates

class

abstract class

aspect

composition

extends

crosscuts

Key

variable part

<template><template>

framework core

configuration model

generates

class

abstract class

aspect

composition

extends

crosscuts

Key

class

abstract class

aspect

composition

extends

crosscuts

Key

Figure 41: Code Generation-driven Aspect-oriented Framework

The core part of the code generation driven aspect-oriented framework consists
of the target language code (e.g., Java) and is frozen (i.e., it does not change,
except when it needs to evolve). Code generation is utilized to generate the
variable part of the framework. The appropriate aspects and classes are gener-
alized using a template approach as previously discussed in Section 11.2.2. We
utilize the plug-in nature of AOP to handle crosscutting optional and alternative

Copyright © Fraunhofer IESE 2006 120

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

features, and use the guidelines and patterns as discussed in Section 11.3 to
improve comprehensibility and maintainability.

11.5 Conclusions

In this document we have illustrated how an AOP software product line can be
facilitated using code generation. We have also demonstrated that explicit
guidelines and patterns are required in order to lessen the negative connota-
tions that the code generation approach has garnered. Using code generation
with, language level variability mechanisms and frameworks have lead to our
convictions that code generation can be a vitally important mechanism if used
correctly. On the whole we believe that general purpose code generation tech-
niques do not always provide the necessary abstractions, often leading to ver-
bose meta-code. In order to address this we believe that code generation tools
should be extensible in order to provide abstractions that are closer to the do-
main in which they are intended. While this places greater demands on tool
support we believe that the effort is worth it.

11.6 Acknowledgments

This is supported by European Commission grant IST-2-004349: European Net-
work of Excellence on Aspect-Oriented Software Development (AOSD-Europe),
2004-2008.

11.7 References

[1] P. Clements and L. Northrop, Software Product Lines - Practices and Pat-
terns, Addison Wesley, 2002.

[2] R. Filman, T. Elrad, S. Clarke and M. Aksit, Aspect-Oriented Software De-
velopment, Addison Wesley, 2004.

[3] J. Herrington, Code Generation in Action, Manning, 2003.

[4] K. Dollard, Code Generation in Microsoft.NET, Apress 2004.

[5] Code Generation home page http://www.codegeneration.net

[6] S. Beydeda, M. Book and V. Gruhn, Model Driven Software Development,
Springer, 2005.

[7] XSLT Home Page http://www.xslt.com/.

Copyright © Fraunhofer IESE 2006 121

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

[8] Wong, T., et al., XML implementation of frame processor. ACM SIGSOFT,
2001.

[9] Codesmith Tools home page http://www.codesmithtools.com

[10] Velocity home page http://jakarta.apache.org/velocity

[11] Open Architectureware home page
http://www.openarchitectureware.org/PureVariants

[12] JavaDoc home page http://java.sun.com/j2se/javadoc

[13] XDoclet Home Page http://xdoclet.sourceforge.net/xdoclet/index.html.

[14] J2EE home page http://java.sun.com/javaee

[15] Java 5 home page http://java.sun.com/j2se/1.5.0

[16] JBoss AOP home page http://labs.jboss.com/portal/jbossaop/index.html

[17] I. Forman and N. Forman, Java Reflection in Action, Manning, 2004.

[18] A. Rashid and R. Chitchyan, Persistence as an Aspect, AOSD 2003.

[19] T. Veldhuizen, "Using C++ template metaprograms," C++ Report Vol. 7
No. 4 (May 1995), pp. 36-43.

[20] J. Coplien, D. Hoffman, D. Weiss, "Commonality and Variability in Soft-
ware Engineering," IEEE Software, vol. 15, no. 6, pp. 37-45, Nov/Dec,
1998.

[21] A. Rashid, P. Sawyer, A. Moreira and J. Araujo, Early Aspects: A Model for
Aspect-Oriented Requirements Engineering. IEEE Joint International Con-
ference on Requirements Engineering. IEEE Computer Society Press. Pages
199-202

[22] A. Sampaio, R. Chitchyan, A. Rashid, and P. Rayson, EA-Miner: a tool for
automating aspect-oriented requirements identification. Conference on
Automated Software Engineering 2005.

[23] K. Kang, et al., Feature Oriented Domain Analysis Feasibility Study. 1990.

[24] G. Bracha and W. Cook, Mixin-Based Inheritance, ECOOP/OOPSLA 1990,
303-311.

Copyright © Fraunhofer IESE 2006 122

Good Practice Guidelines for
Code Generation in Software
Product Line Engineering

[25] pure::variants home page http://www.pure-
systems.com/Variant_Management.49.0.html

[26] Ruby on Rails homepage http://www.rubyonrails.org

[27] XML in Microsoft Office homepage
http://msdn.microsoft.com/office/tool/xml/default.aspx

[28] Eclipse home page http://www.eclipse.org

[29] M.E. Fayad and D.C. Schmidt. Special issue on object-oriented application
frameworks. Comm. of the ACM, 40, October 1997.

[30] http://www.eclipse.org/aspectj/

[31] AOSD Europe homepage http://www.aosd-europe.net

[32] N. Loughran, F. Sanen, A. Jackson, et al, A domain analysis of key con-
cerns - known and new candidates, AOSD-Europe Deliverable D43,
AOSD-Europe-KUL-6, 27 February 2006, pp 1-2

Copyright © Fraunhofer IESE 2006 123

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

12 Beyond Code: Handling Variability in Art Artifacts in Mobile Game
Product Lines

Vander Alves12, Gustavo Santos13, Fernando Calheiros2,
Vilmar Nepomuceno2, Davi Pires2, Alberto Costa Neto1, Paulo Borba1

Variability management is at the core of software product lines. Such variability
spans various artifacts, from requirements to code and tests. Based on our in-
dustrial experience, we address variability management of images and sound in
the Mobile Game Product Lines domain. We present variability mechanisms for
such artifacts, provide guidance for their choice according to a set of criteria,
and assess the impact of such variability in terms of source code. Finally, we
provide a more abstract view of these mechanisms so that they can be used
with other artifacts.

12.1 Introduction

In Software Product Line (SPL) engineering [1], while focusing on exploiting the
commonality within the products, adequate support must be available for cus-
tomizing the SPL core in order to derive a particular SPL instance. The more di-
verse the domain, the harder it is to accomplish this task. This, in some cases,
may outweigh the cost of developing the SPL core itself. Therefore, variability
management is at the core of SPL. Such variability spans various artifacts, from
requirements to code and tests. Depending on the domain, additional artifacts
should also be considered.

In particular, in Mobile Game Product Lines [2,3,4], art-related artifacts such as
image and sound need to be addressed. Such artifacts are part of the core as-
sets and their design and maintenance demand significant resources from or-
ganizations in this domain. Additionally, during product derivation, in which a
game is ported to many devices, the great diversity of such devices complicates
managing variability for sound and image. Failing to address variability in these
artifacts adequately affect product derivation and also impact on other artifacts,
such as code, thereby increasing the difficulty in managing its variation.

Based on our industrial experience, we address variability management of im-
ages and sound in the Mobile Game Product Lines. First, we briefly review vari-
ability issues in this domain and how they arise (Section 2). Next, we present

12 Informatics Center, Federal University of Pernambuco. Brazil. E-mail: {vra,acn,phmb}@cin.ufpe.br
13 Meantime Mobile Creations, Brazil. E-mail: {gustavo.santos, fernando.calheiros, vsn, davi.pires

}@cesar.org.br

Copyright © Fraunhofer IESE 2006 124

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

some variability mechanism for such artifacts and reason how their choice is in-
fluenced by some factors, such as performance, binding time, and reusability
(Sections 3 and 4). Then, we evaluate how changing such mechanism affects
variability management of code (Section 5). Finally, Section 6 provides a more
abstract view of these mechanisms so that they can be used with other arti-
facts.

12.2 Variability in Mobile Game SPL

Variability in Mobile Game SPL arises mostly due to a strong portability re-
quirement and to great device diversity. Indeed, portability also becomes a cen-
tral business issue in the contract between game developers and service carri-
ers, since is it not economically viable for the latter to deploy a game for a few
devices, thus representing a very small fraction of customers. Additionally, since
device variability is great, this is especially relevant for games, which explore
most device-specific optimized features to achieve competitive quality. Al-
though these devices are organized by similarity into families by device manu-
factures, service carriers and developers, there still are dozens of families, and
game developers must develop a game for most of them. This gives rise to SPLs
with significant variability.

Based on our experience in this domain, we identified the most relevant device
features and described the incurred variability. We have categorized variability
in this domain. These categories are shown in Table 1:

Category Description

Device specific variations

• Differences regarding the device itself, like:

• Screen sizes and key codes;

• Sound playback approach

• Presence of vibration API

• Image transformation API

Known issues General issues (bugs) encountered in more than one device that
require a workaround

General variations Support of multi-language and graphical font feature variations

Service carriers policies • Network address of the server responsible for stor-
ing/retrieving information

• Executable (JAR) file nomenclature

Feature variations Presence or not of features like game ranking posting

Table 1: Variability in Mobile Game SPL

Copyright © Fraunhofer IESE 2006 125

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

Addressing all these issues results in large SPLs. In fact, our SPLs currently have
hundreds of instances.

12.3 Variability Mechanisms for Images

Image handling is a key activity in the game development process. Images are
used for composing scenarios, characters, menus, and all the visual entities in a
game. Considering the mobile device environment, the main factor causing im-
age variations is the high number of device display sizes. Display size variation
requires image resizing in such way that the figure elements fit into each dis-
play configuration. This way, besides code, images are product line assets af-
fected by some factors that cause variations, thereby requiring corresponding
variability mechanisms. In the following, we describe some of such mechanisms
(automatic transformation, image decomposition, and location obliviousness)
and reason on their choice by striking a balance among factors such as binding
time, performance (space and time), and reusability.

The use of automatic transformations increases the reusability of images and
demands a smaller effort from the graphics designer, who does not have to re-
draw all the images in a new scale for each device screen size. From the binding
time perspective, there are two approaches to automatic image transformation:
runtime and compile-time. In the former, the operations of image resizing, flip-
ping, and color changing rely on an API and results in a decrease on the final
executable size, which is the great advantage of this approach, since applica-
tion size is one of the main development constraints for mobile devices [3].
This, however, has a moderate negative impact on performance, since the ap-
plication now loads the image and transforms it, instead of just loading it; addi-
tionally, heap size usage also increases.

Compile-time automatic image transformation can be accomplished by the
combination of image parameterization and image manipulation tools. In this
approach, the game art is created for the largest screen size, and resizing pa-
rameters are set in a configuration file that is read by a tool creating resized im-
ages based on the reference image. It has the advantage of requiring less heap,
and it does not have a negative impact on performance.

Both approaches of automatic image transformation may lead to visual quality
loss, causing a bad game perception, making it impractical to use these opera-
tions. In such cases, the work of the designer is indispensable. The designer will
have to create a new image for every transformation that cannot be accom-
plished using the aforementioned approaches, which leads to an increase in the
size of the application’s executable.

Image decomposition is a variability mechanism for decreasing the amount of
images in the game and improving performance. It consists of dividing an im-
age that is a part of an animation, or that can be reused by different elements

Copyright © Fraunhofer IESE 2006 126

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

of the game, into several parts, considering that some of these parts are re-
peated in more than one of the animation frames.

Two examples of usage of this technique are in Meantime’s games mobile My
Big Brother [5] and Ronaldinho Total Control [6]. In BBB5 ,there was only one
image used for the torso of every character, and in Ronaldinho Total Control
the main character was divided into several parts (arms, head, torso and legs),
where the ones that moved were the arms, head and legs, so the torso image
used in every frame of the animation was the same one. This required position-
ing the images to form the animation at runtime, as illustrated in Figure 42:

Figure 42: Image decomposition

Location obliviousness. Variability of device display sizes affects not only im-
age sizes, but also implies in the variability of the specification of image items
positioning within these images. For every screen size, there is a need for dif-
ferent constants specifying such positioning. This results in the need for many
constants in the code, resulting in many magic literals. The use of well-known
refactorings such as Replace Magic Number with Symbolic Constant [7] does
not suffice to address this issue, since there may be a few hundreds of such lit-
erals, most of which can be of fine granularity (not only class constants, but
also as local variables). Alternatively, macro usage may impact on the legibility
and IDE integration, since the code does not compile with the macro symbols.
The same happens with preprocessing, a frequently used technique to address
this variability. Instead, we propose addressing this variability at runtime by Lo-
cation Obliviousness.

Most of the games’ images are created by the designers in the SVG format [8],
which is a XML file describing the images’ elements and their positions. Packag-
ing a SVG file and parsing it to get the values needed to paint the images at the
appropriate positions is not viable since SVG, being a XML file, is very verbose
and, thus, has a large file size.

In Location obliviousness, we convert the SVGs into a compact binary format,
which has a small size and can be parsed efficiently at runtime. This format is

Copyright © Fraunhofer IESE 2006 127

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

called BVG (Binary Vector Graphics) and supports a subset of the elements de-
fined in the SVG standard. The use of BVG effectively removes most of the im-
age positioning code, making it easier to read and maintain, and allows the de-
veloper to focus on the game logic. BVG supports the following elements: rec-
tangle, image, image clip, line and arc. Each element description contains all
the information needed to draw itself on the screen. For example, a rectangle
element description in the BVG file contains its (x,y) position, width, height,
color and whether it is a filled or a simple rectangle. Every element in the BVG
file may be tagged, so that it can be identified from the game source code, so
instead of the source code containing the drawing information, which required
code duplication using preprocessing for each screen size, it now contains only
the element’s ID. Such ID is used to reference the element’s information within
the BVG file, which will be used for drawing the element.

12.4 Variability Mechanisms for Sound

Sound is being used in more intelligent ways in mobile applications develop-
ment, especially in games. It creates a different environment, making the game
more involving. The diversity of devices, their resources and the need to keep a
high quality sound may demand a great effort from the sound designer. Very
often the designer has to create several sound artifacts to take the maximum
advantage of the devices’ sound playback capabilities. As a consequence, each
device family has different set of sounds.

Most devices work with MIDI audio files, but devices’ constraints for sound
playback lead to variations of sound artifacts that are managed by the creation
of sound artifacts for more powerful devices and following a progressive reduc-
tion of audio channels, always trying to keep the quality and original sound
identity. Indeed, this process cannot be completely automated. Removing some
audio channel, voice or specific instrument from the audio object may cause a
complete distortion of the original sound. This process is still quite dependent
on the designer’s artistic feeling.

Some porting tools [9] offer automatic transformations over audio resources,
according to the target device, but the only guarantee is that the resulting
transformed resource will be compatible with the corresponding device. How-
ever, it is frequently necessary to have a fine control over the resources file size,
which requires a direct interference by the sound designer.

Sound variability can be managed by creating an audio core artifact, which is
always reused as a key asset through the SPL, and the customizations are made
via melody simplification and transformations between device specific formats.

Recently, another approach is being largely adopted by the mobile game indus-
try: the use of a special MIDI format called Scalable Polyphony MIDI (SP-MIDI)
[10]. In this standard, MIDI channels have a priority order and the sound de-

Copyright © Fraunhofer IESE 2006 128

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

signer decides which sound component goes to each priority level. This way,
MIDI channels can be seen as SPL assets and core-assets are determined by
higher priorities. Different devices with discrepant sound capabilities can use
the same artifact, but each one use only a compatible amount of channels from
it. The Figure 43 summarizes the overall sound production process.

Figure 43: Sound as asset in Mobile Game Product Lines

Mobile devices are extremely restrictive regarding heap memory availability. As
a direct consequence of this fact, the game programmer must be judicious
about how much resources are being kept in the device heap memory at the
same time. Two approaches can be applied to loading sounds: loading sounds
at startup or on demand.

The first approach, loading sounds at startup, consists in loading sound re-
sources to memory during game startup process. As a consequence, it slows
down game initialization and requires a greater amount of heap memory. On
the other hand, it reduces the existing delay to load sounds during game execu-
tion and simplifies the codification.

Loading sounds on demand consists in allocating in memory sound resources
when they are necessary and deallocating them as soon as possible. This ap-
proach reduces game initialization delay and also demands less heap memory
during game execution. The downside is the increase in the game execution
processing and the code complexity.

12.5 Variability Across Artifacts

Copyright © Fraunhofer IESE 2006 129

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

The choice of the variability mechanisms for sound and images directly affects
code variability. The API choice, resources allocation, execution mode of the ar-
tifacts generated by these mechanisms and how these artifacts are going to be
represented and used inside the code influence the flow of execution and
memory allocation, both heap and non-volatile.

The variability mechanism chosen for image representation can influence both
the game’s executable file and used heap memory. If the information about
images positioning is not present in the loaded image object, it will have to be
expressed as constants inside the code, thus increasing the executable size.
Placing this information on text-based properties files to be read at runtime
may degrade performance. The solution presented in Section 3 (Location
Obliviousness) solves these problems. It decreases the number of code con-
stants and, since it use a binary file, it occupies less space in the executable and
is parsed more efficiently, demanding less processing power than a properties-
based solution.

The choice of the variability mechanism for sound also affects the project’s
source code, as a consequence of different devices using different APIs and
some of these APIs are more limited than others (such as the Nokia API for
MIDP 1.0 devices). Additionally, in some cases the devices do not support se-
quential sound playback, making it necessary to create separate threads in the
game flow so that playability is not affected. There are also restrictions on the
type of the file supported by some devices. For these devices that contain that
discrepancy it is necessary to use the file’s content-type. The values that it may
present are “audio/mid”, “audio/x-mid”, “audio/midi” and “audio/x-midi”.
Another variation is how the sound resources will be allocated: on demand, on
devices that have low heap memory availability, or if they will be preloaded at
the beginning of the game, which makes their execution response time faster.
The creation of a uniform API for all devices that can be altered by code isola-
tion using preprocessing directives is already the approach used in the industry,
utilizing the preprocessor Antenna [11], a collection of Ant [12] tasks.

12.6 A General View of Variability Primitives

We discussed in the previous sections sound and image variability and how the
source code is affected by variations in those artifacts. Taking a more abstract
view about such variations, it is possible to generalize some key concepts and
use the variability primitives in other contexts beyond sound and image han-
dling. In a more general way, we can classify the resource/components varia-
tions according to the following taxonomy:

8. Resource formats. It is common in the software development environment
the existence of several file formats to represent the same perceptive effect.
An example is the diversity of sound formats (as discussed in Section 4).
Such variability can occur for several other resources like images, texts, and

Copyright © Fraunhofer IESE 2006 130

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

so on. All software that handles external resources needs some mechanism
for treating this kind of variability. The solutions presented in the previous
sections for managing different sound formats can be generalized for any
other resource.

9. Composition/Combination: image and sound resource require some dy-
namic composition and filtering, like explained in Sections 3 and 4. Such
combinations can occur in several other contexts, either for composing mul-
timedia resources or composing software components. Preparing the soft-
ware to deal with fragmented resources is an essential requirement to sup-
port compositional variability.

10. Transformations: we discussed in Section 4 the importance of dynamic
transformations for images. However, transformations are frequently applied
for many other resources. Indeed, dynamic transformation is a powerful me-
chanism for dealing with some variations that cannot be resolved statically.
In general, transformations are accomplished by providing additional APIs
for such purpose. On the other hand, transformations sometimes can be ap-
plied statically, either before or during building time. This can by achieved by
the use of transformation tools for code and resources.

12.7 References

[1] P. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, 2002.

[2] Vander Alves, Pedro Matos, Leonardo Cole, Paulo Borba, and Geber
Ramalho. Extracting and Evolving Mobile Games Product Lines. In
Proceedings of the 9th International Software Product Line Con-
ference (SPLC'05), volume 3714 of Lecture Notes in Computer
Science, pages 70-81, September 2005. Springer-Verlag

[3] Vander Alves, Ivan Cardim, Heitor Vital, Pedro Sampaio, Alexandre
Damasceno, Paulo Borba, and Geber Ramalho. Comparative
Analysis of Porting Strategies in J2ME Games. In Proceedings of
the 21st IEEE International Conference on Software Maintenance
(ICSM'05), Budapest, Hungary, pages 123-132, September 2005.
IEEE Computer Society.

[4] Vander Alves. Identifying Variations in Mobile Devices. Journal of Object
Technology, 4(3):47-52, April 2005.

[5] My Big Brother web site,
http://www.meantime.com.br/games_meubbb.html, 2006.

[6] Ronaldinho Total Control web site, http://www.ronaldinhomobile.com/,
2006.

Copyright © Fraunhofer IESE 2006 131

Beyond Code: Handling
Variability in Art Artifacts in
Mobile Game Product Lines

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Im-
proving the Design of Existing Code. Addison–Wesley, 1999.

[8] World Wide Web Consortium, http://www.w3.org/Graphics/SVG/, 2006.

[9] Unified Mobile Application frameworK web site,
http://www.unifiedmobiles.com/, 2006.

[10] SP-MIDI, http://www.midi.org/about-midi/abtspmidi.shtml, 2004.

[11] Antenna web site, http://antenna.sourceforge.net/, 2006.

[12] Ant web site, http://ant.apache.org/, 2006.

Copyright © Fraunhofer IESE 2006 132

Document Information

Title: Variability Management –
Working with Variability
Mechanisms

Date: October 15, 2006
Report: IESE-152.06/E
Status: Final
Distribution: Public

Copyright 2006, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Discussion Group on Test Strategy

• Problem:
Define a competitive test strategy
when, what, how, to what extent, and by whom
a particular product line is tested at least cost to gain the most

• Challenges
– Lack of understanding of business impact of testing

• Assessment of Effectiveness of Test and Risk
– Composability in testing space

• Criteria for determining the Test Strategy
– Balance between testing core assets over their variation space

and testing applications
– Balance the granularity of the artifact for observability and

controllability
– Optimize testing for cost and/or time

Discussion Group on Adapting Techniques
and Methods for Testing Software Product Lines

• Problem: Variability in SPLs
– Test configuration management problems
– Feature interaction problem

• There are …
– Methods:

RUP, Agile, IEEE standards, Model-based testing, Formal
methods (model checking), etc.

– Variability mechanisms:
Compiler directives, Inheritance, Parameters, Templates,
Separation of concerns, etc.

– Many methods for testing single systems

• We need concrete guidelines for choosing
– methods for testing
– variability mechanisms for test artifacts

Discussion Group on Design for Testability

Requirements

Analysis

Architect.Design

Detailed Design

Coding
Product Deriv.

Development

Review

Guided Inspect.

ATAM

Guided Inspect.

Unit-
Integration-
System-

Testing

Use Cases

Analysis-Models

Architect. Descr.

Design Models

Implementation
(Code)

Infrastructure, Tool Environment
[Based on: John McGregor, Tutorial 4]

Testability has to be
non-functional requirement

with high priority

Testability has to be defined in
measurable terms and adapted to

the specific domain; potential
criteria:

encapsulation, coupling and
cohesion; abstraction

August 22, 2006

Frank van der Linden
PMS CTO Office

1st International Workshop on
Open Source Software and
Product Lines OSSPL06

© Philips Medical Systems 2PMS CTO Office, Frank van der Linden, August 22, 2006, OSSPL06 - introduction

Participants

• Frank van der Linden Philips Medical Systems
• Jesús Bermejo Telvent
• Andrew Gordon Unisys
• Jilles van Gurp Nokia Research
• Svein Hallsteinsen Sintef
• Timo Käkölä University Jyväskilä
• Jeajoon Lee Fraunhofer IESE
• Henk Obbink Philips Research
• Liam O’Brien LERO-ISERC
• Rob van Ommering Philips Research
• Arnd Schnieders Hasso-Plattner Institute
• John Scott Radiant Blue Technology

© Philips Medical Systems 3PMS CTO Office, Frank van der Linden, August 22, 2006, OSSPL06 - introduction

Background

• Product-line engineering organisations
– Use open source software
– Effective way for good software

• Diverse use of open source software
– Product-line development is an option for open source

communities
• Presently completely different worlds
• Workshop aims to improve understanding

– insight how they can profit from each other

© Philips Medical Systems 4PMS CTO Office, Frank van der Linden, August 22, 2006, OSSPL06 - introduction

Presentations

• Open source strengths for defining software product line
practices

– Jesús Bermejo, and Naci Dai
• Feature-Based Determination of Product Line Asset Types:

In-house, COTS, or Open Source?
– Jaejoon Lee, and Dirk Muthig

• Open Source in the Software Product Line: An Inevitable
Trajectory?

– Pär J Ågerfalk, Brian Fitzgerald, Brian Lings,
Björn Lundell, Liam O’Brien, and Steffen Thiel

• OSS Product Family Engineering
– Jiles van Gurp

© Philips Medical Systems 5PMS CTO Office, Frank van der Linden, August 22, 2006, OSSPL06 - introduction

Discussion
• Human issues

– The way that people are recruited and fired
• Those that stay in OSS are those with quality

– Culture
• Tools

– OSS has simple useful tools – they integrate!
– Good OS asset management tools

• implicit variation, embedded in packages
• Processes & maturity

– Are all SPL practices necessary?
– Some OSS practices are working already in SPL development

• Organisational issues
– Fear of the unknown by commercial organisations
– Ownership

• Architecture
– SPL concentrates on models, OSS on code/configurations
– OSS quality can be better assessed than close source

• Business
– How/when to use OSS in SPL – what about participation?
– Questions about licenses

© Philips Medical Systems 6PMS CTO Office, Frank van der Linden, August 22, 2006, OSSPL06 - introduction

Agreements

• 2 initial papers:
– Use of OSS practices in SPL

• Frank, Jaejoon, Liam
– Adoption of SPL practices in OSS communities

• Timo, Jilles, Svein, Jesús
• Lead to journal article?

• 2nd round: Cross conclusions
– Jesús, Frank, …

• Prepare Dagstuhl workshop – 3 days on this subject!
– invite OSS people as well

• Submit papers to SPLC 2007/OSS 2007
– Basis for the Dagstuhl workshop

Open source strengths for defining software product line practices

Jesús Bermejo (1), Naci Dai (2)

(1)Telvent, Seville, Spain
jesus.bermejo@telvent.abengoa.com

(2) Eteration, Istanbul, Turkey
naci.dai@eteration.com

Abstract
Open source is emerging as a new global paradigm challenging the conventional approach in
software development. The fact that product line is a natural evolution in the maturity process of
software development is leading to the adoption of related practices by open source
communities. The paper presents some examples for supporting the expectation of increasing
levels of adoption.

Introduction

A software product line (SPL) is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way [1]. The
competitive advantage of software product lines is currently worldwide recognised due to
increased productivity, flexibility and customisation. In fact, product lines practices are a natural
evolution of software maturity development derived from transversal engineering across a set of
products or a specific market.

Open Source is emerging as new global paradigm challenging the conventional approach in
software development. It does not just mean access to the source code. The distribution terms
of the software must not restrict any party from selling or giving it away and must allow
modifications and derived works [2].

The success of an open source development is strongly related with the level of adoption
outside. The need to satisfy multiple users and in many cases from different domains is
frequently a direct consequence. The fact that the source code is available through Internet
often leads to the use of parts in different developments and domains as opposite to inner
developed software where the use of parts is limited to the developing organisation (and
frequently with important organisational constraints). On the other hand, the collaboration
among open source projects is common due to the flexibility in achieving it. The very favourable
scenario to adopt product line core practices is in fact one of the strengths of the open software
that leads to a very high quality in the long term for successful projects.

The Debian GNU/Linux case

The need to quickly address a very large variety of requirements with flexibility has pushed
operating system vendors and open source communities to develop automatic configuration
and deployment infrastructures taking advantage of Internet. Debian [3] was one of the first
GNU/Linux distributions with tool support to cover deployment tasks such as: dependencies
resolution, installation, configuration and update of packages. The Debian packaging
system is one of the best existing methods for installing, upgrading, and removing software
available. The approach is similar to that used in Red Hat Package Manager (RPM).

A package is a collection of files with instructions on what to do with them. It usually
contains programs (although sometimes it has documentation, window themes, or other
files). The package contains installation information, required libraries or other
dependencies, setup instructions, and scripts for basic configuration. Although in some
cases additional configuration is needed the system is some sort of on-line product line
derivation support from a large catalogue of package assets. There are also several open

source projects addressing the building of Linux tailored distributions from the existing code
base to minimise the effort of developing distributions for specific needs.

The Eclipse case

Multiple development and configuration tools are available for a large diversity of software

intensive systems but they are typically not integrated with each other and do not necessarily

build on standards. Enterprise software vendors have tooling that support their proprietary

technologies; Microsoft has its Visual Studio .Net. BEA systems supports its commercial

WebLogic Server environment through WebLogic Workshop. Likewise IBM has tools that

support its own runtime environment WebSphere, and the tool named WebSphere Studio.

These tools supporting proprietary solutions are limited in adaptability and extensibility. In the

open source world, Eclipse [4] provides a modular development platform that includes all kinds

of developer tools for most programming languages. Eclipse has currently the potential to

become a truly cross-platform IDE and tools platform. It runs on a wide range of operating

systems; it provides GUI and non-GUI tooling support; it is language-neutral; it permits

unrestricted content types such as HTML, Java, C, JSP, EJB, XML, GIF; and most importantly it

facilitates seamless tool integration to allow new tools to be added to existing installed products.

More that five hundred plug-ins exist currently. Probably key success factors for Eclipse have

been its open source nature, the target domain (a tool to facilitate the development is frequently

an extra cost for a platform/ product provider and this facilitates the open source industrial

cooperation) and its core plug-in architecture that is an important enabler for product line

engineering practices.

Open source, service oriented architectures and product line experiences

Two relevant reference examples documenting relationships between open source
developments and product line practices have been described in previous paragraphs.
Many other examples can be found although there is not an explicit awareness of product
line engineering practices at the moment in open source communities. Probably the
relationship between open software and product line practices is more for those initiatives
addressing platforms/middleware than for open source applications. This is due to the
internal interest of promoting the reuse across projects and to improve interoperability.

ITEA Osmose R&D project executed from 2002 to mid 2005 provided interesting and
relevant experiences in the links between open source and product line engineering
practices. Discussions during the planning phase in 2002 led to the interest of an open
source middleware allowing dynamic deployment of systems. At that moment OSGi was the
closer specification targeting this. A community grew rapidly around the platform helped by
the modularity in the architecture required for alignment with the specification. The fact that
the developers and users were guided to think in terms of “bundles” (small deployable
application units vs. large and monolithic components) contributed importantly to the
opening of the architecture and as derived consequence to its potential of reuse across
domains. The contributors to different building blocks discovered collaboration opportunities
and many joined from very diverse application areas. It was also interesting to see during
the project that similar approach was also adopted for Eclipse. Once Osmose finalised it
raised the interest of Apache community where its relevance for the Apache Directory and
other developments such as Harmony and Cocoon [5] is being discussed. ITEA OSIRIS
(Open Source Infrastructure for Run-time Integration of Services) [6] project (Osmose
follow-up stated in mid 2005) together with COSI (Co-development using inner &Open
source in Software Intensive products) [7] is providing the opportunity to explore further the
relationship between service oriented architectures, open source engineering practises and
product lines embedding the complete development life cycle.

Conclusions

The interest of providing technologies for building systems faster, with lower cost and higher
quality has led to advances in technologies such as component-based development,
asynchronous middleware, service-oriented architectures, product line and open source.

Some product line practises can be identified in many relevant open source initiatives and
communities and frequently they have been key factors for the success of the projects.
Probably the relative relevance of the diverse product line practices in the context of an
open source project is not the same that for inner development and this area requires
further research. Nevertheless, the increasing strength of open source in creating global
and “de facto” standards together with the fact that product line practices are a natural
evolution in the maturity process of software development is creating strong synergies
between these two fields although it has not yet been recognised explicitly.

References

Following are links of references mentioned in the text

[1] www.sei.cmu.edu/productlines/

[2] www.opensource.org

[3] www.debian.org

[4] www.eclipse.org

[5] www.apache.org

[6] www.itea-osiris.org

[7] www.itea-cosi.org

1

Open source strengths for defining software product
line practices

10th International Software Product Line Conference

OSSPL - First International Workshop on
Open Source Software and Product Lines

22 August 2006
Baltimore, Maryland, USA

Jesús Bermejo
jesus.bermejo@telvent.abengoa.com
Naci Dai
naci.dai@eteration.com

2

• Introduction
• Some examples

– GNU/Linux
– Eclipse
– PHP
– Osmose, Osiris, Cosi, Cosiris

• Conclusions

Contents

2

3

• A software product line (SPL) is a set of software-intensive
systems that share a common, managed set of features
satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core
assets in a prescribed way.
i.e. Optimised reuse for a market segment/mission

• Open Source is emerging as a new global paradigm challenging
the conventional approach in software development. It does not
just mean access to the source code. The distribution terms of
the software must not restrict any party from selling or giving it
away and must allow modifications and derived works.

Introduction

4

Assets

System
Requirements

Application
Engineering Systems

Domain Expertise

Legacy Systems
Information

Domain
Engineering

Business Strategy

SPL Concept Chart

3

5

SPL Maturity Stages

Maturity Stages

Domain
Engineering

Application
Engineering

En
gi

ne
er

in
g

Pr
ac

tis
es

1 2 3 4 5

6

• Level 1: Independent Product Development
– No Domain Engineering (only Application Engineering). Products are developed

independently although ad-hoc reuse could exist

• Level 2: Standardised Domain Independent Infrastructure
– Common software infrastructure (such as middleware or COTS) is defined

nevertheless there is not formal reuse of domain specific assets

• Level 3: Software Platform
– Domain commonality is captured and implemented in a software platform. This

Platform is used for the different products. The platform could be configured
nevertheless there is not variability support for product derivation

• Level 4: Derivable Variant Products
– Domain commonality and variability is captured and a System Family architecture

is specified. Domain assets include support for deriving products

• Level 5: Automated Product Derivation
– Only Domain Engineering (no Application Engineering). Products can be derived

automatically from the domain without product specific development

Maturity Levels

4

7

• Four FEF-dimensions (Architecture,
Process, Organisation and Business)
evaluated via aspects & levels

• Aspects
– Main factors for the evaluation

• 5 Levels
– Extent of aspect coverage

• Profile
– Evaluation result of the four values
– The maximum may not be optimal

• A high level may involve
– Costs
– Overhead
– Time

B

A

O

P

Maturity Profile

1
2
3
4
5

Maturity Levels/Dimensions

8

The GNU/Linux Case

5

9

http://distrowatch.com/stats.php?section=popularity (from 356 distributions)

The GNU/Linux Case

10

Debian GNU/Linux Package Management System: process of installing,
updating and removing software (the system or specific packages)
automating the retrieval, the configuration, the compiling (sometimes) and
the installation

– Central repository of over 17,000 software packages
– Any number of additional repositories can be added
– Support for several sources, (ie. Internet, local network, or CD)
– CDs available for download for non-networked machines
– Control of preferences when conflicting sources
– Supports several packages .deb, rpm
– Runs on other operating systems such as Mac OS X
– Automatically fetches, configures and installs the dependencies
– Several front-ends package managers (Synaptic, aptitude, KPackage, Adept ..)

The Debian GNU/Linux – Variability Management Support

6

11

The Eclipse Case

12

The Eclipse Case

7

13

The PHP Case

• PEAR - PHP Extension and Application Repository is a framework
and distribution system for reusable PHP components.

• The components are provided in the form of so called "Packages".
- The complete list can be browsed on-line
- Includes on-line search facilities for packages through
keywords
- Provides a command-line interface that can be used to
automatically install packages

• Detailed information is provided through on-line manual, FAQ and
news. In case of needed support (general or a package in special),
there is compiled a list of the available support resources

• Registering for developers for a PEAR website account is available

14

The PHP Case

8

15

The OSMOSE R&D Project Case

Components

Frameworks
(Persistency, Replication, Security …)

J2EE CORBA CM OSGi

Deployment and Management Tools

AvionicsHome
Gateway

Telecom
Platform

WP4

WP2

WP1 : Management, Requirements, Infrastructure,
Communication, Dissemination & Standards

WP3

16

The OSIRIS R&D Project Case

J2EE CCM OSGi

Application Services

Basic
Services

Service Directories &
Orchestration

O
P
E
N

S
O
U
R
C
E

M
I
D
D
L
E
W
A
R
E

WP4

WP3

WP2

Distributed Networked OSIRIS Nodes

Native Layer

JVM

WbSrv

WSB (HTTP/SOAP,IIOP/IIOP, JSM/SOAP….)

…

Demonstrators

In
iti

al
 P

ro
vi

si
on

in
g

an
d

D
ep

lo
ym

en
t

S
of

tw
ar

e
A

ss
et

s

D
ev

el
op

m
en

t a
nd

 C
ol

la
bo

ra
tio

n
To

ol
s

M
on

ito
rin

g
an

d
C

on
tro

l

G
en

P
tm

9

17

The COSIRIS Case

Calibre

OSIRIS
www.itea-osiris.org

COSIRIS
Syndication

COSI
www.itea-cosi.org

OSMOSE
www.itea-osmose.org

www.calibre.ie

18

Product line practises can be identified in many relevant open source initiatives
and communities. Frequently they have been key factors for the success of the
projects.

The success of an Open Source project/initiative depends of the level of the use
outside, the evolution of OSS towards an increasing adoption of product line
practices is a direct consequence

OSS SPL strengths to achieve optimised reuse is reinforced through:

- OSS allows the “use of parts” which is a key enabler for a “product lining” process

- Broader potential inputs of needs (users involved in the development process)

- Flexibility for “branching” to address specific needs segments

- Developers not only from profit organisations (shared effort)

- Flexible (and real-time) cooperation across related initiatives

- Bottom-up approach, “evolving embedded in the social impact” of the network

Conclusions

10

19

References/additional information

• www.sei.cmu.edu/productlines/
• www.esi.es/en/Projects/Families/
• www.opensource.org
• www.debian.org
• www. linuxhelp.blogspot.com
• www. distrowatch.com
• www.eclipse.org
• www.apache.org
• www. pear.php.net/
• www.itea-osiris.org
• www.itea-cosi.org

Thank you for your attention!

Feature-Based Determination of Product Line Asset
Types: In-house, COTS, or Open Source?1

Jaejoon Lee and Dirk Muthig

Fraunhofer Institute for Experimental Software Engineering (IESE),
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

{jaejoon.lee, dirk.muthig}@iese.fraunhofer.de

1 Introduction

One important activity in product line engineering is product line pro-
duction planning [1,2], during which stakeholders of a product line
determine what and how product line assets are developed and used for
product development. Moreover, decisions on which assets should be
developed as in-house assets or purchased as COTS are made.

Recently, there have been increasing interests in using open source
software for product development [3,4]. As pointed out in [3], it seems
reasonable to make some common components of a product line as
open source software or acquire them from exiting open source com-
munities. However, it is still not clear what a “common” component
means and how it can be identified. Suppose, for example, that a
switching component for voice communications in a telephony product
line is a common component and is required for every product of the
product line. If the overall quality of a switching system mainly de-
pends on the quality of the switching component, then it may be diffi-
cult to develop such components as open source software, as they may
be developed based on lots of know-how of a company. Therefore, we
need a systematic approach or guidelines that can be used to determine
which product line assets to be developed as open source software.

In this position paper, we propose a feature-based approach to identi-
fying product line assets and determining their development strategies
during product line production planning. The approach is an extension
of [5], and a feature model [6], which captures commonality and vari-

1 This research is partially carried out in the Cluster of Excellence 'Dependable adaptive Sys-

tems and Mathematical Modeling' project, which is funded by the Program 'Wissen schafft
Zukunft' of the Ministry of Science, Education, Research and Culture of Rhineland-
Palatinate, Germany, AZ.: 15212-52 309-2/40 (30).

mailto:jaejoon.lee, dirk.muthig}@iese.fraunhofer.de

ability information of a product line, is used as primary input to the
strategy selection.

2 Product Line Asset Type Determination

After features of a product line are identified, we group features into
feature binding units, each of which includes features of the same bind-
ing time [5]. Then, we determine which features or feature binding
units will be developed as core assets, product-specific assets, or open-
source asset, or purchased as COTS. Therefore, for each feature or fea-
ture binding unit, its asset type (i.e., core asset, product-specific asset,
open-source asset, or COTS) should be determined with consideration
of the budget and time-to-market constraints and other busi-
ness/technical considerations such as expected frequency of feature
usage, estimated cost for development, availability of in-house exper-
tise, and availability of open source software. (Table 1 shows some of
the identified product line assets of a Home Integration Systems (HIS)
product line [2,5].)

Table 1 Identified Product Line Assets and Their Types

No

Yes

Yes

No

No

No

Open source
software

availability

Yes / Lower

No / -

Yes / Higher

Yes / Higher

No / -

No / -

COTS availability /
COTS price (which is

compared to the estimated
in-house development cost)

COTS

Product-specific
asset

Open-source asset

Core asset

Core asset

Core asset

Asset
type

LowBiometric

MediumCommunication

MediumMessage, Voice
MESSAGE

Low

Medium

High

Frequency of
feature usageConstituent features

Security, Access-control,
…

SECURITY

Flood, Moisture,
Moisture sensor, Alarm, …FLOOD

Fire, Smoke,
Smoke sensor, Sprinkler, …FIRE

A representing
name for a set of
features with the

same binding time

No

Yes

Yes

No

No

No

Open source
software

availability

Yes / Lower

No / -

Yes / Higher

Yes / Higher

No / -

No / -

COTS availability /
COTS price (which is

compared to the estimated
in-house development cost)

COTS

Product-specific
asset

Open-source asset

Core asset

Core asset

Core asset

Asset
type

LowBiometric

MediumCommunication

MediumMessage, Voice
MESSAGE

Low

Medium

High

Frequency of
feature usageConstituent features

Security, Access-control,
…

SECURITY

Flood, Moisture,
Moisture sensor, Alarm, …FLOOD

Fire, Smoke,
Smoke sensor, Sprinkler, …FIRE

A representing
name for a set of
features with the

same binding time

For example, in the HIS product line, the FIRE feature binding unit
has high frequency of usage (i.e., all products in the product line in-
clude it) and the estimated cost for development is low; the features of
FIRE are identified as core assets. The Communication feature, how-
ever, has medium frequency of usage and is available as open source
software; this feature is identified as an open-source asset, i.e., it will
be acquired from an open source community when it is needed. For

another example, the Biometric feature, which is used to authenticate
users, must be developed in a short period but in-house expertise and
open-source software for the biometric technique is not available;
COTS components will be purchased to realize this feature.

The considering factors (e.g., frequency of usage, etc.) and decision
criteria for each type may vary from one organization to other. For ex-
ample, if a company considers a feature as a ‘killing’ feature, then the
company would not make the feature as open source software, even
though similar features are available from an open source community.
Also, some features may be open to an in-company-open-source com-
munity so that these features can be developed, improved, and shared
by engineers belong to different departments/teams of the company.

3 Discussions

In this position paper, a feature-based approach to identifying product
line assets and determining their development strategies during product
line production planning is proposed. We claim that our approach can
provide asset developers with an explicit way to identify core assets,
and determine asset types with technical and business/management
considerations. We believe that our approach makes it visible where to
adapt open source software for product line asset development. We
hope that this research will lead us to develop more detailed guidelines
for open-source based development in the context of product line engi-
neering.

4 References

1. Chastek, G., McGregor, J.D.: Guidelines for Developing a Product Line Production Plan,
Technical Report CMU/SEI-2002-TR-006, Pittsburgh, PA, Software Engineering Institute,
Carnegie Mellon University (2002)

2. Chastek, G., Donohoe, P., McGregor, J.D.: Product Line Production Planning for the Home
Integration System Example, Technical Note CMU/SEI-2002-TN-029, Pittsburgh, PA, Soft-
ware Engineering Institute, Carnegie Mellon University (2002)

3. Co-development using inner & Open source in Software Intensive products (COSI) project,
http://itea-cosi.org/modules/wikimod/index.php?page=WikiHome

4. Free/Open Source Research Community, http://opensource.mit.edu
5. Lee, J, Kang, K., Kim, S. A Feature-Based Approach to Product Line Production Planning,

SPLC2004, LNCS 3154, pp. 183-196, 2004

http://itea-cosi.org/modules/wikimod/index.php?page=WikiHome
http://opensource.mit.edu/

6. Lee, K., Kang, K., Lee, J. Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. ICSR7, LNCS 2319. pp. 62-77, 2002

Feature-Oriented Determination of Product Line Asset Types:

In-House, COTS, or Open Source? (Position Paper)

OSSPL - First International Workshop on Open
Source Software and Product Lines

Jaejoon Lee and Dirk Muthig

jaejoon.lee@iese.fraunhofer.de
Tel.: 49-0631-6800 2289

IntroductionIntroductionProduct Line Engineering

Product Line
Analysis

Commonality
and

Variability
of

a Product Line

Product Specific Assets

selection,
customization,
instantiation

Products

Core Assets

variations

A product line production plan, which describes how the core assets are used to
develop products, has an important role in product line engineering as a
communication medium between asset developers and product developers.

IntroductionIntroductionProduct Line Production Plan

Asset Developers

Product Developers

Assets

Feedback Assets

Assets

HIS Product Line Production Plan
…
2. Strategic view of product development
…

2.3 Products possible from available assets
- Low-end HIS (FIRE and INTRUSION)
- High-end HIS (FIRE, INTRUSION, FLOOD, and SECURITY)

2.4 Production strategy
- An automatic code generation approach for the low-end
market segment
- A custom-made approach for the high-end market segment
…
3. Overview of available core assets
…

3.1.2 Core Assets
Binding Unit Features Asset type

FIRE Fire, Smoke,… core asset
MESSAGE Message,… core asset

Comm., … COTS
…
4. Detailed production process

4.1 Feature Binding Units
- FLOOD

- Commonality: Optional
- Asset type: Core asset
- Child binding unit: PUMPING
- Functional description: Flood events are detected by …

Binding Info. Inclusion Availability
Time Product dev. Pre-operation

Technique Macro processing Load table
Reuse process Code generator will To control the avai-

include this binding, lability, use the HIS
unit, if the flood … -Installer package...

…

Product Line
Production Plan

IntroductionIntroductionProduct Line Production Planning Activities

- Market analysis results
- Marketing strategy

Marketing and
product plan
development

- Budget constraints
- Schedule

(time-to-market)

- Expected frequency of feature usage
- Estimated cost for development
- In-house expertise, COTS,

Open Source availability

Product line
asset

identification

- Feature model
- Feature binding units
- Feature binding timeFeature modeling

and feature
binding analysis

- Marketing and product plan

Product line
production

plan
documentation

- Product line
core assets
with reuse
processes

- Product line
production plan

Name Activity

Legend

Data flow

Name Activity

Legend

Data flow

Product line
core asset

development

- Identified
product line
core assets

- Feature binding techniques

Marketing and Product Plan DevelopmentMarketing and Product Plan Development

Copyright © Fraunhofer IESE 2006

Marketing and Product Plan for HIS product line

Market segments
Office building

(high-end product)

Household

(low-end product)

Need assessment
The customers are budget-conscious
and they only require features that

are essential for HIS products.

Time-to-market Less than six months Less than three months

Marketing strategy

(product delivery methods)
Develop and deliver a product for each

customer
Prepackaged

Price range

Marketing
plan

Product features

Quality attributes

To be a competitive product, the price
should be less than 20,000 dollars.

Less than 1,000 dollars

Fire, Intrusion

Safety, Reliability, Scalability Safety, Reliability, Usability

The customer’s choices of features for
high-end products are in the wide
range of variability. Moreover, the

Security feature has customer-specific
requirements.

Fire, Intrusion, Flood, Security, and
other customer specific featuresProduct

plan

HIS

Intrusion

Discrete
Value

Continuous
Value

Domain
Technology
Layer

Operating
Environment
Layer

Implementation
Technique
Layer

Composition Rules
Message requires Communication.
Data requires Internet.

Moisture
Sensor

Security

…

……

Water
Main Pumping

Sump
Pump

Message

Data
Voice

Flood…

Communication

Telephone

Connection

TCP UDP

Internet

requires

Monitoring &
Detecting

requires

Alarm

Fire

FLOOD

PUMPING

MESSAGE

DATA

MONITORING&
DETECTING

CONNECTION

Binding unit Feature Biding Unit NameNAME

Optional feature

Alternative feature
Composed-of relationship
Generalization relationship
Implemented-by relationship

Legend

Capability
Layer

Moisture

Feature Modeling Feature Modeling and Binding AnalysisFeature Modeling and Binding Analysis

What is a feature binding unit?

• We define a feature binding unit as a set of features that are related to each other

via compose-of, generalization/specialization, and implemented-by relationships

and composition rules (i.e., require).

Feature binding unit identification starts with identification of
independently configurable service features.

• A service feature represents a major functionality of a system and may be added to

and removed from as a unit.

• A service feature uses other features (e.g., operational, environmental, and

implementation features) to function properly.

• The constituents of a binding unit can be found by traversing the feature model

along the feature relationships and composition rules.

Feature Modeling and Binding AnalysisFeature Modeling and Binding AnalysisFeature Binding Units

HIS

Intrusion

Discrete
Value

Continuous
Value

Domain
Technology
Layer

Operating
Environment
Layer

Implementation
Technique
Layer

Composition Rules
Message requires Communication.
Data requires Internet.

Moisture
Sensor

Security

…

……

Water
Main Pumping

Sump
Pump

Message

Data
Voice

Flood…

Communication

Telephone

Connection

TCP UDP

Internet

requires

Monitoring &
Detecting

requires

Binding unit

Alarm

Fire

FLOOD

PUMPING

MESSAGE

DATA

MONITORING&
DETECTING

CONNECTION

Feature Biding Unit NameNAME

Optional feature

Alternative feature
Composed-of relationship
Generalization relationship
Implemented-by relationship

Legend

Capability
Layer

Moisture

Feature Binding Units Feature Modeling and Binding AnalysisFeature Modeling and Binding Analysis

Asset Type Determination Product Line Asset IdentificationProduct Line Asset Identification

Copyright © Fraunhofer IESE 2006

Yes / Lower

No / -

Yes / Lower

Yes / Higher

No / -

No / -

COTS price (which is
compared to the estimated
in-house development cost)

COTS

Product
specific asset

Open Source

Core asset

Core asset

Core asset

Asset
type

LowBiometric

Medium
Communication,

Telephone

MediumMessage, Voice

MESSAGE

Low

Medium

High

Frequency of
feature usage

Constituent features

Security, Access-control,
…

SECURITY

Flood, Moisture,
Moisture sensor, Alarm, …FLOOD

Fire, Smoke,
Smoke sensor, Sprinkler, …FIRE

Feature
binding unit

Yes / Lower

No / -

Yes / Lower

Yes / Higher

No / -

No / -

COTS or OS availability /

COTS price (which is
compared to the estimated
in-house development cost)

COTS

Product
specific asset

Core asset

Core asset

Core asset

Asset
type

LowBiometric

Medium
Communication,

Telephone

MediumMessage, Voice

MESSAGE

Low

Medium

High

Frequency of
feature usage

Constituent features

Security, Access-control,
…

SECURITY

Flood, Moisture,
Moisture sensor, Alarm, …FLOOD

Fire, Smoke,
Smoke sensor, Sprinkler, …FIRE

Feature
binding unit

DiscussionDiscussion

Copyright © Fraunhofer IESE 2006

We introduced a feature-based approach to product line production planning and illustrated
how a feature model and feature binding information are used to identify assets and develop a
product line production plan.

We believe that our approach can provide asset developers with an explicit way to identify and
organize core assets, and determine asset types with technical and business/management
considerations.

Also, a production plan should be easily customized to a product-specific production plan so
that units of product configurations as well as their integrating techniques can be managed
consistently across a product line.

Open Source in the Software Product Line:
An Inevitable Trajectory?

Pär J Ågerfalk1, Brian Fitzgerald1, Brian Lings2, Björn Lundell2,1,

Liam O’Brien1, and Steffen Thiel1

1 Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland.

2 School of Humanities and Informatics, University of Skövde, Sweden.

1. Introduction

The open source software (OSS) landscape has changed dramatically in recent years. While OSS and
its Free Software antecedent were largely driven by ideology and individual commitment, the main
driving force of OSS today is commercialization and opportunities for inter-organizational
collaboration (Fitzgerald, 2006). OSS is no longer primarily about enthusiasts contributing to
SourceForge projects but increasingly about commercial organizations developing software in “co-
opetitive ecosystems” (Ågerfalk et al., 2006), and many companies are now actively involved in Open
Source (Lundell et al., 2006).

Commercial involvement in OSS projects is often based on a dual licensing model. In such cases, a
free version of a product is typically released under an OSS licence while a possibly more advanced
version with support and other bundled value adding services is released under a proprietary licence
(IONA’s Celtix/Artix and MySQL are good examples). Another approach is to limit OSS engagement
to development and maintenance of “commodity” software components, while developing business
critical components under a proprietary licence to build on top of the OSS foundation. The latter
approach is particularly interesting as it allows for organizations to collaborate on a common core and
focus attention on value adding activities. This way, companies can share the cost of developing and
maintaining common commodity components while still compete in the marketplace with respect to
the complete end-product. In many embedded software domains, such as automotive and medical
devices, this is a viable approach since software, although critical, is only a component in a larger
mechanical or mechatronic system (Cosi, 2006).

Operating in a product oriented context, many organizations in these embedded software domains
have successfully employed software product line (SPL) technology. With this backdrop, the aim of
this paper is to pinpoint some of the issues in using OSS in software product lines by raising a set of
questions as input to the sketching of an initial research agenda in this area. As an illustration, we will
use a brief example from Certus Technology, a UK based company specializing in database solutions
for, amongst others, the biological and medical domains.

2. Software Product Lines and OSS

The basic philosophy of SPL engineering is intra-organizational reuse through the explicitly planned
exploitation of similarities between related products. This philosophy has been adopted by a wide
variety of organizations and has proved to yield remarkable improvements in productivity, time-to-
market, cost reduction, and product quality (Clements and Northrop, 2001).

A SPL is set of software-intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from a common set of
core assets in a prescribed way (Clements and Northrop, 2001). SPLs are typically developed in a
staged process: a domain engineering and concurrent application engineering processes. During
domain engineering a reusable platform is established. The platform consists of artefacts such as the

requirements specification, architecture documentation, design specification, implementation, and test
cases. Domain engineering defines the commonality and variability between products in the product
line and includes the implementation of an adequate product line architecture from which the
commonalities can be exploited economically while retaining the ability to vary the products. In
application engineering the product line products are then derived from the platform. Application
engineering makes use of the pre-planned product line variability and ensures the correct binding of
variation points to the specific needs of the customer products (Pohl, Böckle and van der Linden,
2005).

Nonetheless, introducing OSS components as core input assets in an SPL is far from straightforward.
For example, even with “commercially friendly” OSS licences (such as LGPL, the “Library/Lesser
GNU Public Licence”) available, how OSS components are demarcated and integrated in a product
depends no longer only on traditional software engineering criteria but also on legal issues. The
inclusion of an OSS component may, for example, require that the complete product be released under
the same OSS licence. Also, SPL is often associated with model-based development while OSS
components are often not well documented and reuse typically happens on a source-code level.

3. Brief Case Example

Certus Technology Associates is a small company specialising in the development of biomedical
information systems, and technical and business IT (Pumphrey, 2006). It uses an SPL business model
and an agile MDD development model. One product line supports QA in laboratories offering genetic
testing for diseases. There are many such schemes around Europe, all with significant overlap in core
functional requirements but all with customer-specific requirements also. One advantage of SPL is that
a customer can perceive the advantage of sharing core functionality, as continual enhancement occurs
because of the widened customer base.

Consistent with the agile philosophy, the company’s development is split over two sites in the North
and South of England, for close-to-customer operation. Its tool base is largely OS, with all
development done in a Linux environment. Core tools and technologies include CVS, AndroMDA,
JBoss, PostgreSQL, Maven, and Forrest.

Critical to the company’s development model is the utilization of existing components wherever
possible, and this increasingly means that OSS infrastructure solutions are looked at competitively
with in-house solutions. All components are wrapped in a service layer, which is the target of the
MDD transforms developed within the company. This degree of isolation future-proofs development
investment, not only offering platform independence, but also reducing the potential for component
lock-in. This is considered important whether the wrapped component is OSS or internal.

Choosing an OSS tool or component requires careful research, of product licensing and the quality of
both the product and of the community developing it. The profusion of licensing agreements
potentially makes this more of a problem than perhaps is necessary. However, Certus has not
encountered any serious licensing issues to date. In fact, most of its investment is in tailoring its MDD
infrastructure (so-called agile tools) and in customer services other than code delivery. Hence, opening
up the code of a developed system would not necessarily be an issue; in fact, in some of its
international collaborations with research groups it has offered to do just that.

For most commodity components there are still many competitors in the OS market place even after
considering licensing, but it has been found from experience that these can quickly be reduced to a
handful with fairly crude quality criteria. The support of a significant organization is one such
criterion, and no dependence on other components which do not meet the criteria. Further, the use of
an OSS component is clearly facilitated by its adherence to open, or at least transparent standards, so
other criteria are based around standards. Adherence to relevant open data standards are of particular
importance.

One open issue is whether, as OS components are incorporated, different architectural models can be
easily accommodated. Clearly, with MDD it is a relatively orthogonal task to change architectures –
particularly as a service model is used already to incorporate components. However, more formal
architectural descriptions would protect some of the investment in developing transforms; and clearer
OSS architectures are major advantages, as witnessed through the Eclipse project.

4. Open Research Questions

4.1 Licence forms and engineering vs legal decisions.

Several licence/legal questions arise in the context of using OSS components under a LGPL:

• What are the legal issues in using LGPL software components in commercial product lines?

• What would the situation be for the case of an LGPL component that is a core asset? Would
all products developed using this core asset have to be under an LGPL licence?

• What would the situation be if the LGPL OSS component was a product-specific component?
Would this limit the need for an LGPL licence to just that product?

4.2 Model-based development vs “code is king”

Several questions arise related to use of OSS components in product line development:

• What are the implications of using components within product line development where only
the source code is available?

• What happens in cases where there is little or no documentation or high-level models of the
components in existence?

• If product line engineering is based on models is there a need to develop models of OSS
components and if so who develops and verifies the models?

• What control does an organization have over OSS components that they use in their product
line development? Who is responsible for controlling changes and updates to OSS
components?

4.3 Benefits of OSS components use in SPL:

There are some benefits to applying OSS in the context of product line development. OSS promotes
open standards and spread of reference architectures, which could be important to facilitate software
product lines. There are several questions that have to be addressed to fully understand the
implications of using OSS:

• What areas within the software product line community would benefit from the use of OSS
approaches?

• Would OSS-based software product line frameworks which allow people to build products
specific to their needs be useful?

4.4 Issues in using OSS in SPL:

There are many issues related to quality requirements and trust that have to be addressed:

• What are the implications of using OSS components in the automotive domain and similar
domains that have high safety, security and reliability requirements?

• Who would guarantee these requirements for OSS components? What level of analysis and
testing is required to ensure that the components meet the requirements?

• Are organizations going to trust OSS components that are developed outside of their
organizations? Currently trust is built up between organizations over many years of working
together. If components can be developed and added to by anyone then with whom does an
organization build trust? Who has ownership of the OSS components?

• Are there any organizations currently using OSS components in the development of business
critical applications that have these requirements? What has their experience been in doing
this and what lessons can be learned?

5. Conclusions

While there is potential for the use of OSS in software product lines there are many questions and
issues that have to be addressed. Currently little research is being undertaken in this area, but if the
OSS and SPL trajectories are to meet then many of these issues will have to be addressed.

References

Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Ó Conchúir, O. (2006) Open-Sourcing as Offshore
Outsourcing Strategy, Proceedings of the 29th Information Systems Research Seminar in Scandinavia
(IRIS 2006), Helsingør, Denmark, 12–15 August 2006.

Clements, P., Northrop, L. (2001) Software Product Lines: Practices and Patterns, Addison-Wesley,
2001.

Cosi (2006), ITEA COSI Project, www.itea-cosi.org, accessed 19 May 2006.

Fitzgerald, B. (2006) The Transformation of Open Source Software, MIS Quarterly, Vol. 30, No. 3.

Lundell, B., Lings, B. and Lindqvist, E. (2006) Perceptions and Uptake of Open Source in Swedish
Organisations, In The Second International Conference on Open Source Systems, 8-10 June, Springer
(to appear).

Meyer, M. H., Lehnerd, A. P. (1997) The Power of Product Platforms. New York, NY: Free Press,
1997.

Pohl, K., Böckle, G., van der Linden, F. (2005) Software Product Line Engineering: Foundations,
Principles, and Techniques, 1st ed. New York, NY: Springer, 2005.

Pumphrey, R. (2006) Distributed model-driven development in a small company using Open Source
tools, In An International Research and Practice Workshop: Distributed Development,
Open Source & Industry – Opportunities, Suspicions & Strategies, International CALIBRE
Workshop, 3rd March 2006, University of Skövde, Skövde, Sweden.

LERO© 2006
1

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Open Source in Software Product Line:
An Inevitable Trajectory

Presentation by Liam O’Brien – Lero

Date in format 22 August 2006

Pär Ågerfalk, Brian Fitzgerald, Brian Lings, Björn Lundell,
Liam O’Brien, Steffen Thiel

LERO© 2006
2

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Overview

• Open Source Software (OSS)

• OSS and Software Product Lines

• Open Research Questions

LERO© 2006
3

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Open Source Software (OSS)

Driving force for OSS has changed from individual
commitment to
– commercialization
– opportunities for inter-organizational collaboration

Approaches to OSS involvement
• Commercial involvement driven by dual licensing

model:
– Free version under OSS license
– More advanced version under proprietary license

• Limit OSS engagement to “commodity” software
components and develop business critical
components under proprietary license on top of OSS
foundation

LERO© 2006
4

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

OSS and Software Product Lines

Introducing OSS components as core/domain
assets in an SPL is far from straightforward.

There are several open research questions that
we are interested in addressing in areas such
as:
– License forms and Engineering vs Legal Decisions
– Model-based development vs “code is king”
– Benefits in using OSS Components in SPLs
– OSS Components and Quality Requirements

LERO© 2006
5

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Open Research Questions – 1

License forms and Engineering vs Legal Decisions
• What are the legal issues in using Library/Lesser

GNU Public License (LGPL) software components in
commercial PLs?

• What if an LGPL component is a core asset? Would
all products developed using this core asset have to
be under an LGPL licence?

• What if the LGPL OSS component is a product-
specific component? Would this limit the need for an
LGPL licence to just that product?

LERO© 2006
6

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Open Research Questions – 2
Model-based development vs “code is king”

Core Asset
Development/

Domain
Engineering

Application
Engineering/

Product
Development Products

LERO© 2006
7

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Open Research Questions – 3

Model-based development vs “code is king” (cont’d)
• What are the implications of using components in PL

development where only the source code is
available?

• What happens if there is little or no documentation or
high-level models of the components?

• Is there a need to develop models of OSS
components and if so who develops and verifies the
models?

• What control does an organization have over OSS
components? Who controls changes and updates to
OSS components?

LERO© 2006
8

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Open Research Questions – 4

Benefits in using OSS Components in SPLs

OSS promotes open standards and the spread of
reference architectures which facilitates SPL
approaches

• What areas within the SPL community would benefit
from the use of OSS approaches?

• Would OSS-based software product line frameworks,
which allow people to build products specific to their
needs, be useful?

LERO© 2006
9

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Open Research Questions – 5

OSS Components and Quality Requirements
• What are the implications of using OSS

components within SPLs in the automotive
domain and similar domains that have high
safety, security and reliability requirements?

• Who would guarantee such requirements for
OSS components?

• What level of analysis and testing is required
to ensure that the components meet the
requirements?

LERO© 2006
10

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Open Research Questions – 6

OSS Components and Quality Requirements (cont’d)
• Are organizations going to trust OSS components?
• Currently trust is built up between organizations over

many years of working together. If components can
be developed and added to by anyone then with
whom does an organization build trust?

• Who has ownership of the OSS components?
• What are the legal/regulatory issues beyond just the

licensing of OSS components?
• Are organizations currently using OSS components in

the development of business critical applications that
have these requirements? What has been their
experience?

LERO© 2006
11

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

thank you

OSS Product Family Engineering

Jilles van Gurp
Nokia Research Center, Software and Application Technology Lab

jilles.vangurp AT nokia.com

Abstract

Open source projects have a characteristic set of
development practices that is, in many cases, very
different from the way many Software Product
Families are developed. Yet the problems these
practices are tailored for are very similar. This paper
examines what these practices are and how they might
be integrated into Software Product Family
development.

1. Introduction
The notion of software reuse has been studied and
practiced for decades. Over time, the attention in the
technological dimension has shifted from subroutines
to modules, frameworks and finally Software Product
Families. In the organizational domain, focus has
grown from code reuse by the author of the code to
code reuse by others than the author of the code
working on the same software, working in the same
organization and finally between organizations.
Software Product Family engineering is very much
about intra-organizational reuse.
The open source movement was born out of a
pragmatic need to share code among individuals. This
need arose in the late sixties and early seventies when
researchers started to share code for common assets
such as compilers, system libraries and later operating
systems such as UNIX. During the eighties, the practice
of code sharing was given a legal framework in the
form of license agreements such as the BSD license
and the GNU public license. Finally, during the late
nineties, when Linux emerged as a mainstream
operating system, the term open source started to be
used to refer to this practice of collaborative
development, licensing and distribution of software.
Currently a wide variety of programs, components and
frameworks is available under an open source license.
Many software companies now depend on open source
components for their core business. For example, the
Gnu Compiler is widely used across the industry and
crucial for many embedded system companies.
Similarly, the Linux operating system kernel is used by
many embedded systems companies. Even Microsoft is

known to use BSD licensed components in e.g. their
network stack.
Open source components form a rapidly growing,
shared repository from which, depending on the
specific license, anybody can just take what they need
and use it. Open source is very much about inter-
organizational reuse.
It turns out that, as the scale of development is
growing, inter-organizational reuse is increasingly
important. Few organizations can afford to develop
everything in house. For some years, COTS have been
pushed as the solution for this problem. However, lack
of source code, support, perfectly matching feature
sets, and other factors have prevented the widespread
adoption of COTS.
However, many organizations are now replacing their
non-diversifying, in house developed components with
open source, or even making their entire software
available as open source (e.g. Sun). Open source is
succeeding where COTS has failed.
Open source software is enabling interested parties to
share code under a legal umbrella that sufficiently
protects the rights of the using and producing parties.
The use and production of OSS in the context of
Software Product Families is both an obvious and
inevitable solution to the problem that in house
developed software is an increasingly smaller (relative,
not absolute) portion of the total amount of software
required. Eliminating non value adding development in
Software Product Family development is key to
reducing cost.
Arguably, open source development and Software
Product Family development can claim to represent the
two most successful strategies for reusing software.
This position paper explores several of the practices
common in open source communities with examples
from three major open source projects (Eclipse,
Mozilla, and Linux). Additionally some discussion is
presented on how these practices may be applied to
Software Product Family development.
1.1 Remainder of this paper
The rest of this paper consists of three parts. First
(section 2) we characterize more precisely what we

understand the OSS development practice to be. Then
we illustrate this with three open source projects:
Eclipse, Mozilla, and Linux. Finally, we reflect in
section 4 on how the identified practices could be
integrated into Software Product Family development
and we conclude our paper in section 5.

2. OSS development practice
Open source in the narrow definition refers only to the
license used to make the software available. As such,
the use of open source is completely orthogonal to the
use of Software Product Family development practices
(i.e. one could develop a Software Product Family
using the conventional methods for doing so and then
make the resulting software available as open source).
However, in its wider definition it may also be
understood to include a set of development practices
and a certain style of development that is very different
from the way Software Product Families are developed
by many organizations. In this section, several of these
practices are discussed.
2.1 Communication
Many open source projects are developed by people
that are geographically distributed, may be in different
time-zones and work for different organizations.
Consequently, many forms of communication that are
common in enterprises such as phone calls, face to face
meetings are impractical. Additionally, the practice of
one individual (a.k.a. the boss) telling other individuals
what to do is not that common. Decisions are based
primarily on consensus rather than authority.
In the open source community, email and IRC are the
primary means of communication rather than face to
face meetings. Technical discussions are preferably
conducted on mailing lists which are generally archived
for future reference. IRC or similar instant messaging
tools are used for a more direct style of
communication. These conversations tend to be less
formal and they are generally not archived. Cases are
known of OSS developers sending each other emails
while sitting at the same table for the purpose of
archiving the discussion or simply conducting it in
public.
2.2 Tool centric development
A key characteristic of open source development is that
open source projects are organized around a set of
enabling tools. Generally, these tools (in addition to the
usual development tools such as compilers and IDE's)
include:
• A version management system. CVS is historically

popular in open source projects but is now rapidly
being replaced by the much more modern
Subversion (e.g. the Apache Foundation and
Sourceforge use Subversion nowadays).

• A bug tracking system. Bug tracking systems are
commonly used both for tracking bugs,
requirements and even project planning. Many
open source projects require any change
committed to the version management system to be
related to a bug or issue in the bug tracking
system.

• WIKI's are increasingly popular for document
management. Particularly end user documentation,
development documentation and project
documentation (e.g. roadmaps) tend to be
maintained in WIKI's.

• Build and integration tools (e.g. maven, ant,
Make). Many open source projects depend on
automated builds, integration and testing tools for
receiving feedback about project progress and
status.

Open source development is necessarily tool centric
because its developers are generally distributed
geographically. The tools are effectively their only
interface to the project. Consequently, development
practices that are incompatible with this interface are
rarely found in open source projects. It therefore is
quite common for OSS projects to not have explicit
design documentation; use case diagrams or even an
architecture design phase. However, that does not mean
that such projects do not have architecture, design and
requirements.
Instead, these assets, insofar deemed relevant by the
developers, exist in the tools. Use cases are rare but
detailed requirements and requirements change
requests are managed through the bug tracking system.
Architecture documentation is generally lacking but
then the audience for such documentation is not
necessarily the developers either in organizations that
do write architecture documentation.
2.3 Strong code ownership
Though the source code of an OSS project may
(legally) be modified and redistributed by anyone the
actual occurrence of someone taking open source
software, modifying it and distributing it independently
from he original (a practice known as forking) is quite
rare. Generally, open source projects have strong
ownership with a small group of developers
coordinating and guarding the development.
Source code ownership is governed through version
repository access rights. Typically, a limited set of
individuals has the right to make changes to particular
directories in the version management system. It is also
quite common that approval of key individuals is
needed to make any kind of change. The strong
ownership enforces code reviews take place and that
changes are tested properly.

2.4 Technical roadmap
Unlike commercial software development where
managers, customers and other stakeholders determine
what is developed, the evolution of open source
software projects is primarily determined by:
• Developer interest. Developers generally prioritize

features that they are personally interested in.
• Corporate funding. Most large open source

projects are developed by developers who are paid
to work on the project. Of course, the reason they
are paid is that their companies have a strategic
interest in the project and presumably want to
influence the direction of the project.

• Project organization. Many open source projects
are led by a small group of, more or less,
independently operating individuals whose
personal vision strongly influences technical
decisions made in the project.

In order to prioritize features or make major technical
changes to the software, interested parties need to work
in this structure. They need to convince whatever
individual is in charge that the suggested change is a
good one; generate interest among developers to
actually get the change implemented and maybe
arrange some funding to allow developers to work on
the change.
2.5 Quality management
A consequence of developers being in charge of the
technical roadmap is that generally developers
prioritize quality attributes that interest them. For
example, the open BSD project has a strong security
focus. The open BSD lead developers all have strong
engineering backgrounds in security related matters. Its
products are generally considered to be of exceptional
quality in this regard (e.g. open SSH or the open BSD
kernel). Additionally, any issues related security are
handled swiftly once the developers are notified of
them. Other quality issues outside the scope of the
developer's interest receive much less attention (for
example, usability is often sacrificed in favor of
configurability).
Similar to the technical roadmap, the quality
management can be influenced through funding,
argumentation, etc.
2.6 Release Management
Release management is the process of converting
source code in the version management into a stable,
well tested software package that can be distributed to
end users. Many open source projects have well
defined processes for producing a release. Generally,
there are a few differences with comparable processes
in commercial projects:

• The software is released when it is 'done'. This
moment is generally agreed on either by leading
individuals in the process or by consensus. Despite
this, many open source projects try to follow date
driven roadmaps where milestones and releases are
planned to occur. In commercial projects, such
deadlines tend to be much harder and inflexible,
however.

• The software release is preceded by a series of
public alpha, beta and release candidate
milestones. During this period, interested third
parties not taking part in the development test the
software and provide feedback. Though
technically it is possible for them to use so-called
nightly builds straight from the version
management repository, few people outside the
developer community are actually willing to take
the risk.

• Because the eventual release is scrutinized in
public, quality tends to be high (in so far of interest
to the involved users and developers).

Especially for large open source projects, the release
process tends to be well defined.

3. Examples
To illustrate the claims made in the previous section,
we present three case studies which highlight all of the
practices mentioned in three large open source projects
with solid reputations in the software industry.
3.1 Eclipse
The Eclipse foundation is responsible for the
development of the Eclipse IDE and a rapidly growing
number of associated software packages (plugins).
Originally, the Eclipse source code was contributed by
IBM who still provides a significant amount of
funding. However, the Eclipse foundation is now an
independent organization that oversees the
development. In addition, other companies, including
competitors of IBM, now contribute funding and
development resources to the foundation.
Communication. Communication happens primarily
through email, IRC, the Bugzilla bug tracking system,
the WIKI website, mailing lists and the Eclipse.org
website. Eclipse developers are distributed across the
globe and mostly employed by (competing)
corporations (e.g. BEA and IBM).
Tooling. Eclipse source code is maintained in a CVS
repository, Bugzilla is used as the bug tracking system
and project documentation is divided between the
Eclipse.org website and the Eclipse WIKI.
Additionally there are several mailing lists both for end
users and developers.
Code ownership. The Eclipse foundation restricts
write access to their code repository. Generally, the

process for contributors involves contacting a so-called
committer for making a particular change. Typically,
components have an owner and multiple committers.
The role of the owner is to coordinate the work on that
component. When receiving an external contribution,
the committer either commits the change or (limited)
commit rights are given to the new contributor [2]. A
key element in the process is assuring that the
contribution conforms to the legal framework which
involves topics as copyrights, the license, patents and
export rules concerning cryptography technology [1].
All contributions must be traceable and accountable.
Procedures like this are common to many open source
projects.
Technical roadmap. The Eclipse project strongly
depends on development resources contributed by
various software companies. Those companies have a
strong influence on what is developed. A good example
is the web tools project, a massive undertaking by
IBM, BEA and several other companies to create a set
of J2EE development plugins for the Eclipse IDE. Over
the course of 1.5 year, this project went through a set of
planned milestones with specified sets of features and
managed to release a feature complete 0.7 release for
the Eclipse IDE 3.1 release, a more mature 1.0 release
half a year later and recently a 1.5 release. The input
for the project was a set of contributed development
tools from various vendors and a number of (public)
J2EE specifications that these companies wanted to
have support for.
Quality management. The core Eclipse project has
seen many changes related to improving performance
and memory usage in its recent versions. To
accomplish this, the automated test suites that are run
on nightly builds of the Eclipse software have been
extended with tests to measure specific scenarios.
Furthermore, target performance numbers have been
defined and cases where performance targets are not
met are treated as bugs. The test reports for the nightly
builds and release candidates of the Eclipse 3.2 release
list performance numbers relative to the 3.1 release.
Each case where performance decreases is treated as a
regression. Aside from performance, the nightly builds
also include a large number of unit tests (thousands).
Specific quality issues either identified automatically or
through testing, are reported in the bug tracking tool.
Release management. The Eclipse project has well
defined release cycles which are beyond the scope of
this article to discuss in full. The key philosophy of the
Eclipse release process is to be automation centric. The
release practice is outlined in a FAQ [3] that provides
answers on mostly technical topics such as how to set
up the test suite; how to integrate components into the

build process, etc. Effectively, the build infrastructure
implements and enforces a sophisticated system of
checks and balances that ensures that produced releases
meet predefined criteria.
In addition to the technical constraints, the release
process is complemented by communication and
coordination from project leads through the mailing list
on such topics as roadmaps, schedules, code freezes,
test plans, etc.
3.2 Mozilla
The Mozilla foundation which oversees the
development of Firefox browser, the Thunderbird mail
client and a number of related software projects has a
similar history to the Eclipse foundation. Originally,
the Mozilla browser was contributed by Netscape. The
company Netscape has since been absorbed into AOL
and was eventually liquidated. During this process, the
Mozilla foundation was created which still employs
some former Netscape employees but also a growing
number of new employees. Similar to Eclipse, the
Mozilla foundation receives corporate funding from a
number of companies that have an interest in the
continued existence of the Mozilla technology.
Communication. Similar to the Eclipse developers, the
Mozilla developers are also distributed globally. In
addition, they use similar communication tools.
Tooling. Similar to Eclipse, Mozilla development is
very tool centric. In addition, Mozilla is famous for
inventing its own tools. For example, Bugzilla is one of
the software projects that is maintained by the Mozilla
foundation. Other tools created by Mozilla include
Bonsai for examining the CVS history, LXR for
browsing the cross referenced source code through a
web site, Tinderbox for monitoring the build process
and Litmus for managing and running automated tests
on Firefox. Many of these tools, most notably Bonsai
and Bugzilla, have been adopted by other projects and
have even been integrated into commercial tools.
Code ownership. The Mozilla project features strong
code ownership. In practice, this means that every
patch must be reviewed and approved by a component
owner before being committed [4]. Component owners
are generally either Mozilla foundation employees or
individuals with a long history in the project employed
by one of the high profile donating corporations (e.g.
The Firefox project leader Ben Goodger is a Google
employee).
Technical roadmap. Firefox development takes place
in the context of a roadmap which is updated at regular
intervals (once or twice per year). The roadmap
features milestones and releases with a list of features
and corresponding Bugzilla ids. While the foundation
strives to release according to the roadmap, the Mozilla

release policy in practice appears to be much less rigid
then e.g. the Eclipse project. Often releases are delayed
for weeks or even months (as long as is needed). Also
new milestones may be inserted into the roadmap.
Finally, the roadmap acts mostly as a guide rather than
a complete functional specification. It contains what
the project leaders believe are relevant features to work
on. Input for this comes from the mailing lists, the
WIKI and IRC discussions.
Quality management. The Mozilla project has a
number of quality attributes that are explicitly
managed:
• Code quality. As part of the commit process, each

patch is attached to a bugreport in Bugzilla that
describes the problem and solution(s). Before
being committed, the patch is reviewed and super
reviewed.

• Correctness. The Firefox browser implements a
large number of open standards. In addition to that
it supports poorly defined incorrect interpretations
of these standards (a.k.a. the quirks mode) of other
browsers. Testing for compliance therefore is an
extremely complicated affair that is supported by
manual testing, half automated tests (a.k.a. smoke
tests) and fully automated tests (e.g. using the
Litmus tool).

• Performance. Similar to correctness, performance
is explicitly managed through testing (automated
and manually).

• Security. Browser security is of extreme
importance to end users. In addition, it is a
sensitive topic. Therefore, the Mozilla project has
well defined procedures for reporting, solving and
publicizing security issues. Additionally, recent
versions of the Firefox browser include an auto
update feature to stimulate rapid deployment of
security related bug fixes.

Release management. The Mozilla foundation
manages and oversees the release process. Generally
the process involves a number of alpha release
milestones followed by more or less feature complete
beta releases (typically two) and finally followed by a
series of release candidates (as many as is needed).
During this process, the rules for committing changes
become stronger. During the release process, no
changes are committed before being extensively
discussed by project leads. Additionally each of the
milestone and beta releases has a mini release process
which involves a few days of testing candidate builds
and restricting commit access to the CVS repository.
3.3 Linux
The Linux kernel development is overseen by its
inventor Linus Torvalds. The style in which he

manages the project is very different from Mozilla and
Eclipse though still tool centric. Unlike the former two
projects, Linux development is traditionally much more
fragmented among thousands of developers and
hundreds of contributing companies. In a recent
interview, Torvalds estimates that there are around 50
developers he communicates with directly and he
estimates that through them he is in contact with
approximately 5000 kernel developers [5].
Communication. Linux kernel developers rely very
much on mailing lists and private mail exchanges (or
IRC conversations). Linus Torvalds style of leadership
has often been referred to as that of a benevolent
dictator: ultimately, he is the one who takes important
decisions though in practice this responsibility is
delegated to trusted individuals.
Tooling. The central leadership is also reflected in how
the tooling works. The Linux project recently switched
from using Bitkeeper to its own developed tool Git.
Both are so-called distributed version management
tools. Rather than pushing changes to a central
repository, the lead kernel developers pull changes into
their private repositories either by accepting patches
from a mailinglist or by updating from somebody else's
repository. The repositories available at kernel.org are
read only for most developers. They are merely the
places where lead developers publish their approved
change sets from their private repositories. Other tools
used in Linux development include Bugzilla and
various news groups. However, email remains the most
important tool.
The use of a distributed version management system on
a large scale is a recent innovation that no doubt will be
followed up by adoption in other projects as well. It has
proven to be an effective way to orchestrate the
development on a large software system with many
active developers.
Code ownership. As the central leadership suggests,
code ownership is very strong in the Linux project. To
get a change committed in the Linux kernel the
associated patch needs to be communicated by email to
the relevant people that have the right to approve the
change. Eventually the change will find its way to
Linus Torvalds, who, after assuring that everything has
been properly reviewed, approved and tested may or
may not include the change at his discretion.
Technical roadmap. Linux development tends to be
more anarchistic than Mozilla or Eclipse development.
Essentially, there is no centrally maintained roadmap.
Development consists of many subgroups working on
e.g. drivers, new memory management routines, etc.
Major versions of the kernel usually include some re-
architecting as well. E.g., the current 2.6 version

included features to allow the kernel to scale better on
distributed systems.
Quality management. Stability, performance, security,
modularity are all important themes in the development
of the Linux kernel. Linux is used on many mission
critical servers, mainframes and desktops. Additionally
it is embedded in devices. Therefore, all these quality
attributes are critical. Despite this, there are few quality
management tools or processes in the Linux
development. Code review and testing by users seems
to be the main way of controlling quality. The reason
for this is that the Linux development and user
community is extremely diverse. There are thousands
of developers working on or depending on the latest
kernel sources. Testing happens in a distributed fashion
on a wide variety of devices by a wide variety of
parties with a wide variety of interests (device drivers,
processor architectures, file system development, real
time behavior, ...). The testers include: individual
desktop users, hardware vendors, Linux distribution
vendors, and the developers themselves.
Release management. In principle, Linus Torvalds is
the one who declares a release. His principle over the
years has always been that "it's done when it's done and
not sooner". Despite this, the process seems to involve
a number of stages spanning several months during
which progressively less changes are accepted and
testing efforts are increased.

4. Improving SPF development practice
Open source development as outlined above represent
the state of the art in the way software developers
believe software should be developed. If left to their
own devices, this is how they self organize.
In many respects that is very similar to how
development takes place (or should take place) in
traditional closed source environments. However, there
are some differences. In this section, we examine how
the practices discussed above may be integrated into
Software Product Family development practice.
4.1 Communication
Software Product Family developers are faced with
similar communication challenges as open source
developers. Often development teams are large, may be
geographically distributed and composed of different
organizational entities. Additionally, a growing need
for accountability (e.g. for legal reasons) makes it
obvious that the solution to this communication
challenge also needs to be similar (see e.g. [1] for the
process for accepting contributions in the Eclipse
project).
Additionally, many multinational companies are so
large that the challenge of getting their developers to
work together on projects requires a more or less

similar communication infrastructure to the OSS style
of communicating. Email remains an important tool
across such organizations. Consequently, many of the
open source communication tools are already finding
their way into the corporate world (e.g. WIKI's, bug
tracking tools and instant messaging tools).
A problem remains that, in general, only the
developing part of such companies uses such tools.
Senior managers, sales departments and other parts of
the organization are not using the same tools for
communicating. This creates a conceptual gap between
the development reality on the work floor and the
management reality. The alternate management reality
is an appealing ground to make important decisions
that have major effect on the development reality:
especially for people who should not be making those
decisions.
The term slideware refers to software entities that only
exist in PowerPoint slides and not in the relevant
development tools [6]. The problem with slideware is
that it doesn't have any corresponding representation in
the development communication infrastructure. Once it
does, it ceases to be slideware. Until it does, it does not
exist. Problems arise when slideware fails to
materialize in a timely fashion.
In open source projects, slideware does not exist. New
requirements for features become WIKI documents.
WIKI documents become bug reports. Bug reports are
commented on and eventually are closed with either a
reference to a patch or CVS commit or a message as to
why the particular feature is no longer relevant.
4.2 Tooling
In a corporate setting tooling tends to be better (e.g. the
use of commercial version management or document
management tools is common; additionally expensive
modeling tools, IDE's and other tools may be used).
However, over the years, the open source community
has produced its own set of tools that meets its
requirements. Such tools include everything from the,
now, industry standard GCC compiler, Bugzilla, the
Mozilla tool chain outlined above to sophisticated
distributed version management systems (e.g.
Subversion and GIT). Many commercial development
tools are simply based on open source components and
either add value through support or by adding specific
features.
A key feature of tools in the open source development
community is that they are developer centric. Their
primary objective is to make the developer's work (i.e.
developing software) easier. Many tools used in
Software Product Family development on the other
hand are not developer centric (or even developer
friendly). For example, many variability management

tools are aimed at requirements engineers or even sales
departments; many architecture modeling tools are
used by senior architects to communicate to their
managers; UML modeling tools are used to document
already developed software; model driven architecture
tools are aimed at the consumers of the software (i.e.
the people that design products) rather than the
developers of the composed software. Often
bureaucracy in the form of heavy processes is needed
to enforce the proper use of such tools.
A key lesson that may be drawn from the open source
style of tooling is that in order to be effective, tools
need to integrate into other tools. The set of tools
create their own reality in which the developer is
active. Anything outside this reality integrates poorly
into the communication structure used and quickly
becomes irrelevant (for the developers). OSS
developers seem to have little or no need for such tools
and yet manage to scale development to impressive
levels of scale, speed and quality.
A good example of an integrated tool from the OSS
community is Bugzilla. In both the Mozilla and Eclipse
projects (and in many other places) this tool is not only
used for bug tracking but also for requirements
engineering, release management and even process
improvement. The imposed reality in these projects is
that any change to anything is communicated through
and documented in Bugzilla. Bugzilla in turn is
integrated with email (notifications) and version
management systems.
Many Software Product Family tools are plagued by a
lack of integration. Design documentation tends to be
incomplete (or non existent) because the document
management system is not part of the development
environment, variability management tools depend on
extensive manual updates to stay in sync with source
code level changes; requirement specifications need to
be continuously validated and verified. Successful
examples do exist however. For example, KOALA, the
architecture description language used by Philips
integrates with the build system and design [7]. The
COVAMOF variability management tool proposed by
Sinnema et al. integrates into visual studio [8].
A second problem with such tools is that they are not
general purpose. This poses problems when product
families become product populations and different sets
of incompatible tools become obstacles that need to be
bridged. A key driver for growth in the OSS
communities is that everybody uses the same or similar
tools. This lowers the barrier of entry for new
contributors. The fact that the tools are comparatively
primitive is compensated by the fact that everybody
knows how to work with them. Similar consolidation in

SPF development tools is required as SPF are
increasingly complemented with third party provided
software components (open source and closed source).
4.3 Code ownership
While corporate interest in many OSS projects is huge
(also financially), OSS projects tend to be self
organizing in the sense that all important decisions are
made by developers rather than managers. The
relevance of opinions of individual developers is
strongly related to their level of (technical) contribution
to the project (within the Eclipse project this is called a
meritocracy).
A key issue in Software Product Family developing
companies, which are generally not organized as
meritocracies, is that decisions are made based on
authority, rank and status in the company. Especially
when difficult technical decisions are taken, this may
not be the most optimal strategy since it is not common
that the person with the most authority also has the
most technical competence. At best, he or she has the
wit to trust the judgment of the competent subordinates
who should be making the decision. In other words,
important technical decisions are routinely taken by the
wrong people; influenced by the wrong motives (e.g.
short term market interests vs. quality) and misguided
by a lack of relevant knowledge of domain, technology
and software design.
To counter this problem, many organizations organize
their Software Product Family development as a
separate organizational entity to shield it from the short
term interests that are present in depending
organizational units that develop the products [9].
Despite this, influence of the other organizational units
remains high through e.g. funding, upper management
etc.
The conflict between the long term technical roadmap
(development), the short term market interests (sales)
and the long term market perspective (marketing) poses
a risk to the long term technical health of the software.
Open source projects solve this by being autonomous.
That does not mean they are not affected by the market.
Through funding, donations and man power companies
exert influence over the technical roadmap, short term
interests etc. For example, IBM maintains a strong
influence in the Eclipse project (and in fact many other
open source projects that are of strategic interest to
them). While they cannot dictate their changes, they
have a very strong influence on the technical direction
of their project simply by funding development of
features and components that are of interest to them.
4.4 Technical Roadmap
Software Product Families are a key investment for the
companies that own them. Naturally, these companies

wish to have a strong influence on the roadmap of their
product lines. As outlined above under code ownership,
this can easily lead to a situation where decisions are
made by the wrong people. A real problem is that these
roadmaps tend to focus on functional requirements only
(because that is what is marketable to customers).
For example refactoring is unlikely to feature in a SPF
roadmap. Yet, when looking at OSS projects,
refactoring is often a driving force for major new
releases. For example, the Eclipse project was
refactored extensively between version 2 and 3. In
addition, the subsequent 3.1 and upcoming 3.2 have
seen additional refactoring work done. This has lead to
major improvements in performance, usability and
flexibility (which was the main reason for the
refactoring). Additionally, it has enabled the
development of new features. The Linux kernel has
seen large portions of its code being rewritten several
times in its 1.0, 1.2, 2.0, 2.2, 2.4 and 2.6 incarnations.
Firefox started out as an attempt by a small group of
individual Mozilla developers to refactor/rewrite the
Mozilla user interface, against the explicit wishes of
their AOL peers at the time. Firefox has since replaced
Mozilla as the flagship product of the Mozilla
foundation.
Refactoring is a good example of an activity that
developers will put on a roadmap and companies will
likely not until the need becomes obvious. Refactoring
almost always conflicts with commercial product
roadmaps and short term interests of companies.
A problem with OSS roadmaps is that they reflect what
the developers would like to see done, which is not
necessarily as important for end users or relevant for
the companies financing the development. Clearly, this
model is not applicable to commercial software
development on Software Product Families. On the
other hand, there is a much better understanding of the
technical feasibility of requirements at the developer
level than there is elsewhere in an organization. An
SPF roadmap should be realistic in the sense that its
requirements are technically feasible, desirable and in
the sense that important development activities needed
for maintaining or improving quality are covered.
4.5 Quality Management
Open source development relies on three powerful
quality management tools: large scale testing by end
users, code reviews and automated tests. Testing on a
large scale may be impractical for some software
product families. But both other approaches are not
unique to the open source community and can and
should be implemented in software product family
development methodology (in so far that is not the case
already).

What make code reviews particularly effective in open
source communities is that they can block the commit
of a change until the component owner decides that the
quality of the commit is good enough. This aspect of
code reviews is hard to duplicate in companies where
the code reviewer generally has limited authority to
block changes (especially if they address urgent issues
through a quick hack). Automated tests and test driven
development are also increasingly popular. For
example, in earlier research we reported on the
successful use of automated tests in improving quality
in Baan ERP. Test driven development is a cornerstone
of extreme programming [10].
4.6 Release Management
Depending on the number of customers for a particular
piece of software, the release process can become quite
sophisticated. For example releasing a new version of
the Mozilla Firefox browser is a process that spans
multiple months and involves exposing alpha, beta and
release candidate versions to large groups of users and
processing any feedback that comes back from these
users. In Software Product Family development, the
number of users is typically small. Despite this, it may
be productive to have some form of release process in
place. It also depends on the organizational model. If,
as outlined above, the product family development is
developed by a more or less independent organizational
entity, it makes sense that the rest of the organization
does not access the version repository directly and
instead relies on properly packaged and tested releases
provided by the product family developers. However,
having no feedback from real users (i.e. the product
developers) until after the release is likely to cause
issues with respect to implemented requirements and
faults that are discovered after the release.
The author's experience as the (ex) release manager of
a Dutch content management Software Product Family
suggests that a good strategy may be to expose
increasingly large groups of internal developers to
increasingly mature versions of the product. Combined
with a transition period with e.g. bi weekly releases this
ensures that feedback and development stability (for
the product developers) are balanced. This is similar to
the beta stage of many open source projects where
typically third parties (at their own risk) get involved
into testing the beta and release candidate releases.

5. Conclusion
This position paper looks at open source development
practice and makes some observations as to how this
practice is different from Software Product Family
development practice and how improvements could be
made to the latter.

This article does not, and cannot possibly tell Software
Product Family owners how to develop their software.
Instead, it merely suggests to them that there is this set
of practices that may be found in many open source
projects that is known to work well at least in that
context. In so far these practices are not already
integrated into the Software Product Family
development practice, it is further outlined how that
might be accomplished and what the tradeoffs are.
The key vision underlying this paper is that from the
point of view of the experts, i.e. the developers, the
open source style of working is the best practice in the
context of large software projects that are worked on
by many geographically distributed developers.
A key difference between open source projects and
most Software Product Families is that in open source
projects the developers are in charge. This works out
surprisingly well for all the aspects discussed above.
All of the three cited projects are performing excellent
in terms of quality, features and development speed.
Therefore, the key recommendation of this paper to
Software Product Family owners is to carefully
(re)consider the balance between product family
developers and management. Empowering developers
allows them to work in a way that they consider best
(and who are we to disagree). At the same time, of
course the point of Software Product Families is
directly aligned with the owning company's core
business.

6. References
[1] Eclipse Foundation Process for accepting
contributions,
http://www.Eclipse.org/legal/EclipseLegalProcessPoste
r-v1.2.4.pdf
[2] The Eclipse development process.
http://www.Eclipse.org/Eclipse/Eclipse-charter.html.
[3] Eclipse Release Engineering FAQ.
http://WIKI.Eclipse.org/index.php/Platform-releng-faq.
[4] Hacking Mozilla,
http://www.Mozilla.org/hacking/life-cycle.html
[5] Interview with Linus Torvalds
http://edition.cnn.com/2006/BUSINESS/05/18/global.o
ffice.linustorvalds/
[6] Slideware definition,
http://en.WIKIpedia.org/WIKI/Slideware, 2005-05-31
[7] R. van Ommering, Building product populations
with software components, proceedings of the 24rd
International Conference on Software Engineering, pp.
255-265, 2002.
[8] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, Jan
Bosch: Modeling Dependencies in Product Families
with COVAMOF. ECBS 2006: 299-307.

[9] Jan Bosch, Maturity and Evolution in Software
Product Familys: Approaches, Artefacts and
Organization. SPLC 2002: 257-271.
[10] Kent Beck, "Test Driven Development", Addison
Wesley, 2002.

Applying OSS development
practices in software product line
development
Jilles van Gurp

Nokia Research Center
Software & Applications LAB
Software Architecture Solutions Group

2 © 2006 Nokia Jilles van Gurp

Overview

• OSS = license + set of practices
• Six development themes

• Communication
• Tooling
• Code ownership
• Technical roadmap
• Quality management
• Release management

• What is the OSS practice for these themes?
• Paper provides examples from eclipse; mozilla & linux projects for each theme
• How does this apply to SPL development practice?
• What lessons can be learned?

3 © 2006 Nokia Jilles van Gurp

Executive summary

OSS = inter organizational reuse
SPL = intra organizational reuse

• OSS development practices represent what developers feel is the best way of
developing software if not obstructed by management + deadlines + corporate
stupidity + etc.

• Judging by the development speed and quality of many OSS projects, these
developers might be on to something.

• SPL engineering and OSS are the two most succesful strategies for large
scale reuse.

• Why not do both?

4 © 2006 Nokia Jilles van Gurp

Communication in OSS world

• In OSS projects development teams are
• Large
• Geographically distributed
• Crossing organizational boundaries
• Composed of developers only

• Communication infrastructure consists primarily of
• Email (private and mailinglists)
• Newsgroups
• IRC
• Project website
• Development tools (next theme)

• Face 2 face meetings not so common

two KDE developers at a (ra
re)

developer m
eeting

5 © 2006 Nokia Jilles van Gurp

Communication issues in SPL development

• Large development teams
• Development may cross (intra) organizational boundaries
• Organizations are large, sometimes multinational
• Secrecy & customer relationships form obstacles for direct, open communication
• Significant involvement from people who are not developers
• Face 2 face meetings are important

6 © 2006 Nokia Jilles van Gurp

So how can OSS practice help here?

• Use the same tools: email, mailinglists, instant messaging
• Documented discussions
• Information sharing
• Consensus based decision making

• De-emphasize face to face meetings because
• Generally excludes important people not on location
• Eats up valuable development time
• Leaves no trace in relevant tools

• Ensure non-developers stay in the loop
• Make sure they are on the mailinglists, wikis, etc.

7 © 2006 Nokia Jilles van Gurp

OSS Tools

• Minimum prerequisites for launching an OSS project:
• Mailinglist

• primary communication channel for the people working on the project
• public discussion

• Version control
• Preferably Subversion these days but CVS remains popular too.

• Bug tracking
• Bugzilla or similarly capable system

• Optional
• Build, integration and testing facilities
• Website

• A place where you list the access points to the tools above + maybe documentation and
marketing information

• WIKI
• A place for developers/users to collaboratively work on non development artifacts

8 © 2006 Nokia Jilles van Gurp

Everything required to set up a project, for free

9 © 2006 Nokia Jilles van Gurp

The reality of tools
• OSS projects are tool centric

• Tangible results of the project live inside the tools
• Source code in the SCM
• Bug reports in the bug tracking system
• Documentation in the WIKI

• People communicate through tools + mail
• All other forms of communication optional

• Interesting concequences
• Anything outside the tools is irrelevant.

• software_architecture.ppt on somebody's laptop is not accessible to anyone and
disconnected from the information in the SCM and bugtracking db. It might as well not exist
and it is probably out of date/inacurate/obsolete/misleading/.... !

• Tools are the only interface to the project
• Tools are not compatible with many of the traditional waterfall model phases:

• You won't find a requirements specification for the linux kernel
• Nor is there a detailed design document for the Firefox browser
• While there are some open source UML tools, they are rarely used in open source projects!

community makes its own tools

10 © 2006 Nokia Jilles van Gurp

SPLs and the other reality

• Good news!: tooling tends to be way better in corporations!
• Expensive SCM systems, IDEs and UML tools are common.
• + Variability modeling, build configuration, component technology,'
• And we can buy even more if we need to!

• Bad news:
• Tools are still incompatible with many of the traditional waterfall model phases
• not necessarily development centric or even developer friendly
• poorly integrated with each other
• Information exists outside the tool chain: alternative reality
• A lot of problems arise from the problematic relation between the tool reality and

the reality outside the tools
• Management makes decisions based on slideware - they don't understand the tool reality.

Also there seems to be a reality distortion field clouding their judgement sometimes!
• Sales sells software based on requirement specifications
• Customers receive software based on artifacts in the SCM

11 © 2006 Nokia Jilles van Gurp

Tool recommendations

• More focus on integration
• Lesson from OSS community:

anything not in the integrated toolchain is irrelevant and distracts from the tool reality

• Reassess the added value of non-developer oriented/friendly features in
commercial tools

• Lesson from OSS community:
simple, standard tools lower the barrier of entry

• Reassess the added value of requirements, architecture and design
documentation.

• Are they really that important to the development team?
• Lesson from the OSS community:

It is possible to develop large, complicated software systems on a tight schedule
without those assets.

12 © 2006 Nokia Jilles van Gurp

OSS Code ownership & governance

• project owner(s)
• individuals

• sometimes organized into foundation

• coordinate development, communication, planning, sponsoring, legal issues, etc.
• sometimes not developers

• e.g. mozilla's president: Mitchel Baker

• Module/component owners
• Senior developers with established reputations
• Safeguard code quality & drive development
• Code reviews
• Commit approval
• Initiate new development

• Sponsors
• Influence by voting with your wallet

13 © 2006 Nokia Jilles van Gurp

Ownership in SPL

• Problems
• technical decisions complicated by non technical concerns
• decision power with people without technical competence
• no clear ownership or owner does not have full authority
• conflicts of interest, e.g. product deadlines vs. product line quality

• Solutions
• Introduce code ownership as is common in OSS projects

• Must have authority to take actual decisions

• Separate product and product line development as much as possible
• higher degree of autonomy

• Don't micromanage development teams
• e.g. deciding on spending time on refactoring instead of feature development should be up

to code owner,not his manager

14 © 2006 Nokia Jilles van Gurp

Roadmaps in OSS
• Roadmap: what are we building
• Tend to be

• sketchy
• short term
• realistic - what can be achieved in

time frame X
• not set in stone

• Purpose
• Ensuring relevant people know what is being worked on
• Realizing long term project vision through having short term plan for specific features
• Planning & coordinating development
• Generate interest from users and contributors

• Decisions
• Based on consensus, usually result of community discussion.
• Painful decisions taken by respected/influential developers

Firefox 2.0 roadmap

15 © 2006 Nokia Jilles van Gurp

Roadmaps in SPL organizations

• Tend to be
• very detailed
• Medium to long term
• Basis for committing resources
• Not very flexible after resources have been committed

• e.g. product development dependencies

• Purpose
• Planning
• Marketing
• Ensuring future competitiveness

• Decisions
• Based on market demand + requirements + corporate strategy
• Painful decisions are not taken by developers

16 © 2006 Nokia Jilles van Gurp

SPL Roadmap: learning from OSS

• Purposes are different!
• Need to be more flexible, short term oriented

• Agile!
• Make more effective use of opportunities spotted by individual developers

• More room for refactoring and other non feature related activities

17 © 2006 Nokia Jilles van Gurp

Quality management in OSS & SPF development

• OSS Developers value quality
• not necessarily all quality attributes (e.g. usability)

• How
• Testing of alpha versions & nightly builds by end users
• Explicit code reviews (see code ownership)

• Bug fixes are attached to bug report and only committed when approved

• Automated tests & continuous integration
• Functional - correctness, regression testing
• Non functional - performance, security, memory usage, ...

• Endless delay of the perfect 1.0 release.

• In principle SPF developers can do the same
• Except maybe for exposing nightly builds/alpha versions to end users
• I'm sure they do :-)

18 © 2006 Nokia Jilles van Gurp

Release management in OSS

• Release process tends to be comparatively strong
• due to amount of end users involved early on: they care
• desire to deliver good quality
• user feedback

• nightly builds >> alphas >> betas >> release candidates >> 1.0 >> 1.0.1 1.0.n
• increasingly strong commit review process towards release
• larger groups of testers
• process does not stop after release

• Mentality: it is done when it is done and not sooner!
• Release process can take several months after last alpha milestone
• Some projects are quite good at predicting when they are done

19 © 2006 Nokia Jilles van Gurp

Release management in SPF context

• Problems
• Much less 'users' (product developers)
• Much pressure to release on time

• users are waiting for release

• product developers are less eager to alpha test
• supporting old releases is time consuming and impractical

• Solutions (from my experience)
• Don't expose every build to product teams

• creates too much feedback, product teams need to have stable code

• During release phase, test with one or two product teams
• Don't give them new builds every day
• Select low risk products
• Have them plan to upgrade to the release version!

• Expand to multiple product teams during beta phase
• Don't release too early & don't commit to specific release date too early

20 © 2006 Nokia Jilles van Gurp

Conclusions

• It's not black and white
• in practice many OSS practices are already adopted in enterprise
• OSS development practice has evolved from and is influenced by corporate

development

• Some things to remember
• Meritocracy: technical decisions are best taken by technically competent persons

• OSS developers have the advantage of being in charge

• If OSS developers don't waste time on certain things, why should we?
• How valuable is the non technical overhead really?

• Beware of the conflict between tool reality and slideware reality
• If a non functional requirement is important: test for it and set targets!

• How to apply this in SPF context?
• That is the big question :-), good luck.

SPLC, Baltimore

Software Product Lines
Doctoral Symposium

Organizers:
Isabel John
(Fraunhofer IESE, Germany)

Len Bass
(SEI, USA)
Giuseppe Lami
(ISTI-CNR ,Italy)

SPLC-SPLCSPLC-

SPLC-SPLCSPLC-
Reviewers/Panelists

l Birgit Geppert - Avaya Labs, USA
l Andre van der Hoek - University of California, USA
l Kyo Kang - POSTECH, Korea
l David Weiss - Avaya Labs, USA

panelists reviewed the papers and gave comments on
the talks

SPLC-SPLCSPLC-
6 Papers

Rick Rabiser
Facilitating the involvement of Non-Technicians in Product Configuration

Timo Asikainen
Methods for Modelling the Variability in Software Product Families

Nan Frederik Mungard
Feature Model Based Product Derivation in Software Product Lines

Marcilio Mendonca, Toacy Oliveira, Donald Cowan
Collaborative and Coordinated Product Configuration

Karen Cortes Verdin, Cuauhtemoc Lemus Olalde
Aspect Oriented Product Line Architecture (AOPLA)

Uirá Kulesza, Carlos José Pereira de Lucena
An Aspect-Oriented Approach to Framework Development

Product Derivation/Configuration and Features

Aspects

Proceedings are online at the Symposium website:
http://www1.isti.cnr.it/SPL-DS-2006

SPLC 06 Product Derivation Panel

Building Interactive TV Applications
with pure::variants

Danilo Beuche, pure-systems

About pure::variants

● feature model based variant and variability management tool
● solution asset modelling (family model)
● provides extensible model transformation framework
● does not require any specific implementation technique
● provides easy-to-use integration interfaces with other tools, e.g. for

– requirements engineering
– test management
– code generation

pure::variants

Programme
Definition
(Feature Model)

Producer

Editing Application
(Family Model)

Device Applications
(Family Model)

DBDevice Application
Instances

(Created with P::V)

Transmission Application

Page Templates

Page Instances

Pages with Content

Content

(Created with pure::variants)

Web-based Page Editing Application Instance

Director

 News

Log-DB

`

`

`

Programme Definition: Page Types, Colors, Channel, Time

Programme Definition

pure::variants Project Structure

`

Config
Spaces

Variant
Models

Family
Models

Feature
Models

`

`

`

UI Application Base: Transmission, Page Types

Programme Definition: Page Types, Colors, Channel, Time

Sungsam TV

Programme Definition

pure::variants Project Structure

`

Sungsam TV

Device App.

+

Config
Spaces

Variant
Models

Family
Models

Feature
Models

`

`

`

UI Application Base: Transmission, Page Types

Programme Definition: Page Types, Colors, Channel, Time

Finepass ITVSungsam TV

NO APP

Programme Definition

pure::variants Project Structure

`

Sungsam TV Finepass ITV

Device App

+ +

Config
Spaces

Variant
Models

Family
Models

Feature
Models

`

`

`

UI Application Base: Transmission, Page Types

Programme Definition: Page Types, Colors, Channel, Time

Nakio STB DevicesFinepass ITVSungsam TV

NO APP

Programme Definition

pure::variants Project Structure

Nakio STB Devices

`

Sungsam TV Finepass ITV SAT STB CAB STB

Device App Device App Device App

+ + + +

Config
Spaces

Variant
Models

Family
Models

Feature
Models

`

`

`

UI Application Base: Transmission, Page Types

Programme Definition: Page Types, Colors, Channel, Time

Nakio STB DevicesFinepass ITVSungsam TV

NO APP

Programme Definition

pure::variants Project Structure

Editing App

Editing App

Nakio STB Devices

`

Sungsam TV Finepass ITV SAT STB CAB STB

Editing App Device App Device App Device App

P
+

D
+

J
+ + + + +

Config
Spaces

Variant
Models

Family
Models

Feature
Models

Common Tasks

● Create Programme
– create new programme's variant description (may inherit from templates)
– generate device and editing application

● Change Programme (add/change used page types, change colors, ...)
– change programme's variant description
– regenerate device and editing application

● Add Support for New Device
– add device feature/family model, source components (from software development)
– create config space for device

More about pure::variants

See our demo: Tomorrow, 12.30

or visit

www.pure-systems.com/pv

BigLever Software Gears Solution

Product Derivation Approaches
SPLC 2006 Panel

Charles W. Krueger
August 23, 2006

Copyright © 2006 BigLever Software, Inc.

Introduction

• Content Management problem statement
- Generate an XML data stream from an abstract content model

- Non-technical TV Producers define the “products”

• Gears is a Software Product Line Engineering tool for
Software Engineering and Product Marketing roles

• Our solution
- Content Management

• XML content stream generated from textual format

• Two Gears pattern/substitution variation points

- Two Firmware Product Lines

• Rendering devices

• Broadcast and editing booths

2

Copyright © 2006 BigLever Software, Inc.

Interactive TV Architecture
(Asset View)

3

Content Main

Global

Interactive TV

Device Production Booth

Broadcast
Booth

Editing
Booth

Video
Stream

Return
StreamRenderer Video

Stream
Return
Stream

Copyright © 2006 BigLever Software, Inc.

Initial Scenario

4

• We start with clone-and-own bespoke application, possibly
on CM branches or directory copies
- Content for 2 programs

- Firmware, requirements and test cases for 2 devices

- Firmware, requirements and test cases for 2 production booths

• Using Gears, we consolidated these into SPL assets
- Estimated level of effort: 1 developer-week for every million lines of

cloned assets

Copyright © 2006 BigLever Software, Inc.

Screenshots

5

Copyright © 2006 BigLever Software, Inc.

The Three Questions

• How large a portion of a product is automatically derived?
- In scope: 100%

- Out of scope: Delta engineering

• How are new features and functionality developed?
- Delta engineering in the core assets, feature model and product profiles

- Example: TV iPod

• What is the cost and time to create a new feature or change
the application platform?
- Delta engineering and regression testing only

- Less than 1% overhead to maintain feature, product and VP logic

- Zero cost to automatically regenerate all existing products

- Engineer the entire product line portfolio as a single system

6

1

SPLC 2006

23rd August

Juha-Pekka Tolvanen

Product Derivation Panel
-

Domain-Specific Modeling

© 2006 JPT/MetaCase 2

Spectrum of variability mechanism*

Routine configuration Creative construction

Feature-based configuration

Subtree of a feature tree

All features known

Feature implementations available

Domain-Specific Language

Subgraph of an infinite graph

Variant space known, variants not

New features can be implemented

Wizards

Path through a decision tree

All choices known

Implementation available

*Czarnecki&Eisenecker 2000

© 2006 JPT/MetaCase 3

Domain Engineering

� Language (metamodel) defines the variation

– everything we can model belongs to the product family!

do ~Super~Sub.() {

'<'; type; ' name="'; id; '">';

subreport; '_'; type; run;

Metamodel of

TV App structure:

� Generator produces variant code

– variation from model
and the common parts

� Platform provides commonalities

– framework code to support generation and reusable units
(library, components, framework, middleware)

© 2006 JPT/MetaCase 4

Application Engineering

� TV producer designs the applications....

Executing the
generatorInstance of the

metamodel

� ... and its implementation code is generated, tested
and passed to media (channel)

© 2006 JPT/MetaCase 5

Application Engineering:
making other variants...

� HotelTV, BigBrother, Idols, election, Eurovision etc. etc.

© 2006 JPT/MetaCase 6

Q&A

Q: How large a portion of a product is automatically derived?

A: Everyting the metamodel is made for (in the TV example 100%)
– usually non-generated code can be integrated too (calls, partial

classes, inheriting etc)

Q: How are new features and functionality developed?

A: By making a model using familiar product’s concepts

Q: What is the cost and time to create a new feature

A: Very fast due to high abstraction of the language and automation;
e.g. new HotelTV application (with working code) took couple of
minutes

Q: What is the cost and time to change the application platform

A1: If change in a target language then modify the generator (once!)

A2: If change in a product line then modify the metamodel (once!)

© 2006 JPT/MetaCase 7

Europe:
MetaCase

Ylistönmäentie 31
FI-40500 Jyväskylä, Finland
Phone +358 14 4451 400
Fax +358 14 4451 405

USA:
MetaCase

5605 North MacArthur Blvd.
11th Floor, Irving, Texas 75038

Phone (972) 819-2039
Fax (480) 247-5501

www.metacase.com

Questions, please?

Thank you!

© 2006 JPT/MetaCase 8

Domain Engineering in a tool

� Metamodel
... enables:
– complexity hiding
– early error prevention
– use of familiar concepts

and vocabulary
– natural abstraction

� Generator
...enables:
– automated derivation
– early prototyping
– analysis of designs

• tests, metrics, simulation...

Product Derivation Approaches
The Digital TV case and Koala

Rob van Ommering
Philips Research
SPLC 2006, Baltimore, August 23rd, 2006

2© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Oops!

I’m in the wrong panel J !

3© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Why am I in the wrong panel J ?

Task:
You are to design a system that will allow
non-technical producers to build
applications to accompany their
programmes.

4© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Why am I in the wrong panel J ?

Task:
You are to design a system that will allow
non-technical producers to build
applications to accompany their
programmes.

Koala’s strength:
Allow technical engineers to create
products from components

5© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

If I map this as best as I can to Koala…

Asset
Base

‘Configurable’
product

‘Construction’

Instantiated
product

‘Derivation’

Engineering
Activity

Koala’s strength!

Engineering
Activity

Koala’s strength!

Filling in
Parameters

Simple model

Filling in
Parameters

Simple model

6© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

OK, let’s start with the case…

Authoring
Tool

Interactive
Application

Digital
TV

Creates an
interactive

application…

…that is broadcast
on digital TV
channels…

…and played and
executed on a

digital TV

7© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

My first response would be…

Authoring
Tool

Interactive
Application

Digital
TV

Create a fixed
authoring tool
that can do all

Create a fixed
digital TV

(must be the case anyway)

Have variable
content here!

This is in fact a content management problem!

8© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

A more honest answer would be…

Authoring
Tool

Interactive
Application

Digital
TV

For each of the boxes I can create a product line…

Let’s do this J !

(1) (2)

(3)

9© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Koala…

Diversity interface

Provides interfaces

CC

C2

C1

C3 Subcomponents

Implementation module

Glue module

Switch

Binding

Koala is used in all of Philips’ mid-range and high-end TVs

10© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Requirements summarized

• Add page of text
• Customize colors and graphics
• Broadcast application
• Edit page and combine texts
• Add voting
• Maintain record of broadcast
• Move application including content

11© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

(1) The Authoring Tool

Authoring
Tool

Interactive
Application

Digital
TV

12© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

The Authoring Tool, version 0

PlayerPlayer TransmitterTransmitter

UIUI

Program DBProgram DB

V0

13© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Adding a text page

TransmitterTransmitter

UIUI

Program DBProgram DB

EditorEditor

MixerMixer

PlayerPlayer

V1

14© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Customizing Colors

TransmitterTransmitter

UIUI

Program DBProgram DB

EditorEditor

MixerMixer

PlayerPlayer

ColorsColors

V2

Simple
parameters

15© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Creating a Configurable Product

TransmitterTransmitter

UIUI

Program DBProgram DB

EditorEditor

MixerMixer

PlayerPlayer

ColorsColors

V

16© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

(2) The Digital TV

Authoring
Tool

Interactive
Application

Digital
TV

17© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Same Principle J

This was what Koala was designed for…

Koala inside?

But actually it must work with any kind of TV

18© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

(3) The Interactive Application

Authoring
Tool

Interactive
Application

Digital
TV

19© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

The Koala Compiler

Front End Back End

Parses ADL

Engine

Instantiates
and binds

Generates
#defines

20© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Add a new back end

Front End New Back End

Parses ADL

Engine

Instantiates
and binds

Generates
Java / XML

21© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Build Menu Structure in Koala

MenuMenu

MenuMenu MenuMenu

This was the domain of the predecessor of Koala…

Points of
Variation

22© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Questions

1. How large a portion of a product is automatically
derived? Please answer in terms of some reasonably
precise measure, such as percent of modules, classes,
or KNCSL, or coverage in a feature model.

2. How are new features and functionality developed?
Give an example, if possible.

3. What is the cost and time to create a new feature or
change the application platform, e.g., in hours of effort
as a fraction of effort needed to create the application
engineering environment? Alternatively, how would
you estimate the cost and time?

23© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

What portion is automatically derived?

TransmitterTransmitter

UIUI

Program DBProgram DB

EditorEditor

MixerMixer

PlayerPlayer

ColorsColors

V

PlayerPlayer TransmitterTransmitter

UIUI

Program DBProgram DB

V0

Depends on where you start from J
Depends on what you call derivation J

24© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

How are new features developed?

TransmitterTransmitter

UIUI

Program DBProgram DB

EditorEditor

MixerMixer

PlayerPlayer

ColorsColors

V

• Changing the component structure…
• Adding an existing component…
• Creating and adding a new component…

25© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Cost of new feature…

Depends J
• If a new component is needed, it has to be

developed anyway
• Koala descriptions are currently 10% of

the code base
– they replace C header files

26© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Product Creation Effort

Philips Consumer

10-20 product types/year
Millions of products/year

Uses Koala and C

Can spend a few person
years on each product

Product derivation is
engineering task

Philips Medical

100 products/year
Each product is unique

Uses a similar model in C#

Specific product per hospital
/ department / doctor

Product derivation should be
highly automated

27© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Main Lesson Learned

There is no single Product Line Problem!!!

28© 2006 Philips Research, Rob van Ommering, Baltimore, August 23rd, 2006

Thank You

Lero
The Irish Software Engineering Research Centre

Univ. of Limerick, Ireland
www.lero.ie

Software Systems Engineering
University of Duisburg-Essen, Germany

www.sse.uni-due.de

Panel

Testing in a Software Product Line

Klaus Pohl

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 2

Overview

Introduction
– Very brief introduction to product line testing

– Our small example

– The four panellist

Four presentations (10 Minutes)
– Please ask clarification questions at the end of each

presentation

– … and please interrupt if someone is talks over 10 Minutes

Discussion of the panel statements

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 3

Testing in Software Product Line Engineering

… differs from testing in single development !?
(1) Variability

increases the complexity
How to deal with variability in domain artefacts?

(2) Two development processes (domain and application
engineering)

When to test what ?
e.g. all assets in application engineering ?

(3) Commonalities are part of each product of the SPL
defect in a commonality causes failure
in all products
How to avoid defects in commonalities?

(4) …

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 4

Testing in Software Product Line Engineering (2)

Should there be two test processes: domain
tests and in application test?

Should systems test be performed in
domain engineering (or only in application
engineering) ?

Can test artifacts be reused in application
testing? If so, which ones?

Is there a benefit of reusing domain test
artifacts and even domain test results in
application engineering?

Is there a benefit of model-based test case
derivation of application test cases from
domain test cases?

…

Domain
Testing

Application
Testing

Domain Test Artifacts

Application
Test Artifacts

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 5

The Example

A simple E-Shop
Product Line

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 6

The E-Shop Product Line

Commonalities
– register customer

– buy product

– search product

Variability
– different registrations

– different bonus programs

– different payment method

– different search options

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 7

The E-Shop Product Line

Domain Variability
Model

requires

Regis-
ter Type

VP1

Complete

V

Simple

V

1..2

Search
Options

VP5

Similar
Results

V

Hints

V

1..1

Pay-
ment Type

VP3

CreditCard

V

Invoice

V

1..2

requires

Card
Type

VP4

Debit

V

Credit

V

1..1
Bonus

VP2

Deduction

V

Point System

V

0..1

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 8

The E-Shop Product Line

Application Variability
Model(s)

requires

Regis-
ter Type

VP1

Completely

V

Simple

V

1..2

Search
Options

VP5

Similar
Results

V

Hints

V

1..1

Pay-
ment Type

VP3

CreditCard

V

Invoice

V

1..2

requires

Card
Type

VP4

Debit

V

Credit

V

1..1
Bonus

VP2

Deduction

V

Point System

V

0..1

Complete

V

Hints

V

CreditCard

V

Invoice

V

Debit

V

Point System

V

chosen for Application 1 chosen for Application 2chosen for both

Complete

V

Simple

V

Similar
Results

V

Invoice

V

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 9

The Panelists

Georg Grütter
– Robert Bosch GmbH, Germany

John D. McGregor
– Clemson University, USA

Andreas Metzger
– University of Duisburg-Essen, Germany

Tim Trew
– Philips Research, The Netherlands

SPLC Testing Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 10

Short Summary of the Presentations:

Georg

John

Andreas

Tim
- no domain testing … but create core test assets, e.g.

test models
- reuse previous test results when testing new

applications

- test core assets as far as possible in domain testing
- detect remaining defects in application testing which

are mainly caused by unexpected interactions

- test the commonalities and the most frequently used
variants during domain engineering

- test the selected remaining variants in application
engineering

- perform risk-based SPL testing - only test the assets
with the highest risk

- don’t create reusable test assets without knowing
weather you reuse it or not

1 CR/AEA | 2006-08-02 | © Robert Bosch GmbH reserves all rights even in the event of industrial

property rights. We reserve all rights of disposal such as copying and passing on to third parties.

SPLC Panel on Testing in Software Product Line Engineering

Position Statement
for testing the eShop product line

Georg Grütter
Corporate Research
Robert Bosch GmbH

2 CR/AEA | 2006-08-02 | © Robert Bosch GmbH reserves all rights even in the event of industrial

property rights. We reserve all rights of disposal such as copying and passing on to third parties.

SPLC Panel on Testing in Software Product Line Engineering

Guiding Principles

! Test profitably
! YAGNI
! Fly like a rocket

3 CR/AEA | 2006-08-02 | © Robert Bosch GmbH reserves all rights even in the event of industrial

property rights. We reserve all rights of disposal such as copying and passing on to third parties.

SPLC Panel on Testing in Software Product Line Engineering

Choosing test subjects in Domain Engineering

failure
loss

≈ business value
≈ # reuses

Increasing
defect rates

Increasing
defect rates

failure
probability

≈ complexity
≈ historic defect data
≈ result of spot tests

registerregister

searchsearch

buybuy

paymentpayment

price calc.price calc.Increasing
reuse rates

Increasing
reuse rates

4 CR/AEA | 2006-08-02 | © Robert Bosch GmbH reserves all rights even in the event of industrial

property rights. We reserve all rights of disposal such as copying and passing on to third parties.

SPLC Panel on Testing in Software Product Line Engineering

registerregister

buy
goods

buy
goods

search
goods

search
goods

price calc.price calc.

paymentpayment credit cardcredit card

Variable test depth in Domain Engineering

M mockup

not tested

tested

bonus pointsbonus points

deductiondeduction

invoiceinvoicebuy
goods

buy
goods

paymentpayment credit cardcredit card

debit carddebit card
...

registerregisterMM

price
calc.

price
calc.MM

...

Key

5 CR/AEA | 2006-08-02 | © Robert Bosch GmbH reserves all rights even in the event of industrial

property rights. We reserve all rights of disposal such as copying and passing on to third parties.

SPLC Panel on Testing in Software Product Line Engineering

bonus points

Testing in Application Engineering

Clone & Own
Tests

Clone & Own
Tests

register

buy
goods

search
goods

price
calc.

bonus points

deduction

payment

invoice

credit card

debit card

M

M

...

Project A

Reusable
Tests

Reusable
Tests

Reuses > 3

register

buy
goods

search
goods

price
calc.

deduction

payment

invoice

credit card

debit card

M

M

...

Project B

bonus pointsbonus points

6 CR/AEA | 2006-08-02 | © Robert Bosch GmbH reserves all rights even in the event of industrial

property rights. We reserve all rights of disposal such as copying and passing on to third parties.

SPLC Panel on Testing in Software Product Line Engineering

Testing in General
! Measure, understand and model the testing process ...

... to support risk analysis

... to control test reuse

... to understand business impact

Business goals

Models

D4T
Testing

Variability

Testing Testing
the the

eShopeShop Product LineProduct Line

John D. McGregor
SEI

Clemson University
Luminary Software

The assignmentThe assignment

!! Design the system test of the Design the system test of the eShopeShop
!! But, first let me point out that if strategic But, first let me point out that if strategic

reuse is the key to product line successreuse is the key to product line success
!! Then testing early is essential to ensure a Then testing early is essential to ensure a

core asset base that possesses all the core asset base that possesses all the
qualities that are soughtqualities that are sought

Desired ProfileDesired Profile

This is the preferred profile of defect This is the preferred profile of defect
detectiondetection

!! Unit testing Unit testing �� 90% of defects90% of defects
!! Integration testing Integration testing �� 9%9%
!! System testing System testing �� 1%1%

Core Asset TestingCore Asset Testing

!! ALL core assets are validated as soon as ALL core assets are validated as soon as
they are createdthey are created
!! ATAM for the software architectureATAM for the software architecture
!! Guided Inspection for the design assetsGuided Inspection for the design assets
!! Combinatorial test techniques for softwareCombinatorial test techniques for software

!! Test coverage should be comprehensiveTest coverage should be comprehensive
!! Priorities are determined by business goalsPriorities are determined by business goals
!! Coverage levels determined by domainCoverage levels determined by domain

System Tests in Product Line System Tests in Product Line
Development Development

!! Test sample applicationsTest sample applications
!! Combinations of choices at variation pointsCombinations of choices at variation points
!! Full scale integration testsFull scale integration tests
!! Limited to what can be built at the momentLimited to what can be built at the moment
!! Involve product builders earlyInvolve product builders early

!! Test specific applicationTest specific application
!! Tests a specific product prior to deploymentTests a specific product prior to deployment
!! Rerun some of the selected productsRerun some of the selected products�� test casestest cases
!! Feedback results to core asset buildersFeedback results to core asset builders

Now to the problemNow to the problem

OATSOATS--based Test Strategy for based Test Strategy for
Identifying Selected ApplicationsIdentifying Selected Applications

!! Orthogonal Array Testing Orthogonal Array Testing
System (OATS)System (OATS)

!! One factor for each One factor for each
variation pointvariation point

!! One level for each variant One level for each variant
within a factorwithin a factor

!! ��All combinationsAll combinations�� is is
usually impossible but usually impossible but
pairpair--wise usually is wise usually is
manageable.manageable.

!! Constraints identify test Constraints identify test
cases that are invalidcases that are invalid

VP4.2VP4.2

VP5.1VP5.1VP5VP5

VP5.2VP5.2

VP4.1VP4.1VP4VP4

BothBoth

Requires VP4Requires VP4VP3.2VP3.2

Requires VP1.2Requires VP1.2VP3.1VP3.1VP3VP3

VP2.2VP2.2

VP2.1VP2.1

NoneNoneVP2VP2

BothBoth

VP1.2VP1.2

VP1.1VP1.1VP1VP1

Constraint Constraint LevelLevelFactorFactor

L2x7 L2x7 �� 7 factors each with 3 levels7 factors each with 3 levels

2210012

2102201

2021120

2120102

2012021

2201210

1002112

1221001

1110220

1011202

1200121

1122010

0101022

0020211

0212100

0222222

0111111

0000000

7654321

!! Use standard preUse standard pre--
defined arraysdefined arrays

!! This one is larger than This one is larger than
needed but that will needed but that will
workwork

!! Each of the factors has Each of the factors has
values 0,1,2values 0,1,2

!! Defined to include all Defined to include all
pairpair--wise combinationswise combinations

factor

level

VariantsVariants

VP4.2VP4.2

VP5.1VP5.1VP5VP5

VP5.2VP5.2

VP4.1VP4.1VP4VP4

BothBoth

Requires VP4Requires VP4VP3.2VP3.2

Requires VP1.2Requires VP1.2VP3.1VP3.1VP3VP3

VP2.2VP2.2

VP2.1VP2.1

NoneNoneVP2VP2

BothBoth

VP1.2VP1.2

VP1.1VP1.1VP1VP1

Constraint Constraint LevelLevelFactorFactor

2210012

2102201

2021120

2120102

2012021

2201210

1002112

1221001

1110220

1011202

1200121

1122010

0101022

0020211

0212100

0222222

0111111

0000000

7654321

map

Mapped ArrayMapped Array

VP5.2VP4.1VP3.1VP2.1Both

xVP5.12BothNoneVP1.2

x2VP4.2VP3.2VP2.2VP1.1

x2VP4.1VP3.2NoneBoth

xVP5.22VP3.1VP2.2VP1.2

VP5.1VP4.2BothVP2.1VP1.1

xVP5.12VP3.2VP2.1Both

x2VP4.2VP3.1NoneVP1.2

VP5.2VP4.1BothVP2.2VP1.1

VP5.2VP4.2BothNoneBoth

VP5.1VP4.1VP3.2VP2.2VP1.2

x,c22VP3.1VP2.1VP1.1

VP5.1VP4.2VP3.1VP2.2Both

x2VP4.1BothVP2.1VP1.2

xVP5.22VP3.2NoneVP1.1

x22BothVP2.2Both

VP5.2VP4.2VP3.2VP2.1VP1.2

cVP5.1VP4.1VP3.1NoneVP1.1

VP5VP4VP3VP2VP1

Legend: c = constraint; x = any choice for constant will work

! Every row is a system
under test.

! 17 test products vs 72
possible combinations

! Columns 4 and 5 have
more levels than are
needed. Columns 6 and 7
are not needed at all.

! Where a �2� is in the
column, this indicates the
tester could repeat a value
(one of the variants).

Test suiteTest suite

!! Test cases for these sample applications Test cases for these sample applications
must also be built, butmust also be built, but

!! They can be selected using functional and They can be selected using functional and
structural techniques, andstructural techniques, and

!! Then constructed using generation Then constructed using generation
technology technology

Factor test casesFactor test cases

!! Test cases break at each variation point to Test cases break at each variation point to
allow the test case to be varied just as we allow the test case to be varied just as we
have varied the product.have varied the product.

!! Use similar mechanisms for variation in Use similar mechanisms for variation in
test cases as those used in the codetest cases as those used in the code

!! Assemble the test cases in parallel to Assemble the test cases in parallel to
assembling the product code.assembling the product code.

XVCLXVCL--based generationbased generation

!! FrameFrame--based technologybased technology
!! Simultaneously generate system code and Simultaneously generate system code and

system test casessystem test cases
!! Tests are NOT embedded in the product Tests are NOT embedded in the product

but they are embedded side by side in the but they are embedded side by side in the
generation technologygeneration technology

StructureStructure

Test criteria

Feature
/test pairs

Feature
list

Test
fragments

Feature
Specific

code

Completed
test code

Completed
implementation

!! XmlXml--based Variant Configuration Language based Variant Configuration Language
uses individual frames to compose an asset.uses individual frames to compose an asset.

TopTop--level framelevel frame

<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF--8"?>8"?>
<!DOCTYPE x<!DOCTYPE x--frame SYSTEM "default">frame SYSTEM "default">
<x<x--frame name="frame name="main.xvclmain.xvcl">">
<!<!----add variation points that are selectedadd variation points that are selected---->>
<set<set--multi multi varvar="="variationPointsvariationPoints" value="vp1.1,vp1.2"/>" value="vp1.1,vp1.2"/>
<!<!----set actual file names for variablesset actual file names for variables---->>
<set <set varvar="="codefilecodefile" value="" value="c:c:\\out.txtout.txt"/>"/>
<set <set varvar="="testfiletestfile" value="" value="c:c:\\testout.txttestout.txt"/>"/>
<adapt x<adapt x--frame="frame="baseSystem.xvclbaseSystem.xvcl"></adapt>"></adapt>
<adapt x<adapt x--frame="frame="registerUseCase.xvclregisterUseCase.xvcl"></adapt>"></adapt>
<!<!----add other use casesadd other use cases---->>
</x</x--frame>frame>

Product variants

Generation targets

Use Case FrameUse Case Frame--11
<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF--8"?>8"?>
<!DOCTYPE x<!DOCTYPE x--frame SYSTEM "default">frame SYSTEM "default">
<x<x--frame name="frame name="registerUseCase.xvclregisterUseCase.xvcl" " outfileoutfile="?@="?@codefilecodefile?">?">
code to start the code to start the registerUseCaseregisterUseCase
<adapt x<adapt x--frame="frame="testBeginRegisterUseCase.xvcltestBeginRegisterUseCase.xvcl"></adapt>"></adapt>
<while using<while using--itemsitems--in="in="variationPointsvariationPoints">">
<select option="<select option="variationPointsvariationPoints">">
<option value="vp1.1"><option value="vp1.1">
<adapt x<adapt x--frame="frame="registerSimply.xvclregisterSimply.xvcl"></adapt>"></adapt>
</option></option>
</select></select>
</while></while>

Use Case FrameUse Case Frame--22
code between the variation pointscode between the variation points
<adapt x<adapt x--

frame="frame="testMiddleRegisterUseCase.xvcltestMiddleRegisterUseCase.xvcl"></adapt>"></adapt>
<while using<while using--itemsitems--in="in="variationPointsvariationPoints">">
<select option="<select option="variationPointsvariationPoints">">
<option value="vp1.2"><option value="vp1.2">
<adapt x<adapt x--frame="frame="registerCompletely.xvclregisterCompletely.xvcl"></adapt>"></adapt>
</option></option>
</select></select>
</while></while>
code to complete the code to complete the registerUseCaseregisterUseCase
<adapt x<adapt x--frame="frame="testEndRegisterUseCase.xvcltestEndRegisterUseCase.xvcl"></adapt>"></adapt>
</x</x--frame>frame>

Variant frameVariant frame

<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF--8"?>8"?>
<!DOCTYPE x<!DOCTYPE x--frame SYSTEM "default">frame SYSTEM "default">
<x<x--frame name="frame name="registerSimply.xvclregisterSimply.xvcl" "

outfileoutfile="?@="?@codefilecodefile?">?">
code for code for registerSimplyregisterSimply
<adapt x<adapt x--

frame="frame="testRegisterSimply.xvcltestRegisterSimply.xvcl"></adapt>"></adapt>
</x</x--frame>frame>

ConclusionConclusion

!! Test early, test oftenTest early, test often
!! Select test cases to achieve specific goals, Select test cases to achieve specific goals,

e.g., maximize defect detectione.g., maximize defect detection
!! Structure test cases for reuse with Structure test cases for reuse with

variability mechanisms similar to those in variability mechanisms similar to those in
the code or other assetsthe code or other assets

!! Logically attach test cases to use cases or Logically attach test cases to use cases or
featuresfeatures

Software Systems Engineering

Institute for Computer Science and
Business Information Systems (ICB)

University of Duisburg-Essen, Germany

www.sse.uni-due.de

Panel on Testing in a Software
Product Line

Position Statement

Andreas Metzger

A. Metzger – SPLC2006, Baltimore, MD, 2006 © Prof. Dr. K. Pohl – 2

Statement

Balance the testing activities

between domain and application engineering.

Domain

TestingDomain

Testing Application
Testing

Application
Testing

A. Metzger – SPLC2006, Baltimore, MD, 2006 © Prof. Dr. K. Pohl – 3

This means…

! Domain Testing:

– Test commonalities

– Test most frequently used variants

! Application Testing:

– Test remaining variants if
contained in an application

Application
Engineering

Application
Artifacts

Domain
Engineering

Domain Artifacts

A. Metzger – SPLC2006, Baltimore, MD, 2006 © Prof. Dr. K. Pohl – 4

Domain Testing in the E-Shop Product Line

! Commonalities
– register customer

– buy product

– search product

! Variability
– type of registration

– kind of bonus program

– type of payment

– search options

!

?

A. Metzger – SPLC2006, Baltimore, MD, 2006 © Prof. Dr. K. Pohl – 5

Domain Testing in the E-Shop Product Line

requires

Regis-
ter Type

VP1

Completely

V

Simply

V

1..2

Search
Options

VP5

Similar
Results

V

Hints

V

1..1

Pay-
ment Type

VP3

Card

V

Invoice

V

1..2

requires

Card
Type

VP4

Debit

V

Credit

V

1..1
Bonus

VP2

Deduction

V

Points

V

0..1

Completely

V

Hints

V

Card

V

Invoice

V

Debit

V

Points

V

chosen for Application 1 chosen for Application 2chosen for both

Completely

V

Simply

V

Similar
Results

V

Invoice

V

!

A. Metzger – SPLC2006, Baltimore, MD, 2006 © Prof. Dr. K. Pohl – 6

Application Testing in the E-Shop Product Line
Application 1

requires

Regis-
ter Type

VP1

Completely

V

Simply

V

1..2

Search
Options

VP5

Similar
Results

V

Hints

V

1..1

Pay-
ment Type

VP3

Card

V

Invoice

V

1..2

requires

Card
Type

VP4

Debit

V

Credit

V

1..1
Bonus

VP2

Deduction

V

Points

V

0..1

Completely

V

Hints

V

Card

V

Invoice

V

Debit

V

Points

V

chosen for Application 1

Completely

V

Simply

V

Similar
Results

V

Invoice

V

! !

! ! !

A. Metzger – SPLC2006, Baltimore, MD, 2006 © Prof. Dr. K. Pohl – 7

Benefits

! Reduction of probability that a
defect is introduced
in all or many of the SPL
applications

! Reduction of costs when compared
to a comprehensive test of
all core assets

! Costs for testing „rarely“ used variants
is „delayed“ until application development

Testing the eShop
Product Line

Tim Trew
Philips Research
SPLC, Baltimore, August 2006

Testing the eShop Product Line 2

My position
• Only test applications (not core software assets)
• Use reusable domain test assets
• Leverage the results of testing previous applications when

testing new variants

Caveat
• One size doesn’t fit all

≠

Testing the eShop Product Line 3

Variability
Model

Pay by invoic e

Regis te r simp ly

Reg is ter complete ly

Register

Di rect pric e deduction

B uy goods

Customer

Search goods

<<include>>

<<include>>

<<include>>

<<include>>

Bonus points

P rovide search h ints

S how similar res ults

Pay by c redi t card

P ay by deb it card

<<include>>

Re gis-
ter Type

VP1

Completely

V

Simp ly

V

1..2

Search
Options

VP5

Similar
Re sults

V

Hints

V

1..1

Bonus

VP2

Deduction

V

Points

V

0. .1

Payme nt
Type

VP3

Card

V

Invoice

V

1..2

<<inc lude>>

<<inc lude>>

<<inc lude>>

<<inc lude>>

<<inc lude>>

<<include>>

requires

requiresCard
Type

VP4

Debit

V

Credit

V

1..1

Testing the eShop Product Line 4

Register Register
Completely

Register
Simply

Show form to be
filled in

Show form to be
filled in

Show data to
customer

[OK]

[Not OK]

Show main page
of eShop

Show form to be
filled in

Accept customer’s
e-mail and postal

addresses

Validate input

[OK]

[Not OK]

Show form to be
filled in

Accept customer’s
bank account

number and sort
code

Validate input

[OK]

[Not OK]

Show form to be
filled in

Accept customer’s
e-mail and postal

addresses

Validate input

[OK]

[Not OK]

Testing the eShop Product Line 5

Show form to be
filled in

Show data to
customer

[OK]

[Not OK]

Show main page
of eShop

Application 1

Application 2

Impact of VP2 on “Register”

Show form to be
filled in

Show data to
customer

[OK]

[Not OK]

Show main page
of eShop

Prompt for
Register Type

[true]

[false]

«decisionInput»
Register Type ==
Simply +
Completely

Testing the eShop Product Line 6

Show form to be
filled in

Show data to
customer

[OK]

[Not OK]

Show main page
of eShop

Show form to be
filled in

Accept customer’s
e-mail and postal

addresses

Validate input

[OK]

[Not OK]

Show form to be
filled in

Accept customer’s
bank account

number and sort
code

Validate input

[OK]

[Not OK]

Test plan

Application 1
• Test both use cases to

MCDC/LCSAJ coverage
• Test through web browser

with GUI tool supporting
table-driven testing

Register Register
Completely

Use category partition testing
to exercise the error conditions

Testing the eShop Product Line 7

Show form to be
filled in

Accept customer’s
e-mail and postal

addresses

Validate input

[OK]

[Not OK]

Show form to be
filled in

Accept customer’s
bank account

number and sort
code

Validate input

[OK]

[Not OK]

Test plan

Application 2
• Test “Register” and

“Register Simply” to
MCDC/LCSAJ coverage

• Test that “Register
Completely” is executed

Test strategy
• For each application, test

new functionality and functionality
impacted by VPs extensively

• Check that reused functionality is
invoked at the correct time

Register Register
Completely

Show form to be
filled in

Show data to
customer

[OK]

[Not OK]

Show main page
of eShop

Prompt for
Register Type

Show form to be
filled in

Accept customer’s
e-mail and postal

addresses

Validate input

[OK]

[Not OK]

Register
Simply

Testing the eShop Product Line 8

• Develop domain test artefacts that can be configured for
application testing
– State model of all possible variants

• Activity diagram LSCAJ ≡ state model transition coverage
– Cause-effect graph

• Good traceability to use cases with variation points

• We don’t want to depend on knowledge of the order in which
applications will be developed when developing test cases
– Too inflexible to changes in product line requirements
– Too uninteresting to suggest at SPLC ☺

Generating test cases

Testing the eShop Product Line 9

Fixed for an application
Exercised between applications

Can be varied
Fully exercised for first application

Use case executed

Use case step
executed

Parent use case
executed

Variant selection

User input

Exploitation of previous test results

Test generator tries to generate
0, 1
1, 0
1, 1

= MCDC

Testing the eShop Product Line 10

TEST#1 -- eShop REGISTRATION
Variant: Register Completely available
Action: User activates registration
Usecase start: Register

Usecase start: Register Completely
Check: The system presents part 1 of the

registration form
Action: The customer fills in the registration

form with infeasible e-mail address
Check: The system rejects the registration
Check: The system presents part 1 of the

registration form
Action: The customer fills in the registration

form correctly
Check: The system accepts the registration
Check: The system presents part 2 of the

registration form
Action: The customer fills in the account

information correctly
Check: The system accepts the registration

Usecase end: Register Completely
Usecase end: Register

Testing the eShop Product Line 11

Rationale

• eShop has loosely-coupled use cases
– Main use case determines whether a sub-ordinate use case

executes, not its detailed execution
• Allows test results to be reused between applications

• Variability determines availability of use cases
– Not fine-grain parameterisation

• Dependencies between use cases make it more difficult to
test components in isolation
– E.g. “Buy goods” requires that there is a registered user and that

some goods have been selected

• We will have to do some application testing to ensure that the
variation points have been set correctly

• The execution of the application is easy to automate
– E.g. for regression testing

LERO© 2006
1

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

SPLC 2006 Research Panel:

Product Line Research: Lessons Learned
from the last 10 years and Directions for
the next 10

Panel Moderator – Liam O’Brien

24 August 2006

LERO© 2006
2

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Overview

The panel members will explore:
• Lessons learned and outcomes from the past

10 years
• Directions and potential outcomes for the

next 10 years

Examine the lessons, outcomes and directions
from the practitioners’ perspective.

LERO© 2006
3

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Panel Members

• Paul Clements – Software Engineering
Institute, USA

• Kyo Kang, Pohang University of Science and
Technology, Korea

• Dirk Muthig, Fraunhofer IESE, Germany
• Klaus Pohl, Lero – The Irish Software

Engineering Research Centre & University of
Duisburg-Essen, Germany

LERO© 2006
4

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Industry Judges

• Bruce Trask, MDE Systems

• Gunther Lenz, Siemens

LERO© 2006
5

THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

Format

The format for the panel will be:
• Panellist’s presentation: 10 minutes
• Judge’s comments: 3 minutes
• Panellist’s response: 2 minutes

Following the presentations there will be a
general/interactive discussion.

Copyright © Fraunhofer IESE 2006

Product Line Research

Panel Statement

Dirk Muthig (Ph. D.)
Fraunhofer IESE
Kaiserslautern, Germany

dirk.muthig@iese.fraunhofer.de

Copyright © Fraunhofer IESE 2006

Slide 1

Achievements – Community

• Definition of Product Lines and Product Line
Engineering

- Terminology

- Life cycle model

- Product line criteria (PLHoF)

• Knowledge Base and Network

- Books and Papers

- Websites

- Conferences

Product lines as
holistic reuse approach
(cost, ttm, quality, …)

Copyright © Fraunhofer IESE 2006

Slide 2

Achievements – Industrial Success Stories

• Collecting success stories

- Situations after product line introduction

- Examples
� CelsiusTech

� Cummins

• Creating success stories

- Companies that have been observed during
transition from traditional to product line
development

- Examples
� market maker

� Salion

Product lines as
vision and driver of

improvement activities

Practical issues as
driver of

PL research activities

Copyright © Fraunhofer IESE 2006

Slide 3

Problems – Adopting Product Line Technology

• Descriptions of product line methods in literature
are, in general, too abstract

• Coverage of existing case studies is too small to
illustrate product line approach as a whole

• Size and complexity of existing case studies are
too small to clearly motivate need for variability
management

• Different product-line methods and techniques
cannot be compared objectively

• It is difficult for an organization to select,
introduce, and apply product line technology
practically (and thus to get all its benefits)

organization-specific

domain-specific

“it depends …”

market-specific

Copyright © Fraunhofer IESE 2006

Slide 4

Outlook – PL Research

• PL-specific aspects of all kinds of SE practices, e.g.,
- Capturing family requirements
- Testing of generic components
- …

• PL-specific topics, e.g.,
- Variability management, modeling, …
- Scoping
- Economic models
- …

• Consolidation and „standardization“
• Systematic validation (beyond action research)

PL research
must be possible
without years of

industrial experience

Software Product Line Research TopicsSoftware Product Line Research Topics

Kyo Kang

SPLC2006
August 24, 2006

Pohang University of Science and Technology
(POSTECH)

Copyright © 2006 SE Lab. Dept. of CSE
POSTECH, R.O. Korea

Agenda

POSTECH
Copyright © 2006

SE Lab. Dept. of CSE
POSTECH, R.O. Korea 2

• Technical advances
• Technology
• Process
• Management

Technical Advances

POSTECH
Copyright © 2006

SE Lab. Dept. of CSE
POSTECH, R.O. Korea 3

• Paradigm change
– From single systems to product line/family

• Commonality and variability analysis
– Feature analysis

• Components and architectures (from objects and
collaborations)

– Variants and variation points
– “high option potentials”

• Domain specific languages and generators

Research topicsTechnology

POSTECH
Copyright © 2006

SE Lab. Dept. of CSE
POSTECH, R.O. Korea 4

• Domain analysis
– Different domains may require different approaches

• Service analysis may be good for business applications domains
• Goal analysis may be good for some embedded controller

applications domains
• “Goal -> Service” as a unified method?

– Modeling mechanisms
• Feature model is popular but many extensions

– Should this be standardized?
• Formalization

– Deciding the right level of abstraction; how to structure
– Feature explosion problem

• How to model, analyze, and manage
– Feature interaction problem

Research topicsTechnology

POSTECH
Copyright © 2006

SE Lab. Dept. of CSE
POSTECH, R.O. Korea 5

• Goal-oriented assembly and adaptation of
components

– Knowledge-based adaptation
– Quality attributes or user-goals (e.g., balanced use of

equipments)
• Going from domain analysis to architecture and

component design
– Designing architectures and components based on the

analysis results (commonality and variability information)
• SOA vs. agent-based vs. other architecture models

– Building variability into architectures and components
– Selecting appropriate mechanisms for the problem

Research topicsTechnology

POSTECH
Copyright © 2006

SE Lab. Dept. of CSE
POSTECH, R.O. Korea 6

• Specification of models
– Reuse contexts and assumptions

• Verification of quality attributes of integrated
systems

– Safety, reliability, etc.
– Detecting feature interaction problems

• Configuration management
– Version control of components and architectures with

multi-product nature
– Evolution of the product line itself

Research topicsTechnology

POSTECH
Copyright © 2006

SE Lab. Dept. of CSE
POSTECH, R.O. Korea 7

• PL for systems in the newly emerging computing
environments

– Service Oriented Architecture
– Ubiquitous computing environment

• Dynamic binding of features

– From compile-time engineering to run-time engineering
• Embedment of SE knowledge in running systems

• Tools!

Research TopicsProcess

POSTECH
Copyright © 2006

SE Lab. Dept. of CSE
POSTECH, R.O. Korea 8

• How to change to PL-based organization
– How to evolve: staged process model for reuse adoption
– Key process areas

• Best practices
– Metrics

• Key indicators: cost of production, time to market, project
completion time, etc.

• Relationship between reuse, quality, and productivity
• Relationship between reuse and ROI for sustainability of a reuse

program

• Process models
– Proactive vs. reactive vs. extractive models

• Best practices
– PL process vs. agile methods

Research TopicsManagement

POSTECH
Copyright © 2006

SE Lab. Dept. of CSE
POSTECH, R.O. Korea 9

• ROI analysis
– Estimating ROI from a reuse program
– Estimating benefits from strategic market position

• Asset management (How to make PL-based
development happen in an organization)

– Who should develop assets (with variation points)
– Who should maintain assets (variation management)
– Who will be responsible for quality assurance
– Who should enforce the use of assets
– Models (best practices)

• Centralized vs. distributed

ICSTEST 2006

(c) Prof. Dr. Klaus Pohl

Lero
The Irish Software Engineering Research Centre

Univ. of Limerick, Ireland
www.lero.ie

Software Systems Engineering
University of Duisburg-Essen, Germany

www.sse.uni-due.de

Panel on
Product Line Research

Lessons Learned from the last 10 years and
Directions for the next 10 years

Klaus Pohl
Lero – The Irish Software Engineering Research Centre
University of Limerick, Ireland, pohl@lero.ie

Software Systems Engineering
University of Duisburg-Essen, pohl@sse.uni-due.de

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 2

The last 10 years ….

Shift in focus
from purely technical aspects, e.g. architecture, variability binding
mechanism
to non technical aspects, e.g. variability management, economical
aspects, processes, e.g. CMMI for product lines
from domain engineering, e.g. reference architecture
to application engineering, e.g. product derivation

Maturity of the field
the SPL community

- ONE community resulting from the “merge” of the European and
US initiatives

- SPLC as flagship conference
- growing in size and diversity

increased recognition in industry

ICSTEST 2006

(c) Prof. Dr. Klaus Pohl

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 3

The last 10 years

Software Product Line Engineering
is an established field

It works over 20 reported examples

BUT: Shift from single development
to product lines is difficult
… more difficult than from
C to real C++

Lero
The Irish Software Engineering Research Centre

Univ. of Limerick, Ireland
www.lero.ie

Software Systems Engineering
University of Duisburg-Essen, Germany

www.sse.uni-due.de

The next 10 years …

ICSTEST 2006

(c) Prof. Dr. Klaus Pohl

Lero
The Irish Software Engineering Research Centre

Univ. of Limerick, Ireland
www.lero.ie

Software Systems Engineering
University of Duisburg-Essen, Germany

www.sse.uni-due.de

Challenge No. 1
Software Intensive Systems

… not just software

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 6

Product Lines for Software Intensive Systems
Multi-functional technical systems:

Software empowers flexible interplay of physical component, e.g.
A physical sensor can contribute to many functions
An actuator can be influenced by several functions

Hard- and Software feature-interactions
Increased context-awareness:

Software-intensive Systems are tighter integrated with their context
How to consider contextual aspects in design and deployment?
How to adapt to context changes?

Service orientation:
Systems will be used differently than designed – how to address this?
How to check service quality at run time?
Certifications – how can systems recognize certified components?

ICSTEST 2006

(c) Prof. Dr. Klaus Pohl

Lero
The Irish Software Engineering Research Centre

Univ. of Limerick, Ireland
www.lero.ie

Software Systems Engineering
University of Duisburg-Essen, Germany

www.sse.uni-due.de

Challenge No. 2

Requirements Engineering
for Software Product Line Applications

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 8

Domain
Requirements
Engineering

Domain
Realisation

Domain
Testing

Product
Management

Domain
Design

D
O

M
A
IN

 E

N
G

IN
E
E
R
IN

G

Application
Requirements
Engineering

Application
Realisation

Application
Testing

Application
Design

A
PP

LI
C
A
T
IO

N
 E

N
G

IN
E
E
R
IN

G

Architecture Components Test CasesRequirements

Domain Artifacts

Requirements Architecture Test CasesComponents

1
N …

Challenge 2: RE for Product Line Applications

How to elicit and define
application

requirements?

ICSTEST 2006

(c) Prof. Dr. Klaus Pohl

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 9

Domain
Requirements
Engineering

Product
Management

Domain
Design

D
O

M
A
IN

 E

N
G

IN
E
E
R
IN

G
Application

Requirements
Engineering

Application
Design

A
PP

LI
C
A
T
IO

N
 E

N
G

IN
E
E
R
IN

G

ArchitectureRequirements

Domain A

Requirements Architectu

1
N …

Challenge 2: RE for Product Line Applications

Customer /
Product Designer

3

1

2

(3) supporting trade-off decisions
during early RE
e.g. ROI for alternative requirements

(1) Communicating the capabilities of the product line
to the customer/product designer

(2) Documenting application requirements
to support application derivation,
e.g. application specific extensions

Lero
The Irish Software Engineering Research Centre

Univ. of Limerick, Ireland
www.lero.ie

Software Systems Engineering
University of Duisburg-Essen, Germany

www.sse.uni-due.de

Challenge No. 3
Product Derivation

… or …

MDP (Model Driven Product derivation)
instead of “just” MDA (model driven architecture)

ICSTEST 2006

(c) Prof. Dr. Klaus Pohl

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 11

Domain
Requirements
Engineering

Domain
Realisation

Domain
Testing

Product
Management

Domain
Design

D
O

M
A
IN

 E

N
G

IN
E
E
R
IN

G

Application
Requirements
Engineering

A
PP

LI
C
A
T
IO

N
 E

N
G

IN
E
E
R
IN

G

Architecture Components Test CasesRequirements

System Family Assets

Requirements

Application
Design

Architecture

1
N …

Challenge 3: Model based Product Derivation

Customer /
Product

Designer 3

1

2

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 12

Domain
Requirements
Engineering

Domain
Realisation

Domain
Testing

Product
Management

Domain
Design

D
O

M
A
IN

 E

N
G

IN
E
E
R
IN

G

Application
Requirements
Engineering

A
PP

LI
C
A
T
IO

N
 E

N
G

IN
E
E
R
IN

G

Architecture Components Test CasesRequirements

System Family Assets

Requirements

Application
Design

Architecture

Application
Realisation

Components

1
N …

Challenge 3: Model based Product Derivation

ICSTEST 2006

(c) Prof. Dr. Klaus Pohl

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 13

Domain
Requirements
Engineering

Domain
Realisation

Domain
Testing

Product
Management

Domain
Design

D
O

M
A
IN

 E

N
G

IN
E
E
R
IN

G

Application
Requirements
Engineering

A
PP

LI
C
A
T
IO

N
 E

N
G

IN
E
E
R
IN

G

Architecture Components Test CasesRequirements

System Family Assets

Requirements

Application
Testing

Test Cases

Application
Design

Architecture

Application
Realisation

Components

1
N …

Challenge 3: Model based Product Derivation

Lero
The Irish Software Engineering Research Centre

Univ. of Limerick, Ireland
www.lero.ie

Software Systems Engineering
University of Duisburg-Essen, Germany

www.sse.uni-due.de

Challenge No. 4
Empirical Evidence

ICSTEST 2006

(c) Prof. Dr. Klaus Pohl

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 15

Challenge 4: Establish Empirical Evidence

Establish evidence for SPLE
– We need more case studies

– We need more experiments

– We need more experience reports

– We need detail reports of SPL practice

– …

Not just about technical aspects, but also about
– organisational aspects

– financial aspects

SPLC Research Panel, Baltimore, 2006 © Prof. Dr. K. Pohl – 16

Questions ?

Sponsored by the U.S. Department of Defense
© 2006 by Carnegie Mellon University

1

Pittsburgh, PA 15213-3890

Software Product Line Research:
Lessons Learned from the

Last Ten Years
and

Directions for the Next Ten

Paul Clements
Software Engineering Institute

Carnegie Mellon University
SPLC 2006

© 2005 by Carnegie Mellon University 2

Lessons Learned from the Past Ten Years

1. Software product lines work.
• They have demonstrated the ability to

bring order-of-magnitude improvements
in schedule, budget, and quality.

• We have not seen productivity
improvement numbers like this since
the advent of high-level languages.

• They belie the truism that among “faster, better,
cheaper” you can have any two.

(Remember all the “existence proof” papers
we used to see, trying only to convince us that

product lines are a Good Idea?)

© 2005 by Carnegie Mellon University 3

Lessons Learned from the Past Ten Years

2. Software product line development is still software
development – but with a twist.
• Example: Configuration management is (more)

important (and a bit more complex)
• Architecture: more critical than ever; provides

variability
• Scoping emerges as an important activity
• Project management: emphasis on coordination
• Feature modeling: important role
• Strategic business goals: more explicit role

© 2005 by Carnegie Mellon University 4

Lessons Learned from the Past Ten Years

3. Organizational and business issues are more important
than we might have anticipated.
• Product line adoption strategies have emerged as

important areas of work
• Organizational structure, funding models,

institutionalization, …

4. Technical/technology issues are less important than
we might have anticipated
• Feature modeling, architecture, domain analysis,

generative programming, domain-specific
languages are technical areas making important
contributions.

© 2005 by Carnegie Mellon University 5

Lessons Learned from the Past Ten Years

5. We’ve grown a set of meaningful terminology and
concepts
• “Core assets,” “production capability,” “scope”
• Krueger’s “proactive” and “reactive”
• van Ommering’s “product populations”
• Weiss’s commonality and variability analysis
• Positive patterns: SEI’s “Adoption Factory,” etc.
• Anti-patterns: “clone-and-own”

6. We’ve largely avoided fragmentation and
unproductive methodological competition.
• Many fields undergo a painful

“conceptual unification” stage.
I’m not sure we need to.

© 2005 by Carnegie Mellon University 6

SEI contributions and research areas - 1

Codifying the practical steps necessary for an organization
to succeed with software product lines
• Framework for Software Product Line Practice
• Product line practice patterns
• Product line practices for acquisition organizations
• Product Line Technical ProbeSM

• Adoption roadmap

Evangelism and education
• Books, papers, tech reports,

web site
• Product line curriculum

and certificate programs
• SPLC

© 2005 by Carnegie Mellon University 7

SEI contributions and research areas - 2

Technologies and technical approaches
• Foundational domain analysis work
• Product Line Analysis
• Structure Intuitive Model for Product Line Economics

(SIMPLE)
• Approaches for creating

- Business case
- PL operational concept
- Production plans
- PL measurement programs

• Methods for architecture…
- creation
- evaluation
- documentation
- recovery

© 2005 by Carnegie Mellon University 8

Where the field might go -1
1. Tooling: Folding in product line capabilities with

“conventional” tools and IDEs
• Making variations “first class citizens”
• Shift the paradigm to supporting the development of a

family of systems with specific commonalities and
variations.

• Developing a single system needs to become a (quaint)
special case.

• Signs of hope: Microsoft’s “Software Factories” approach
and the many technology providers demonstrating at and
supporting this conference

2. Product line sustainment and evolution practices. Many
organizations understand how to launch a product line, but
not how to keep the products unified over time – or when to
let them split apart.

© 2005 by Carnegie Mellon University 9

Where the field might go -2
3. Product line version of “round trip engineering,” in which we

have strong traceability among
• Business goals for a product line
• Variations and commonality in a product family
• Scope definitions
• Variations supported/provided in

- Requirements
- Architecture
- Code
- Documentation
- Test artifacts

3a. Language constructs to help express variability conditions,
and compiler-like tools to generate code to automatically
install the “right” variability mechanisms.

© 2005 by Carnegie Mellon University 10

Where the field might go -3
4. “Product-line-aware” testing models that help to

minimize testing across a family of products.

© 2005 by Carnegie Mellon University 11

Questions―Now or Later
Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/
architecture

SEI Fax: 412-268-5758

Paul Clements
Email: clements@sei.cmu.edu

mailto:clements@sei.cmu.edu

Product Line Adoption:
A Vice President's View

& Lessons learned

Aug 24, 2006, Rev A
Salah Jarrad
sjarrad@yahoo.com

Salah.Jarrad@freescale.com

Former VP of Engineering at Panasonic Mobile
Currently Head of Multimedia Platforms at Freescale Semiconductor Inc.

Use or reproduction is prohibited without the prior express written permission of Salah Jarrad.
Copyright (c) 2006 Salah Jarrad

Salah Jarrad 2Aug 24, 2006 - Revision A

Content
Introduction

Why Product Line

Timeline of Mobile Phones
Product Line experience

Product highlights & achievements

Our Approach to PL (3 phases)

Product Line Experience & Recommendations

Our findings in comparison to SEI

Lessons learned

Summary

Salah Jarrad 3Aug 24, 2006 - Revision A

Salah JarradSalah Jarrad
Office of the CTO &

VP, Engineering

President ofPresident of
Panasonic Mobile Panasonic Mobile

CommComm, USA, USA

VPs for HR, Project Services, VPs for HR, Project Services,
Quality, marketing, etcQuality, marketing, etc

Engineering
organization of

~200 people

My Role At Panasonic

A PMC S60/Symbian
Smartphone Center

Head of Panasonic Mobile Head of Panasonic Mobile
Overseas Business UnitOverseas Business UnitHeads of Global R&D Heads of Global R&D

and Software Devand Software Dev

Salah Jarrad 4Aug 24, 2006 - Revision A

Why Product Line

Our “new design” product development cycle was 18 to 24
months, followed by 6 to 12 months for follow-on products,
all with limited variability (limited customization & configuration)

Each customer “mobile phones service provider” wanted
their own flavor of product, customized according to their
market vision (their own apps and services)

Creating product variants for each customer took too long and
was limited to fewer customers

Product Line Concept was
the obvious answer

Salah Jarrad 5Aug 24, 2006 - Revision A

Timeline Of Product Line Experience

Introduced Product Line to organization ~Sep 2001
Product Line life cycle from mid 2002 to 2005

2002 20042003 20052001

Local Management acceptance of PL
• Initial exploration of Product Line practices.
• Engaged Luminary Software to introduce PL to org
• In-house training, feasibility study and pilot project

Team acceptance of PL (1st product line creation)
• Lead Product project cancelled Feb 2003
• Architecture management & creation of architecture team

Complete Product line creation
• Production, 2 Hardware and

5 software variants

2nd production of the PL
• Production, 1 Hardware and

3 software variants

Salah Jarrad 6Aug 24, 2006 - Revision A

Panasonic X700, X701 & X800 HW & SW Variants

Software VariantsHardware Variants

X800

X701

X700

Salah Jarrad 7Aug 24, 2006 - Revision A

Product Line Highlights & Achievements

Produced 8 mobile phone products in one program (8 major
software tracks / builds, each resulting in a unique product)

Created process and tools to enable customization at
production time, both at the design center and
manufacturing facility (A 1st within Nokia series 60 Platform
community)

Highest level of product customization, product line sold in
more than 30 countries

Tailored code base management - daily and weekly build,
incremental integration, stringent guidelines on what makes
a successful build (partial vs. complete), etc.

Salah Jarrad 8Aug 24, 2006 - Revision A

Our Approach

Phase I
Education &

Initiation

Phase II
Acceptance &

PL
Development

Phase III
Production

Produce products
from the line
Involve all other
business functions
involved in the PL

Initiate formal product
line projects
Implement needed
changes
Complete Design
cycle

Champion of change
Support of local
management
Educate self and
group

Salah Jarrad 9Aug 24, 2006 - Revision A

Our Recipe For Rolling Out PL

Phase I: First 7 to 9 months

1) VP of Software & systems and staff self educate on
Software product line

2) Volunteered a few engineers from the technical ranks to
enroll in the education (trail blazers)

3) Engaged Luminary Software to run a small pilot project
and train the organization

4) Started to educate local site management team (President
and staff)

Salah Jarrad 10Aug 24, 2006 - Revision A

Our Recipe For Rolling Out PL

Phase II: First PL design
5) Initiated first formal product line project (lead mobile phone

product for anchor customer, and 3 derivatives)
6) Reorganized all engineering into two organizations,

Platform (asset creation) org and Products org
7) Started to educate corporate (HQ) executives on PL

Phase III: Production
8. Testing the variations and customer acceptance on each

customized product
9. Introduced factory and sales force to product line
10. Mass production of each product in the line (simultaneous

launch across the world)

Salah Jarrad 11Aug 24, 2006 - Revision A

Content
Introduction

Why Product Line

Timeline of Mobile Phones
Product Line experience

Product highlights & achievements

Our Approach to PL (3 phases)

Product Line Experience & Recommendations

Our findings in comparison to SEI

Lessons learned

Summary

Salah Jarrad 12Aug 24, 2006 - Revision A

Organizational Benefits (SEI Claim)

From SEI web site: Summary of PL Organizational Benefits

1) Improved productivity
By as much as 10x

2) Decreased time to market (to field, to launch)
By as much as 10x

3) Decreased cost
By as much as 60%

4) Decreased labor needs
By as much as 10x fewer software developers

5) Increased quality
By as much as 10x fewer defects

Salah Jarrad 13Aug 24, 2006 - Revision A

Concept
Phase

Plan
Phase Develop Phase Qualify

Phase
Lifecycle

Phase
Launch
Phase

Pre-PL Product Cycle
Produce lead product in new design first, followed by 6 to 12 months for follow-on products.
Development cycle for Lead product varies depending on introduction of new technology
(available new technology vs. technology development in conjunction with product
development)

Concept
Phase

Plan
Phase Develop Phase Qualify

Phase
Lifecycle

Phase
Launch
Phase

Concept
Phase

Plan
Phase Develop Phase Qualify

Phase
Lifecycle

Phase
Launch
Phase

1st Generation Product (s)
2nd Generation or
follow-on Product (s)

3rd Generation or
follow-on Product (s)

Design life span for Handset Product family before need for
total re-design or total technology change (3 to 5 years)

100 to 150 SY~200 SY300 Staff years

6 to 12 months cycle

$ to $$
Limited changes and
upgrades

6 to 12 months cycle

$$
Limited changes and
upgrades

18 to 24 months cycle

$$$

Salah Jarrad 14Aug 24, 2006 - Revision A

Develop Phase Qualify
Phase

Our PL Product Cycle
Slightly longer cycle to develop assets and reach 1st production of products, but
many more products can be produced

Concept
Phase

Plan
Phase Develop Phase Qualify

Phase
Lifecycle

Phase
Launch
Phase

1st Generation Product (s)

Upgraded and added assets

50 to 100 SY per product~350 Staff years

0 to 6 months cycle

$
PL planned variability

18 to 30 months cycle

$$$$

Develop Phase Qualify
Phase

More product variants

Design life span for Handset Product family before need for
total re-design or total technology change (3 to 5 years)

Salah Jarrad 15Aug 24, 2006 - Revision A

Benefits
Difficult for companies to recognize the benefits of PL (before & after
comparisons) without measuring customer coverage and satisfaction

Market coverage (Addressing more customers needs)
Before After

1 main product, 2 derivatives
with limited customization / variation

Multiple products,
1 or more for each customer

Greater level of customization

600 SY or more for 3 Products with limited
customization / Variation

1st product: 300 Staff years
2nd Product: ~200 staff years

Other follow-on: ~100 SY

Response of Business manager “About time! We expected this and
more from engineering all along, finally they are beginning to deliver”

650 SY for 8 product in the PL, with
greater level of customization

350 SY for 5 products
100 SY for follow-on 3 products

Salah Jarrad 16Aug 24, 2006 - Revision A

Summary: Organizational Benefits

1) Improved productivity
By as much as 10x

2) Decreased time to
market

By as much as 10x

3) Decreased cost
By as much as 60%

4) Decreased labor needs
By as much as 10x fewer
software developers

5) Increased quality
By as much as 10x fewer
defects

Was not as much the case for us, however:

Asset creation takes much more, but gains
realized when producing multiple products

For follow-on products, also allows for more
variants (customization for each customer)

For total PL when used for full product (s)
life (3 or more years)

Needed to maintain the same level of
staffing, but output is increased

Didn’t experience quality difference, but
increased ability to offer more products

Salah Jarrad 17Aug 24, 2006 - Revision A

Lesson Learned

Phase I
Resistance

Phase II
Impact of
Changes

Phase III
Early

involvement of
all business
functions

Addressing late
introduction of PL to
factory and sales

Impact of multiple
changes at the
same time (org,
process, design and
assembly methods)
Architecture lessons

Management as
well as rank and file
resistance

Salah Jarrad 18Aug 24, 2006 - Revision A

Resistance

Encountered resistance in all levels across the company

Our Recipe for educating/
rollout. Sequential ramp-up

1) VP of Software & Staff (later
VP of Eng)

2) Technical people

3) Local site management

4) Corporate HQ management

5) Other business functions

Recommendation from our
experience
Identify management and
technical staff champions

Roll-out in parallel to
management and technical staff

Be aggressive in obtaining
corporate HQ management
support

Start with all business functions
as soon as HQ managers
support the effort

Limit changes but deploy
broidery

.

Salah Jarrad 19Aug 24, 2006 - Revision A

Group Structure & Interactions

Introduced PL concept, operational changes and total
organization changes all at once confused organization
for well over a year

SEI publication Our Initial Implementation

Application Engineering
Groups

Domain Engineering
Groups

Architecture Group

artifacts

assets

productsProduct
requirements

generic
requirements

Products Engineering
Group

Platform Engineering
Group

Architecture
Group

artifacts

assets

productsProduct
requirements

generic
requirements

.

Salah Jarrad 20Aug 24, 2006 - Revision A

Recommendations

Decide how you will create assets, within product
development or before. Test what organization and
business culture will support, seek input thru surveys and
questionnaires

Roll out changes slowly, assess impact of each change

Focus on defining roles & position, prepare and train
people on new roles rather than forcing organization
changes

Use as much of org established terminology as possible

.

Salah Jarrad 21Aug 24, 2006 - Revision A

Architecture lessons

Most consumer electronics product designs don’t start from
scratch, most depend on many acquired sub-systems and
components

Architecture and PL concepts can be introduced
independent of one another. PL helps you manage your
design and business, architecture supports PL needs

.

Focus on creating architecture framework as a communication and
decision making tool

Separate introducing architecture design (in not already established)
and changes from introducing PL concepts to avoid organization
resisting to both as one and the same

Salah Jarrad 22Aug 24, 2006 - Revision A

Enrolling Other business functions

We introduced the PL concept (multiple products from 1
design, higher level of customization) to factory and sales
very late in the design cycle, we encountered tremendous
resistance, confusion and abdication of responsibility

We assumed more responsibilities and had to develop
product assembly and customization tools for factory use

Don’t wait, involve all other business functions in PL very early on, get
their buy in and prepare them for the positive change

.

Salah Jarrad 23Aug 24, 2006 - Revision A

Other Lessons

PL pays off when sustained beyond one product design
cycle, and when more products are produced from the PL

We never reached
far beyond the
payoff point

Salah Jarrad 24Aug 24, 2006 - Revision A

Summary

Very positive results from doing Product Line
Gained efficiency (2 to 3x)
Significant flexibility and customization for each
customer

Change is always difficulty, spend more time planning
for change, do less but deploy broadly

i.e involve all business functions early on

Give Product Line Practice more time to see maximum
benefits

Salah Jarrad 25Aug 24, 2006 - Revision A

Backup Slides or slides that will be eliminated

Salah Jarrad 26Aug 24, 2006 - Revision A

Simple View of Product Development Cycle

System Design / Architecture
6-9 Months

Implementation & Integration
6-7 Months

Test & Acceptance
4-6 Months

Total Cycle of 12 to 22 Months

“New” Factor

2-4 Months

“New” Factor

2-4 Months

“New” Factor

2-4 Months

6-10 Months

New
Technology

New
Technology

New Technology,
Customer or Market

Platform
technology
development
precedes product
Ex: S60 platform
development

handset Experience

120 Staff years for
Software only

Salah Jarrad 27Aug 24, 2006 - Revision A

Basic
System

Integration,
44%

Changes,
25%

Operators'
Specs,

19%

Company
Requirements,

13%

Handset Software Development Effort

Development effort & cost to integrate platform (s) still
relatively high due to increase product complexity

System integration
Full S60 platform
functions (including data
services, T9, Bluetooth,
Multimedia)

Symbian & Modem
Company Internal Specs
Sub-LCD, Icons, Voice

Recognition, bundled
apps (office suite)

Customization

Changes
Mostly caused by

poorly defined
requirements, late
requirements, etc

from Internal & operators

Operators’ Specs and Apps

Breakdown of Development Effort

Salah Jarrad 28Aug 24, 2006 - Revision A

First, Some Clarification

Concept
Phase

Plan
Phase Develop Phase Qualify

Phase
Lifecycle

Phase
Launch
Phase

Much easier to
update and product
variants within the
life time of design

Ability to
spin more
variants,
maintain
assets

Longer for 1st

product, much
shorter for all
other products
from the line

Long cycle to
develop assets
first then
products

Capture
requirements
for the line,
plan assets
and products

Product Line

Follow on product
could take much
longer for unplanned
requirements

Maintain
product

Short for single
or first product

Shorter for
single product

Shorter cycle,
Focus on
requirements
and plans for
single of first
product

Traditional

New Methods in
Software Product Line Development

Charles W. Krueger
BigLever Software

SPLC 2006
August 23, 2006
Baltimore, Maryland, USA

Copyright © 2006 BigLever Software, Inc.

Pioneering versus New Generation SPL

• Pioneering case studies
are 10-20 years old

• What’s new?

• New Generation reflects
best practices learned
- methods

- tools

- techniques

• Order-of-magnitude
improvements enable
mainstream adoption

2

$

Products

Product-centric

ROI Pioneering SPL

Copyright © 2006 BigLever Software, Inc.

Pioneering versus New Generation SPL

• Pioneering case studies
are 10-20 years old

• What’s new?

• New Generation reflects
best practices learned
- methods

- tools

- techniques

• Order-of-magnitude
improvements enable
mainstream adoption

2

$

Products

New SPL

Product-centric

ROI Pioneering SPL

Copyright © 2006 BigLever Software, Inc.

Three New Generation Methods

• Software Mass Customization
- Application Engineering Considered Harmful

• Minimally Invasive Transitions
- Work Like a Surgeon, Not Like a Coroner

• Bounded Combinatorics
- As a practical limit, the number of possible products in your product line

should be less than the number of atoms in the universe

3

Copyright © 2006 BigLever Software, Inc.

Software Mass Customization
Application Engineering Considered Harmful

4

Copyright © 2006 BigLever Software, Inc.

Why Software Mass Customization?

• Manual application engineering is harmful to software
product line economics
- Leads to labor intensive duplication, divergence, merging and

coordination, particularly in evolution and maintenance

- Has many of the product-centric characteristics of clone-and-own

- Glue code is one-off development, which inhibits domain-level reuse,
refactoring and evolution

- Dichotomy of domain engineers and application engineers creates an
“us versus them” cultural divide in the organization

5

Copyright © 2006 BigLever Software, Inc.

Software Mass Customization

6

• Develop portfolio as a
single system rather than a
multitude of products

• Automation rather than
Application Engineering

Product A

Product B

Product M
Core Asset 1

Variation Points

Core Asset 1

Variation Points

Core Asset N

Variation Points

Product
Feature Profiles

...

...
Product

Configurator

Baseline 1 Baseline 2 Baseline 3
Product

Feature Profiles
Core Asset 1

Core Asset 2

Core Asset N
...

Copyright © 2006 BigLever Software, Inc.

Minimally Invasive Transitions
Work Like a Surgeon, Not Like a Coroner

7

Copyright © 2006 BigLever Software, Inc.

Why Minimally Invasive Transitions?

• Most organizations cannot tolerate significant disruption to
ongoing production schedules
- SPL Return-on-Investment arguments suggest an easy business case

- Not true when the Investment means diverting enough expertise to
disrupt ongoing production

- Primary impediment to moving to SPL in mainstream practice

8

Copyright © 2006 BigLever Software, Inc.

Minimize Start State to Target State

9

• Assumption: there is already a product line
- Work like a surgeon. Not like a coroner.

- Avoid the lure of the green field

• Reuse legacy assets for SPL assets

• Don’t introduce the domain engineering and application
engineering dichotomy in the organization

• Start with minimalist and reactive scoping

Copyright © 2006 BigLever Software, Inc.

Incremental Return on
Incremental Investment

10

• Decompose initial transition into incremental repetitions
- One product at a time

- One lifecycle phase at a time

- One component or subsystem at a time

- One team at a time

• Use improvements from one increment to pay for next

• Non-disruptive transitions with accelerating production

Copyright © 2006 BigLever Software, Inc.

Bounded Combinatorics
As a practical limit, the number of possible products in your product

line should be less than the number of atoms in the universe

11

Copyright © 2006 BigLever Software, Inc.

Why Worry about Combinatorics?

• 216 boolean features == 1065 feature combinations
- That’s the number of atoms in the universe

• 33 boolean features == 8x109 feature combinations
- One for every human on the planet

• Domain engineers gleam over models with 1000 features

• Test engineers spontaneously combust over models with
1000 features

12

Copyright © 2006 BigLever Software, Inc.

Harnessing Combinatoric Complexity

• Time-tested computer science techniques apply well
- Abstraction

- Modularity

- Controlling scope

- Controlling entropy

• Uniquely applied for software mass customization

13

Copyright © 2006 BigLever Software, Inc.

Software Mass Customization Abstraction
Layers

14

Variation Point

Feature

Feature Profile

Composition Profile

Source-level variation in the product line
assets. Alternatives expressed in terms of
feature values.

The feature model. Abstraction for variability
in the application domain. Localized or
aspect-oriented.

An instantiation, based on a set of decisions
in the feature models. Abstraction for a point
solution, with specific benefits.

A composition of profiles of subsystems. A
composition is itself a profile. Abstraction for
hierarchical product line assemblies.

Copyright © 2006 BigLever Software, Inc.

Composition and Hierarchical Product Lines

15

AutoCommerce

Showroom Site

Global

Fulfillment

Inventory Purchase Apache Perl

WebServer

Python SQL

5 / 6480 Compared to
5 / 9,500,000,000

with a
monolithic feature model

Key:
Product Definitions / Scope Combinatorics

5 / 600 4 / 256

1 / 1 4 / 15

4 / 320

5 / 9

3 / 192

2 / 2 3 / 3 3 / 3 3 / 3

Copyright © 2006 BigLever Software, Inc.

Conclusions

• SPL field has 10-20 years of experience to draw on

• A new generation of case studies is emerging based on new
methods, tools and techniques
- Software mass customization

- Minimally invasive transitions

- Bounded combinatorics

• Making it orders of magnitude easier to gain even greater
benefits of SPL approach

16

Copyright © 2006 BigLever Software, Inc. 17

Copyright © 2006 BigLever Software, Inc. 18

Ideal Balance of Domain Engineering versus
Application Engineering?

100%
Domain

Engineering

100%
Application
Engineering

Total cost of
product line

development

...

Product #1

Product #2

Product #3

Product #4

Product #5

Product #6

?

The 10th International Software Product Line Conference (SPLC 2006)

 10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

2006 Software Product Line Hall of Fame Inductee

RAID controller firmware product line, LSI Logic - Engenio Storage Group

The Engenio Storage Group of LSI Logic produces high performance, high availability RAID storage systems.
Engenio has established a reputation of providing high-value scalable systems, consistently releasing leading
edge performance and being first to market with key technology transitions. Engenio sells products in an OEM
business model through strategic partnerships with other companies who deliver complete end user solutions
with unique combinations of hardware, software and services for applications including transaction processing,
e-mail, data warehousing and scientific research.

Engenio transitioned to a software product line approach for its embedded RAID controller firmware in order to
satisfy growing customer demand for product differentiation as well as to support an expanding set of
controller hardware platforms. The product line was created with about 4 developer months of effort using an
extractive approach by merging multiple existing code sets into a single set of code with engineered variation
points. The product line was strategically deployed to the development staff such that no product delivery
schedules were impacted. New products were added to the product line using a reactive approach,
restructuring and re-architecting when necessary to meet development requirements. Two years after the
initial deployment, the product line was capable of producing nearly 90 different controller firmware products,
supporting multiple controller hardware platforms and multiple customer customizations.

● BigLever Software Case Study: Engenio on http://www.biglever.com/
● Hetrick, W., Moore, J. and Krueger, C. Incremental Return on Incremental Investment: Engenio's

Transition to Software Product Line Practice. OOPSLA Proceedings 2006. Portland, Oregon. October
2006.

What is the Software Product Line Hall of Fame?

A hall of fame serves as a way to recognize distinguished members of a community in a field of endeavor.
Those elected to membership in a hall of fame represent the highest achievement in their field, serving as
models of what can be achieved and how. Each Software Product Line Conference culminates with a session
in which members of the audience nominate systems for induction into the Software Product Line Hall of
Fame. These nominations feed discussions about what constitutes excellence and success in product lines.
The goal is to improve software product line practice by identifying the best examples in the field. Nominations
are acted on by a panel of expert judges, who decide which nominees will be inducted into the Hall of Fame.

You can read about the current members of the Software Product Line Hall of Fame at
http://www.sei.cmu.edu/productlines/plp_hof.html.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/2006_spl_hof.html [10/16/2008 1:20:18 PM]

http://www.sei.cmu.edu/splc2006
http://www.biglever.com/
http://www.sei.cmu.edu/productlines/plp_hof.html
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

1

PLA at Bosch Gasoline Systems

GS-EC/ESA

Bosch Gasoline Systems:
Engine Control Software Product Line

Dipl.-Ing. Christian Tischer
Dipl.-Ing. Andreas Müller
Robert Bosch GmbH

Hall of Fame Presentation Aug 24th 2006

2

Bosch GS-EC Software Product Line

GS-EC/ESA | 8/24/2006 | Nr. 20918 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all
rights of disposal such as copying and passing on to third parties.

Gasoline Systems

Bosch Gasoline Systems (GS)
Ł GS is a system provider for gasoline engine systems

l Software for Engine Control Units (ECU)
l Hardware for ECUs
l Sensors and Actuators
l Software Calibration

Ł 4 Million ECUs per year

Ł About 1000 software and calibration engineers

Ł About 1500 program versions per year with
l 400 Functions
l 1600 Files

Ł Variance of the software products is mainly driven by
l Customers: vehicles, engines, gear units, ...
l Countries: emission laws, diagnosis laws, fuel types, theft protection, ...

3

Bosch GS-EC Software Product Line

GS-EC/ESA | 8/24/2006 | Nr. 20918 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all
rights of disposal such as copying and passing on to third parties.

Gasoline Systems

Achievements from PLA Oct. 2000 – Aug. 2006

Ł Organisation and processes
were streamlined for
product line development

Ł Two product lines
established successfully:
- New Value Motronic product line
- Standard Motronic product line

Ł Layered architecture enabled new business model:
ECU Hardware plus HWE and Infrastructure-SW

Core Asset
Development

Management

Product
Development

4

Bosch GS-EC Software Product Line

GS-EC/ESA | 8/24/2006 | Nr. 20918 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all
rights of disposal such as copying and passing on to third parties.

Gasoline Systems

Processes and Organization

Scoping
Product Line Development

Platform Development

Customer Product

Customer Specific Development

Requirements Analysis SW Product Design Integration Calibration

C
ha

ng
e

R
eq

ue
st

SW Architecture
Design

ImplementationRequirements Analysis
Feature Analysis Validation

SW-Component
Design

ImplementationRequirements Analysis
Feature Analysis Validation

SW-Component
Design

Scoping
SW Architecture

Design

SW-Component
Design

SW-Component
Design

New or strongly modified

Influenced

Requirements Analysis
Feature Analysis

Requirements Analysis
Feature Analysis

Requirements Analysis SW Product Design Integration

PLTP perfo
rm

ed with
 SEI in

 Nov 2001

Internal “Re-Probe” done March 2004

GS SW Processes are certif
ied CMMI Level 3 since 2004

5

Bosch GS-EC Software Product Line

GS-EC/ESA | 8/24/2006 | Nr. 20918 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all
rights of disposal such as copying and passing on to third parties.

Gasoline Systems

Scoping for GS Engine Control Units

Standard product line successfully redesigned from legacy software
(-25% memory consumption, improved calibratability and reusability)

New Value Motronic product line is well accepted
by the addressed market segments

6

Bosch GS-EC Software Product Line

GS-EC/ESA | 8/24/2006 | Nr. 20918 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all
rights of disposal such as copying and passing on to third parties.

Gasoline Systems

Software Architecture

Ł Architecture evaluated in two ATAMs in March 2001 and Apr 2002
Ł Architecture has influenced standardization in AUTOSAR
Ł Good basis for future requirements,

e.g. easy integration of hybrid vehicles requirements

Process Description Dependencies Remark Validity C
P

U
 In

t

P
C

P
 In

t

C
al

 D
at

a

E
E

P
R

A
M

E
N

V
R

A
M

D
S

M

S
P

I

A
D

C

T1
5

M
R

 (
N

P
S

S
)

M
R

 (
P

S
S

)

Gpta_Proc_Ini Initialize GPTA n n n n n n n n r y n
Port_Proc_Ini Initialize ports Gpta_Proc_Ini n n n n n n n n r y n
Spi_Proc_Ini Initialize SPI Port_Proc_Ini Has to be before any SPI access n n n n n n n n r y n
Eep_Proc_Ini Initialize EEPRAM Spi_Proc_Ini Has to be before any access to values from EEPRAM n n n n n n r n r y n
Dme_Proc_Ini Initialize DME Eep_Proc_Ini Has to be very early in SYC_INI to allow other init

processes to use calibration values
n n n y n n r n r y n

Eep_EnvRam_Proc_Ini Initialize ENVRAM Eep_Proc_Ini
Dme_Proc_Ini

Has to be before any access to values from ENVRAM n n y y n n r n r y n

DSMDSQ_Init Initialize DSM Eep_Proc_Ini Has to be before any DSM access (signal qualities, n n y y y n r n r y n
DSM_DRCInit Dme_Proc_Ini fault checks, ...) n n y y y n r n r y n
DSMDFC_Init Eep_EnvRam_Proc_Ini n n y y y n r n r y n
DSM_InitInh n n y y y n r n r y n
DFES_Init n n y y y n r n r y n
DSMAUX_Init n n y y y n r n r y n
Cy320_Proc_Ini Initialize CY320 Spi_Proc_Ini n n y y y y r n r y n
ExeCon_StateMachine Set the system state to SYC_INI Has to be very early in SYC_INI to provide system state

for other init processes
n n y y y y r n r y n

SyC_Main_Proc_1_Ini Update the system state variables, trigger
switching of main relay

ExeCon_StateMachine
Cy320_Proc_Ini
Dme_Proc_Ini

Has to be directly after ExeCon_StateMachine n n y y y y r n r y n

SyC_PreDrv_Proc_Ini Initialize pre-drive control n n y y y y r n r y n
SyC_PostDrv_Proc_Ini Initialize post-drive control n n y y y y r n r y n
MRly_VD_Proc_Ini Switch on main relay SyC_Main_Proc_1_Ini

Cy320_Proc_Ini
Switching of main relay depends on configuration
(NPSS/PSS, main relay on/off in SYC_PREDRIVE)

n n y y y y r n r y n

SYC_OFF SYC_BOOT SYC_PROC_INIT
(one-time exec.)[Wakeup

or T15 on]

SYC_PROC_EXEC
(cyclic exec.)

[T15 off]

SYC_DRIVE

[T15 on]

[T15 on]
[post-drive
completed]

SYC_SHUTDOWN

[exit] *

[T15 on]

any state

[Watchdog-Time-
out, SW-Reset]

OS not running OS not runningOS running

SYC_PREDRIVE

SYC_
POSTDRIVE

SYC_INI

SYC_INISYN

SYC_INIEND SYC_POST_
OS_EXIT

main

Customer
Block

Startup
Block

7

Bosch GS-EC Software Product Line

Department | 8/24/2006 | Nr. 20918 | © Robert Bosch GmbH reserves all rights even in the event of industrial property rights. We reserve all
rights of disposal such as copying and passing on to third parties.

Gasoline Systems

Elements of GS’ Product Line Initiative

Architecture
Scoping

Core asset
development,

feature Models

Stability:
product support,

refactoring

Automation:
ASW code generation
basic SW configuration

product derivation

Continuous control,
maintenance

and improvement

Supporting
organization

and processes

Quality
assurance,
test cases

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Keynote Speakers

Carliss Baldwin, Harvard Business School - Unmanageable Design Architectures: What They Are and Their
Financial Consequences

Gregor Kiczales, University of British Columbia - Radical Research In Modularity: Aspect-Oriented
Programming and Other Ideas

Unmanageable Design Architectures: What They Are and Their Financial Consequences
by Carliss Y. Baldwin

Behind every innovation lies a new design. Large or complex designs, involving many people, require
architectures that create a sensible subdivision of the design tasks.

Design architectures (and the systems built from them) may be "manageable" or "unmanageable." By
manageable, I mean that the artifacts created within the architecture will stay within the boundaries of a single
enterprise (or a supply chain controlled by a dominant firm). Windows and Office are manageable
architectures by this definition, whereas Apache and Linux are coordinated but not manageable.
"Manageable" architectures give rise to product lines and product families, while "unmanageable"
architectures give rise to modular clusters and open source communities.

There are important technical properties of a design architecture that affect its manageability. In this speech, I
will talk about how designs draw resources from the economy, and what technical properties make an
architecture "manageable" or "unmanageable." These properties, I will argue, are not good or bad in
themselves, but they affect economic incentives and patterns of competition over new products and designs.
Thus design architecture is an important consideration in formulating a sound product line strategy.

Radical Research In Modularity: Aspect-Oriented Programming and Other Ideas
by Gregor Kiczales

Modularity is a motherhood principle in our field. Just as politicians love to kiss babies for the camera,
computer scientists love to preach the virtues of good modularity.

But what does modularity mean? In our field the idea has typically been equated with a notion of cellular or
even block structure, where each block or module defines its interface with the surrounding modules. A close
examination suggests this notion is too restrictive: it fails to support construction of complex systems, it fails to
account for practice, and it fails even to be intuitively satisfying.

Work in biology and other fields suggests that there are many other possible kinds of modularity, and recent
research in aspect-oriented programming shows what some new forms of modularity for software might be.
Building on this we outline a line of attack for discovering other kinds of modularity and making productive use
of new kinds of modularity in building real systems.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/keynotes.html [10/16/2008 1:20:40 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.people.hbs.edu/cbaldwin/
http://www.cs.ubc.ca/~gregor/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

Technical Program
10th International Software Product Line Conference

(SPLC 2006)
21-24 August 2006

Baltimore, Maryland, USA

Conference Program

21-22 August 2006
Conference workshops (W), tutorials (T), and the Software Product Lines Doctoral Symposium (DS).

23-24 August 2006
Research papers (R), experience reports (E), panels (P), demonstrations, product line hall of fame, and birds-of-
a-feather sessions.

Monday, 21 August 2006
7:00 - 8:30 Conference Registration

8:30 - 12:00 1:00 - 5:00
 T1 An Introduction to Product Line Requirements

Engineering
Brian Berenbach

 T4 Creating Reusable Test Assets in a
Software Product Line
John McGregor

 T2 New Methods Behind the New Generation of
Software Product Lines Success Stories
Charles Krueger

 T5 Leveraging Model Driven Engineering in
Software Product Lines
Bruce Trask, Angel Roman

 T3 Introduction to Software Product Lines
Patrick Donohoe

 T6 Introduction to Software Product Line
Adoption
Linda Northrop, Larry Jones

 T8 Software Product Line Variability Management
Klaus Pohl, Frank van der Linden, Andreas Metzger

 W2 APLE - 1st International Workshop on Agile Product Line Engineering
Organizers: Kendra Cooper, Xavier Franch

 W3 Managing Variability for Software Product Lines: Working With Variability Mechanisms
Organizers: Paul Clements, Dirk Muthig

Note: Breaks are scheduled from 10:00 - 10:30 and 3:00 - 3:30. Lunch will be served from 12:00 - 1:00.

Tuesday, 22 August 2006
7:00 - 8:30 Conference Registration

8:30 - 12:00 1:00 - 5:00
 T9 Domain-Specific Modeling and Code

Generation for Product Lines
Juha-Pekka Tolvanen

 T12 Lightweight Dependency Models for Product
Lines
Neeraj Sangal

 T10 The Scoping Game
Mark Dalgarno

 T13 Transforming Legacy Systems into Product
Lines
Danilo Beuche

http://www.sei.cmu.edu/splc2006/tech_program.html (1 of 5) [10/16/2008 1:20:43 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.sei.cmu.edu/splc2006/aple_workshop.html
http://www.sei.cmu.edu/splc2006/man_variability_workshop.html

The 10th International Software Product Line Conference (SPLC 2006)

 T11 Using Feature Models for Product
Derivation
Olaf Spinczyk, Holger Papajewski

 T14 Feature Modularity in Software Product Lines
Don Batory

 T15 Generative Software Development
Krzysztof Czarnecki

 DS Software Product Lines Doctoral Symposium
Organizers: Isabel John, Len Bass, Giuseppe Lami

 W4 SPLiT'06: 3rd Workshop on Software Product Line Testing
Organizers: Peter Knauber, Charles Krueger, Tim Trew

 W5 OSSPL - First International Workshop on Open Source Software and Product Lines
Organizers: Frank van der Linden, Piergiorgio Di Giacomo

 5:00 - 7:00 Conference Reception

Note: Breaks are scheduled from 10:00 - 10:30 and 3:00 - 3:30. Lunch will be served from 12:00 - 1:00.

Wednesday, 23 August 2006
 7:00 - 8:30 Conference Registration

 7:30 - 8:30 Breakfast

 8:30 - 9:00 Opening Remarks

 9:00 - 10:00 Keynote Address

Unmanageable Design Architectures: What They Are and Their Financial
Consequences
Carliss Baldwin, Harvard Business School

 10:00 - 10:30 Break

 10:30 - 12:00 Session R1: Product Management

Session moderator: Joe Bauman, Hewlett-
Packard

A Practical Guide to Product Line Scoping
Isabel John, Fraunhofer IESE
Jens Knodel, Fraunhofer IESE
Theresa Lehner, Fraunhofer IESE
Dirk Muthig, Fraunhofer IESE

Predicting Return-on-Investment for
Product Line Generations
Dharmalingam Ganesan, Fraunhofer IESE
Dirk Muthig, Fraunhofer IESE
Kentaro Yoshimura, Hitachi

From Marketed To Engineered Software
Product Lines
Andreas Helferich, University of Stuttgart
Klaus Schmid, University of Hildesheim
Georg Herzwurm, University of Stuttgart

Panel P1: Product Derivation
Approaches

Panel moderator: David Weiss, Avaya Labs

Panelists:
Danilo Beuche, pure-systems
Charles Krueger, BigLever Software
Rob van Ommering, Philips Research
Juha-Pekka Tolvanen, MetaCase

Model problem: Interactive Television
Applications

 12:00 - 1:30 Lunch
Demonstrations: IDI & BigLever

http://www.sei.cmu.edu/splc2006/tech_program.html (2 of 5) [10/16/2008 1:20:43 PM]

http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/split_workshop.html
http://www.people.hbs.edu/cbaldwin/

The 10th International Software Product Line Conference (SPLC 2006)

 1:30 - 3:00 Session R2: Feature Modeling

Session moderator: Gary Chastek, Software
Engineering Institute

A Unified Conceptual Foundation for
Feature Modelling
Timo Asikainen, Helsinki University of
Technology
Tomi Männistö, Helsinki University of
Technology
Timo Soininen, Helsinki University of
Technology

Feature Models Are Views on Ontologies
Krzysztof Czarnecki, University of Waterloo
Chang Hwan Peter Kim, University of Waterloo
Karl Trygve Kalleberg, University of Bergen

Weaving Behavior into Feature Models for
Embedded System Families
Thomas Brown, Queen's University of Belfast
Rachel Gawley, Queen's University of Belfast
Rabih Bashroush, Queen's University of
Belfast
Ivor Spence, Queen's University of Belfast
Peter Kilpatrick, Queen's University of Belfast
Charles Gillan, Queen's University of Belfast

Session E1: Experience Reports

Session chair: Peter Knauber, Mannheim
University of Applied Sciences

Transitioning to a Software Product
Family Approach � Challenges and Best
Practices
Michael Kircher, Siemens AG
Christa Schwanninger, Siemens AG
Iris Groher, Siemens AG

Experiences with Product Line
Development of Embedded Systems at
Testo AG
Ronny Kolb, Fraunhofer Institute for
Experimental Software Engineering (IESE)
Isabel John, Fraunhofer Institute for
Experimental Software Engineering (IESE)
Jens Knodel, Fraunhofer Institute for
Experimental Software Engineering (IESE)
Dirk Muthig, Fraunhofer Institute for
Experimental Software Engineering (IESE)
Uwe Haury, Testo AG
Gerald Meier, Testo AG

The JTRS Program: Software-Defined
Radios as a Software Product Line
Eric Koski, Harris Corporation
Charles Linn, Harris Corporation

 3:00 - 3:30 Break

 3:30 - 5:30 Session R3: Realization/Derivation

Session moderator: Svein Hallsteinsen,
SINTEF ICT

Organizing the Asset Base for Product
Derivation
John Hunt, Clemson University

Optimizing the Selection of Representative
Configurations in Verification of Evolving
Product Lines of Distributed Embedded
Systems
Kathrin Scheidemann, BMW Car IT GmbH

Service Grid Variability Realization
Jilles Van Gurp, Nokia Research Center,
Helsinki
Juha E. Savolainen, Nokia Research Center,
Helsinki

New Methods in Software Product Line
Development
Charles Krueger, BigLever Software

Panel P2: Testing in a Software Product
Line

Panel moderator: Klaus Pohl, University of
Duisburg-Essen

Panelists:
Georg Grütter, Robert Bosch GmbH,
Germany
John D. McGregor, Clemson University,
USA
Andreas Metzger, University of Duisburg-
Essen, Germany
Tim Trew, Philips Research, The
Netherlands

Model problem: The eShop Product Line

 5:00 - 5:30 DoD Experience Report

The Advanced Multiplex Test SYstem
(AMTS): A Product Line Approach for
Army Aviation Maintenance
Ken Capolongo

 6:00 - 7:30 SEI Reception

http://www.sei.cmu.edu/splc2006/tech_program.html (3 of 5) [10/16/2008 1:20:43 PM]

The 10th International Software Product Line Conference (SPLC 2006)

 7:30 Birds-of-a-Feather Sessions

● DoD Birds-of-a-Feather Session
● BigLever Birds-of-a-Feather Session
● Other Birds-of-a-Feather Session(s)

Thursday, 24 August 2006
 7:00 - 8:30 Conference Registration

 7:30 - 8:30 Breakfast

 8:30 - 9:00 Workshop Reports

 9:00 - 10:00 Keynote Address

Radical Research In Modularity: Aspect-Oriented Programming and Other Ideas
Gregor Kiczales, University of British Columbia

 10:00 - 10:30 Break

 10:30 - 12:00 Session R4: Variability Management

Session moderator: Krzysztof Czarnecki,
University of Waterloo

Combining Feature-Oriented Analysis and
Aspect-Oriented Programming for Product
Line Asset Development
Kwanwoo Lee, Hansung University
Kyo Kang, Pohang University of Science and
Technology
Minseong Kim, Sogang University
Sooyong Park, Sogang University

Requirements Management for Product Lines:
Extending Professional Tools
Klaus Schmid, University of Hildesheim
Karsten Krennrich, HOOD GmbH
Michael Eisenbarth, Fraunhofer IESE

Extending UML2 Metamodel for
Complementary Usages of the «extend»
Relationship within Use Case Variability
Specification
Alexandre Braganca, Polytechnic Institute of
Porto
Ricardo Machado, Minho University

Session E2: Experience Reports

Session chair: Paul Clements, Software
Engineering Institute

Product Line Adoption: A Vice
President's View
Salah Jarrad, JarrNet, LLC

She said, he said.
Ann Martin, Engenio Storage Group
William (Bill) Hetrick, Engenio Storage
Group

Using Model-Driven Engineering to
Complement Software Product Line
Engineering in Developing Software
Defined Radio Components and
Applications
Vikram Bhanot, PrismTech Corporation
Dominick Paniscotti, PrismTech
Corporation
Angel Roman, PrismTech Corporation
Bruce Trask, PrismTech Corporation

 12:00 - 1:30 Lunch
Demonstrations: Pure-Systems, Meta-case, & ESI

http://www.sei.cmu.edu/splc2006/tech_program.html (4 of 5) [10/16/2008 1:20:43 PM]

http://www.cs.ubc.ca/~gregor/

The 10th International Software Product Line Conference (SPLC 2006)

 1:30 - 3:00 Session R5: Run Time Dynamics

Session moderator: Frank van der Linden, Philips
Medical Systems

A Feature-Oriented Approach to Developing
Dynamically Reconfigurable Products in
Product Line Engineering
Jaejoon Lee, Fraunhofer Institute for
Experimental Software Engineering (IESE)
Kyo C. Kang, Pohang University of Science and
Technology

Using Product Line Techniques to Build
Adaptive Systems
Svein Hallsteinsen, SINTEF ICT
Arnor Solberg, SINTEF ICT
Erlend Stav, SINTEF ICT
Jacqueline Floch, SINTEF ICT

PLA-based Runtime Dynamism in Support of
Privacy-Enhanced Web Personalization
Yang Wang, University of California, Irvine
Alfred Kobsa, University of California, Irvine
André Van Der Hoek, University of California,
Irvine
Jeffery White, University of California, Irvine

Panel P3: Product Line Research

Panel moderator: Liam O'Brien, Lero,
The Irish Software Engineering
Research Centre

Panelists:
Paul Clements, Software Engineering
Institute, USA
Kyo Kang, POSTECH, Korea
Dirk Muthig, Fraunhofer IESE, Germany
Klaus Pohl, Lero, The Irish Software
Engineering Research Centre &
University of Duisburg-Essen, Germany

 3:00 - 3:30 Break

 3:30 - 4:30 Product Line Hall of Fame

 4:30 Conference Ends

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/tech_program.html (5 of 5) [10/16/2008 1:20:43 PM]

http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Conference Workshops

Workshop Chair: Birgit Geppert, AVAYA Labs

Note: Some of the workshops extended their submission deadline. Please check the workshop descriptions
for more detail. * denotes workshops with an extended deadline.

21 August 2006
W2* APLE - 1st International Workshop on Agile Product Line Engineering

Organizers: Kendra Cooper, Xavier Franch
W3 Managing Variability for Software Product Lines: Working With Variability Mechanisms

Organizers: Paul Clements, Dirk Muthig

22 August 2006
W4* SPLiT'06: 3rd Workshop on Software Product Line Testing

Organizers: Peter Knauber, Charles Krueger, Tim Trew
W5* OSSPL - First International Workshop on Open Source Software and Product Lines

Organizers: Frank van der Linden, Piergiorgio Di Giacomo

Note: In addition to the above workshops, the doctoral symposium will be held on the 22nd.

DS Software Product Lines Doctoral Symposium
Organizers: Isabel John, Len Bass, Giuseppe Lami

Show Complete Details

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/workshops.html [10/16/2008 1:20:44 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
mailto:bgeppert@research.avayalabs.com
http://www.sei.cmu.edu/splc2006/aple_workshop.html
http://www.sei.cmu.edu/splc2006/man_variability_workshop.html
http://www.sei.cmu.edu/splc2006/split_workshop.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Location/Hotel Reservation

Baltimore Marriott Waterfront
700 Aliceanna Street
Baltimore, Maryland, USA 21202

Phone: 1-410-385-3000
Fax: 1-410-895-1900
Toll-Free: 1-800-228-9290

A block of rooms has been reserved at the Baltimore Marriott Waterfront in Baltimore, MD. The room rate is
$179 and the government rate is $141 for single/double occupancy. The cut-off date for reservations for the
SPLC Conference is Thursday, August 3. After that date, the hotel cannot guarantee a room at the $179 rate.

You can make your reservations two ways.

By phone:
Call Marriott Reservations at 800-228-9290 and ask for the "SPLC 2006 Conference" Rate

On line:
Go the Baltimore Marriott web site by following the link below (http://marriott.com/property/propertypage/
BWIWF) and entering "splspla" in the Group Code area.

Note: The per diem rate for government attendees will be available only to active duty or civilian government
employees. ID will be required upon check-in. Retired military IDs do not qualify.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/hotel.html [10/16/2008 1:20:45 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://marriott.com/property/propertypage/BWIWF
http://www.ci.baltimore.md.us/visitor/
http://marriott.com/property/propertypage/BWIWF
http://marriott.com/property/propertypage/BWIWF
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Conference Tutorials

Tutorial Chair: Daniel J. Paulish, Siemens Corporate Research

Calendar View

21 August 2006 22 August 2006
 T1 An Introduction to Product Line Requirements

Engineering
Brian Berenbach
(Half Day - AM)

 T9 Domain-Specific Modeling and Code
Generation for Product Lines
Juha-Pekka Tolvanen
(Half Day - AM)

 T2 New Methods Behind the New Generation of
Software Product Lines Success Stories
Charles Krueger
(Half Day - AM)

 T10 The Scoping Game
Mark Dalgarno
(Half Day - AM)

 T3 Introduction to Software Product Lines
Patrick Donohoe
(Half Day - AM)

 T11 Using Feature Models for Product Derivation
Olaf Spinczyk, Holger Papajewski
(Half Day - AM)

 T4 Creating Reusable Test Assets in a Software
Product Line
John McGregor
(Half Day - PM)

 T12 Lightweight Dependency Models for Product
Lines
Neeraj Sangal
(Half Day - PM)

 T5 Leveraging Model Driven Engineering in
Software Product Lines
Bruce Trask, Angel Roman
(Half Day - PM)

 T13 Transforming Legacy Systems into Product
Lines
Danilo Beuche
(Half Day - PM)

 T6 Introduction to Software Product Line Adoption
Linda Northrop, Larry Jones
(Half Day - PM)

 T14 Feature Modularity in Software Product Lines
Don Batory
(Half Day - PM)

 T8 Software Product Line Variability Management
Klaus Pohl, Frank van der Linden, Andreas
Metzger
(All Day)

 T15 Generative Software Development
Krzysztof Czarnecki
(All Day)

Tutorial 1 (T1)
An Introduction to Product Line Requirements Engineering
Brian Berenbach
21 August 2006, (Half Day - AM)

Requirements elicitation and management has become ever more important as product lines become more
complex and time to market is shortened. Outsourcing has added a new dimension to requirements
management, exacerbating problems associated with transitioning from analysis to design. This half day
tutorial will provide an introduction to product line requirements engineering from the perspective of project
and product management: how it impacts project managers, quality assurance personnel, requirements
analysts, developers and testers. Topics covered will include product line requirements, feature modeling,
CMMI compliant requirements management and requirements analysis processes (both UML and text based).

http://www.sei.cmu.edu/splc2006/tutorials.html (1 of 6) [10/16/2008 1:20:49 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
mailto:daniel.paulish@siemens.com

The 10th International Software Product Line Conference (SPLC 2006)

Business analysts who are interested in using UML for modeling will also find the course interesting. No
formal knowledge of programming is required.

Tutorial 2 (T2)
New Methods Behind the New Generation of Software Product Lines Success Stories
Charles Krueger
21 August 2006, (Half Day - AM)

A new generation of software product line success stories is being driven by a new generation of methods,
tools and techniques. While early software product line case studies at the genesis of the field revealed some
of the best software engineering improvement metrics seen in four decades, the latest generation of software
product line success stories exhibit even greater improvements, extending benefits beyond product creation
into maintenance and evolution, lowering the overall complexity of product line development, increasing the
scalability of product line portfolios, and enabling organizations to make the transition to software product line
practice with orders of magnitude less time, cost and effort. We explore some of the important new methods
such as software mass customization sans application engineering, minimally invasive transitions, bounded
product line combinatorics, and product line lifecycle management.

Tutorial 3 (T3)
Introduction to Software Product Lines
Patrick Donohoe
21 August 2006, (Half Day - AM)

Software product lines have emerged as a new software development paradigm of great importance. A
software product line is a set of software intensive systems sharing a common, managed set of features, and
that are developed in a disciplined fashion using a common set of core assets. Organizations developing a
portfolio of products as a software product line are experiencing order-of-magnitude improvements in cost,
time to market, staff productivity, and quality of the deployed products.

This tutorial will introduce the essential activities and underlying practice areas of software product line
development. It will review the basic concepts of software product lines, discuss the costs and benefits of
product line adoption, introduce the SEI's Framework for Software Product Line Practice, and describe
approaches to applying the practices of the framework.

Tutorial 4 (T4)
Creating Reusable Test Assets in a Software Product Line
John McGregor
21 August 2006, (Half Day - PM)

This tutorial focuses on the test assets and test processes created by a software product line organization.
The tutorial will allow participants to consider how to modify existing testing practices to take advantage of
strategic reuse. The software product line approach blends organizational management, technical
management and software engineering principles to efficiently and effectively produce a set of related
products. The major test assets: test plans, test cases, test data, and test reports are created at multiple
levels of abstraction to facilitate their reuse. A product line organization also defines a test process that differs
from the test process in a traditional development organization. This tutorial will allow participants to consider
how to modify existing testing practices to take advantage of strategic reuse. At the end of this tutorial you will
be able to:

● Understand the basic concepts of testing in software product line organizations.
● Understand the benefits, costs and risks of creating reusable test assets.
● Define a test process for your product line organization.
● Identify the steps necessary to initiate these activities for your organization.

http://www.sei.cmu.edu/splc2006/tutorials.html (2 of 6) [10/16/2008 1:20:49 PM]

The 10th International Software Product Line Conference (SPLC 2006)

Tutorial 5 (T5)
Leveraging Model Driven Engineering in Software Product Lines
Bruce Trask, Angel Roman
21 August 2006, (Half Day - PM)

Model Driven Engineering (MDE) is a new innovation in the software industry that has proven to work
synergistically with Software Product Line Architectures. It can provide the tools necessary to fully harness the
power of Software Product Lines. The major players in the software industry including commerical companies
such as IBM, Microsoft, standards bodies including the Object Management Group, and leading universities
such as the ISIS group at Vanderbilt University are fully embracing this MDE/PLA combination. IBM is
spearheading the Eclipse Foundation including its MDE tools. Microsoft has launched their Software Factories
foray into the MDE space. Software groups such as the ISIS group at Vanderbilt are using these MDE
techniques in combination with PLAs for very complex systems. The Object Management Group is working on
standardizing the various facets of MDE. The goal of this tutorial is to educate attendees on what MDE
technologies are, how exactly they relate synergistically to Product Line Architectures, and how to actually
apply them using an existing Eclipse implementation.

Tutorial 6 (T6)
Introduction to Software Product Line Adoption
Linda Northrop, Larry Jones
21 August 2006, (Half Day - PM)

The tremendous benefits of taking a software product line approach are well documented. Organizations have
achieved significant reductions in cost and time to market and, at the same time, increased the quality of
families of their software systems. However, to date, there are considerable barriers to organizational
adoption of product line practices. Phased adoption is attractive as a risk reduction and fiscally viable
proposition. This tutorial describes a phased, pattern-based approach to software product line adoption. A
phased adoption strategy is attractive as a risk reduction and fiscally viable proposition. The tutorial begins
with a discussion of software product line adoption issues and then presents the Adoption Factory pattern.
The Adoption Factory pattern provides a roadmap for phased, product line adoption. The tutorial covers the
Adoption Factory in detail, including focus areas, phases, subpatterns, related practice areas, outputs, and
roles. Examples of product line adoption plans following the pattern are used to illustrate its utility. The tutorial
also describes strategies for creating synergy within an organization between product line adoption and
ongoing CMMI or other improvement initiatives.

Tutorial 8 (T8)
Software Product Line Variability Management
Klaus Pohl, Frank van der Linden, Andreas Metzger
21 August 2006, (All Day)

Tutorial participants will become familiar with the key concepts of software product line engineering and will
learn how to apply variability management in practice. The participants will be able to differentiate between
the two processes domain engineering and application engineering, and will have an understanding of the
differences between single-system development and the development activities in product line engineering.
The focus will be on requirements engineering and architectural design activities, and the relationships
between them. The participants will further have learned about the concept of variability, have practiced the
concepts through exercises, and will be able to model variability in requirements and design artifacts by using
the orthogonal variability modeling approach (OVM).

Tutorial 9 (T9)
Domain-Specific Modeling and Code Generation for Product Lines
Juha-Pekka Tolvanen
22 August 2006, (Half Day - AM)

http://www.sei.cmu.edu/splc2006/tutorials.html (3 of 6) [10/16/2008 1:20:49 PM]

The 10th International Software Product Line Conference (SPLC 2006)

Current modeling languages provide surprisingly little support for automating product line development. They
are either based in the code world using the semantically well-defined concepts of programming languages (e.
g. UML) or based on an architectural view using a simple component-connector concept. In both cases, the
languages themselves say nothing about a product family or its variants. This situation could be compared to
that of a programmer being asked to write object-oriented programs where the language does not support any
object-oriented concepts.

Most domain engineering approaches emphasize a language as an important mechanism to leverage and
guide product development in product lines. Domain engineering results in creating a language (with related
tools) for the variant specification and production that goes beyond configuring pre-built components.
Previously, the effort for implementing textual or graphical languages and related tools was considerably high.
This limited the use of domain engineering to a few cases only and hindered the use of true product family
development methods. However, recent advances in metamodeling and related technology (e.g.
metamodeling tools, Software Factory concept) as well as tools provide better support for language and
generator creation. This tutorial describes how to create domain-specific languages and generators to
automate product derivation. We inspect 20+ industry cases on language creation and demonstrate their use
with hands-on examples. Industrial experiences of this approach show remarkable improvements in
productivity (5-10 times faster variant creation) as well as capability to handle complex and large product lines
(more than 100 product variants).

Tutorial 10 (T10)
The Scoping Game
Mark Dalgarno
22 August 2006, (Half Day - AM)

Product Line Scoping is the activity of determining what products constitute the product line. i.e. the Product
Line Scope. This tutorial will introduce and explore Product Line Scoping.

By the end of the tutorial participants should:

● Understand Scoping and why it is an essential Product Line activity.
● Understand Scoping as an economic decision driven by business objectives and involving Scope trade-

offs.
● Understand the sources of information which underpin Scoping.
● Be able to identify stakeholders in the Scoping activity and relate this to their own organization.
● Be aware of alternative Scoping approaches.
● Understand Scoping as an iterative, on-going activity.
● Understand Scoping's position with respect to other Product Line activities.
● Know where to look for more information.

Tutorial 11 (T11)
Using Feature Models for Product Derivation
Olaf Spinczyk, Holger Papajewski
22 August 2006, (Half Day - AM)

The implementation of a software product line leads to a high degree of variability within the software
architecture. For an effective development and deployment it is necessary to resolve variation points within
the architecture and source code automatically during product/variant derivation. Given the complexity of most
software systems tool support is necessary for these tasks. This tutorial shows how feature models combined
with appropriate tools can provide this support. The importance of the separation of problem space modeling
and solution space modeling is discussed. Concepts how to connect both spaces using constraints and/or
generative approaches are shown. Furthermore, some typical patterns of variability in the solution space are
shown and their automatic resolution in common languages like C/C++ and Java is demonstrated. Integration
of code generators, aspect-oriented programming and software configuration management systems into the
derivation process is also discussed. The tutorial is accompanied by demonstrations of the presented
concepts with freely available tools.

http://www.sei.cmu.edu/splc2006/tutorials.html (4 of 6) [10/16/2008 1:20:49 PM]

The 10th International Software Product Line Conference (SPLC 2006)

Tutorial 12 (T12)
Lightweight Dependency Models for Product Lines
Neeraj Sangal
22 August 2006, (Half Day - PM)

This tutorial will present a practical technique for managing the architecture of software product lines using
Lightweight Dependency Models. We will demonstrate that the matrix representation used by these models
provides a unique view of the architecture and is highly scalable compared to the directed graph approaches
that are common today. We will also show a variety of matrix algorithms and transformations that can be
applied to analyze and organize the system into a form that reflects the architecture and demonstrates the
importance of managing dependencies in product lines.

During the tutorial, we will illustrate our approach by applying it to real applications each consisting of
hundreds or thousands of files. We will show how dependency models can be created for product lines and
how formal design rules can be specified to manage the evolution of these architectures. Finally, we will use
the actual dependency models to demonstrate how architecture evolves and how it often begins to degrade.

Tutorial 13 (T13)
Transforming Legacy Systems into Product Lines
Danilo Beuche
22 August 2006, (Half Day - PM)

Not every software product lines starts from the scratch, often organizations face the problem that after a
while their software system is deployed in several variants and the need arises to migrate to systematic
variability and variant management using a software product line approach. The tutorial will discuss issues
coming up during this migration process mainly on the technical level, leaving out most of the organizational
questions. The goal of the tutorial is to give attendees an initial idea how a transition into a software product
line development process could be done with respect to the technical transition. The tutorial starts with a brief
introduction into software product line concepts, discussing terms such as problem and solution space,
feature models, versions vs. variants. Tutorial topics are how to choose adequate problem space modeling,
the mining of problem space variability from existing artifacts such as requirements documents and software
architecture. Also part of the discussion will be the need for separation of problem space from solution space
and ways to realize it. A substantial part will be dedicated to variability detection and refactoring in the solution
space of legacy systems.

Tutorial 14 (T14)
Feature Modularity in Software Product Lines
Don Batory
22 August 2006, (Half Day - PM)

Feature Oriented Programming (FOP) is a design methodology and tools for program synthesis in software
product lines. Programs are specified declaratively in terms of features. FOP has been used to develop
product-lines in widely varying domains, including compilers for extensible Java dialects, fire support
simulators for the U.S. Army, network protocols, and program verification tools. The fundamental units of
modularization in FOP are program extensions (aspects, mixins, or traits) that encapsulate the implementation
of an individual feature. An FOP model of a product-line is an algebra: base programs are constants and
program extensions are functions (that add a specified feature to an input program). Program designs are
expressions - compositions of functions and constants - that are amenable to optimization and analysis. This
tutorial reviews core results on FOP: models and tools for synthesizing code and non-code artifacts by feature
module composition, automatic algorithms for validating compositions, and the relationship between product-
lines, metaprogramming, and model driven engineering (MDE).

http://www.sei.cmu.edu/splc2006/tutorials.html (5 of 6) [10/16/2008 1:20:49 PM]

The 10th International Software Product Line Conference (SPLC 2006)

Tutorial 15 (T15)
Generative Software Development
Krzysztof Czarnecki
22 August 2006, (All Day)

Product-line engineering seeks to exploit the commonalities among systems from a given problem domain
while managing the variabilities among them in a systematic way. In product-line engineering, new system
variants can be rapidly created based on a set of reusable assets (such as a common architecture,
components, models, etc.). Generative software development aims at modeling and implementing product
lines in such a way that a given system can be automatically generated from a specification written in one or
more textual or graphical domain-specific languages (DSLs).

In this tutorial, participants will learn how to perform domain analysis (i.e., capturing the commonalities and
variabilities within a system family in a software schema using feature modeling), domain design (i.e.,
developing a common architecture for a system family), and implementing software generators using multiple
technologies, such as template-based code generation and model transformations. Available tools for feature
modeling and implementing DSLs as well as related approaches such as Software Factories and Model-
Driven Architecture will be surveyed and compared. The presented concepts and methods will be
demonstrated using a sample case study of an e-commerce platform.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/tutorials.html (6 of 6) [10/16/2008 1:20:49 PM]

http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Conference Panels

23 August 2006
P1 Product Derivation Approaches

Panel moderator: David Weiss, Avaya Labs
Model problem: Interactive Television Applications

P2 Testing in a Software Product Line
Panel moderator: Klaus Pohl, Lero, The Irish Software Engineering Research Centre & University of
Duisburg-Essen, Germany
Model problem: The eShop Product Line

24 August 2006
P3 Product Line Research

Panel moderator: Liam O'Brien, Lero, The Irish Software Engineering Research Centre

Show Complete Details

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/panels.html [10/16/2008 1:20:50 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Conference and Program Committes

Conference Committee

John D. McGregor, Clemson University - Conference Chair
Frank van der Linden, Philips Medical Systems - Program Chair
Robert L. Nord, Software Engineering Institute - Program Chair

Daniel J. Paulish, Siemens Corporate Research - Tutorials Chair
Birgit Geppert, Avaya Labs - Workshop Chair
Isabel John, Fraunhofer Institute for Experimental Software Engineering - Symposium Chair
Dave Weiss, Avaya Labs - Hall of Fame Chair
Linda M. Northrop, Software Engineering Institute - Steering Committee Chair
Patrick Donohoe, Software Engineering Institute - Public Relations Chair
Liam O'Brien, Lero - Irish Software Engineering Research Centre - Proceedings Editor
Melissa L. Russ, Space Telescope Science Institute - Local Publicity and Arrangements

For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

Program Committees

Research Papers

Frank van der Linden, Philips, The Netherlands (Chair)
Robert L. Nord, Software Engineering Institute, USA (Chair)

Miguel Ángel Oltra, Telvent, Spain
Joe Bauman, Hewlett-Packard, USA
Gary Chastek, Software Engineering Institute, USA
Krzysztof Czarnecki, University of Waterloo, Canada
Hans Petter Dahle, ICT, Norway
Piergiorgio Di Giacomo, University of Florence, Italy
Stefania Gnesi, ISTI-CNR, Italy
Svein Hallsteinsen, SINTEF ICT, Norway
Oystein Haugen, University of Oslo, Norway
André van der Hoek, University of California, USA
Jean-Marc Jézéquel, IRISA, France
Kyo chul Kang, Pohang University of Science and Technology, Korea
Tomoji Kishi, JAIST, Japan
Philippe Kruchten, University of British Columbia, Canada
Charles W. Krueger, BigLever Software, USA
Tomi Männistö, Helsinki University of Technology, Finland
Gail Murphy, University of British Columbia, Canada
Rob van Ommering, Philips, The Netherlands
Dave Sharp, Boeing, USA
Louis J. M. Taborda, Macquarie University, Australia
Martin Verlage, Vereinigte Wirtschaftsdienste, Germany
David M. Weiss, Avaya, USA
Tanya Widen, Nokia, Finland
Marion Wittmann, Siemens, Germany

http://www.sei.cmu.edu/splc2006/committees.html (1 of 2) [10/16/2008 1:20:51 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
mailto:johnmc@cs.clemson.edu
mailto:rn@sei.cmu.edu
mailto:Daniel.paulish@siemens.com
mailto:bgeppert@research.avayalabs.com
mailto:lmn@sei.cmu.edu
mailto:pd@sei.cmu.edu
mailto:liam.obrien@ul.ie
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Experience Papers

John D. McGregor, Clemson University
Günter Böckle, Siemens
Sholom Cohen, Software Engineering Institute
Claudia Fritsch, Bosch
Timo Käkölä, University of Jyväskylä
Dirk Muthig, Fraunhofer Institute for Experimental Software Engineering
Judith Stafford, Tufts University

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/committees.html (2 of 2) [10/16/2008 1:20:51 PM]

http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Demonstrations

23 August 2006
 1:00-1:25 IDI

Keith L. Musser
 BigLever

Charlie Kreuger

24 August 2006
 12:30-12:55 Pure-Systems

Danilo Beuche
 Meta-case

Juha-Pekka Tolvanen

 1:00-1:25 ESI

Jason Xabier Mansell

IDI
Product Line Studio (PLS) is a commercial tool for developing and maintaining highly scalable software
product lines for large and geographically distributed teams. In this demonstration, we will use PLS to
configure and build a software application for a Java-enabled mobile phone or PDA. We will select and
configure optional and mandatory features, and PLS will generate both executable software and
documentation tailored to the chosen configuration. You'll be able to install the customized application on your
PC, phone, or PDA. You'll also see how PLS is configured to deliver this capability, how it handles variability
modeling, and how to use its "collaboration" features such as change notification, approvals, asset linking, and
asset validation. (http://www.idi-software.com)

BigLever
Gears is a software product line development tool that allows you to engineer your product line portfolio as
though it is a single system. The BigLever demonstration will provide insight into how Gears allows you to shift
your development focus from a multitude of products to a single software production line capable of
automatically producing all of the products in your product line portfolio. The demo will spotlight key elements
of Gears including feature models, product feature profiles, configurable software assets and variations points,
as well as the Gears product configurator, power tools and development environment. Gears has played an
instrumental role in some of the industry's most notable real-world success stories including Salion, 2004
Software Product line Hall of Fame Inductee, and Engenio/LSI Logic, 2006 Software Product Line Hall of
Fame elected nominee.

Pure-Systems
pure:variants is a specialist Software Product Line toolset for the whole life cycle. This demonstration will
briefly illustrate how Software Product Line methodology is seamlessly integrated into activities such as
Requirements Management, Testing and Defect Tracking with pure:variants. Using a real-world example we
will show how pure:variants handles requirements variability where requirements are managed in external
tools (Doors, CaliberRM etc.). Code Generation for product variants using model-driven code generators will
then be covered. Finally, since Product Line Engineering does not just involve applying technologies, you'll
also see how pure:variants improves communication and team productivity when handling variable test cases
and the inevitable bugs in core assets, and how it supports integration with existing tools used for these tasks.
Come along and find out why leading companies such as Robert Bosch, Daimler Chrysler and Audi are using
pure:variants in their Product Line activities.

http://www.sei.cmu.edu/splc2006/demonstrations.html (1 of 2) [10/16/2008 1:20:52 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
mailto:kmusser@idi-software.com
mailto:ckrueger@biglever.com
mailto:danilo.beuche@pure-systems.com
mailto:jpt@metacase.com
mailto:Jason.Mansell@esi.es
http://www.idi-software.com/

The 10th International Software Product Line Conference (SPLC 2006)

Metacase
MetaEdit+: generate product variants from high-level product specifications.
MetaEdit+ is aimed at the expert developer looking to gain productivity by generating full code directly from
models. As the modeling abstraction can be raised higher than that of programming or code visualization with
UML, product development can be carried out significantly faster and with better quality. This demo shows
how you can define modeling languages to describe product variants along with code generators. (http://www.
metacase.com)

ESI
The GNSIS tool developed by the European Software Institute (ESI) is used to:

● Design, code, test and maintain the Flexible Components needed to produce the target products in a
specific domain.

● Assemble the Flexible Components and Business code in a Work Order to produce the final assets.
● Analyze the final assets in terms of usage statistics, reuse metrics and traceability issues.
● Provide a detailed analysis of how to produce new programs faster, cheaper, with lower maintenance

costs and to the standard required.

Depending on the complexity of the applications to be built and the programming language chosen (the tool is
completely language independent) GNSIS uses between 30 and 40 Flexible Components in each specific
domain.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/demonstrations.html (2 of 2) [10/16/2008 1:20:52 PM]

http://www.metacase.com/
http://www.metacase.com/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

Corporate Supporters
10th International Software Product Line Conference

(SPLC 2006)
21-24 August 2006

Baltimore, Maryland, USA

Sponsored by

Software Engineering Institute

www.sei.cmu.edu

We would like to take this opportunity to thank our corporate supporters. Without their help and support, we
would not be able to host such a conference.

SPLC 2006 Corporate Supporters

Gold level

MDE Systems

www.mdesystems.com

Philips Medical Systems

www.philips.com

Microsoft Corporation
www.microsoft.com

Silver level

Avaya

www.avaya.com

BigLever Software Inc.

www.biglever.com

Integrated Dynamics, Inc.

www.idi-software.com

MetaCase

www.metacase.com

Nokia

research.nokia.com

Pure Systems GmbH

www.pure-systems.com

If you are interested in joining this group, we invite you to sponsor SPLC by become a corporate supporter.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/sponsors.html [10/16/2008 1:20:54 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.sei.cmu.edu/
http://www.mdesystems.com/
http://www.philips.com/
http://www.microsoft.com/
http://www.avaya.com/
http://www.biglever.com/
http://www.idi-software.com/
http://www.metacase.com/
http://research.nokia.com/
http://www.pure-systems.com/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Product Line Hall of Fame

Hall of Fame Chair: David M. Weiss, Avaya Labs Research

A hall of fame serves as a way to recognize distinguished members of a community in a field of endeavor.
Those elected to membership in a hall of fame represent the highest achievement in their field, serving as
models of what can be achieved and how. Each Software Product Line Conference culminates with a session
in which members of the audience nominate systems for induction into the Software Product Line Hall of
Fame. These nominations feed discussions about what constitutes excellence and success in product lines.
The goal is to improve software product line practice by identifying the best examples in the field. Nominations
are acted on by a panel of expert judges, who decide which nominees will be inducted into the Hall of Fame.

You can read about the current members of the Software Product Line Hall of Fame at
http://www.sei.cmu.edu/productlines/plp_hof.html.
Inductees from 2005 will be announced at the SPLC 2006 Hall of Fame session.

Criteria for Election to the Software Product Line Hall of Fame

Members of the software product line hall of fame should serve as models of what a software product line
should be, exhibiting most or all of the following characteristics:

● The family that constitutes the product line is clearly identified, i.e., there is a way to tell whether or not
a software system is a member of the product line, either by applying a known rule or a known
enumeration.

● The family that constitutes the product line is explicitly defined and designed as a product line, i.e., the
commonalities and variabilities that characterize the members of the product line are known and there
is an underlying design for the product line that takes advantage of them.

● The product line has had a strong influence on others who desire to build and evolve product lines, and
has gained recognition as a model of what a product line should be and how it should be built. Others
have borrowed, copied, and stolen from it in creating their product lines or in expounding ideas and
practices for creating product lines.

● The product line has been commercially successful.
● There is sufficient documentation about the product line that one can understand its definition, design,

and implementation without resorting solely to hearsay.

Hall of Fame Judges

Paul C. Clements, Software Engineering Institute
Kyo Kang, Pohang University of Science and Technology
Charles Krueger, BigLever Software

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/spl_hof.html [10/16/2008 1:20:56 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.sei.cmu.edu/productlines/plp_hof.html
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Help Publicize SPLC 2006

Feel free to copy and paste the following html snippets to use in your website.

SPLC 2006 Logo

If you want to use this logo on your website, copy and paste the following HTML into your web-page:

<a href="http://www.sei.cmu.edu/splc2006/?ref_url=www.cs.clemson.edu/~johnmc"
target="_blank">
 <img src="http://www.cs.clemson.edu/~johnmc/conferences/splc2006/splc2006Logo.
jpg"
 border="0" alt="SPLC 2006 August 21-24: Baltimore Maryland, USA"
 title="SPLC 2006"/>

http://www.sei.cmu.edu/splc2006/promotion_graphic.html (1 of 2) [10/16/2008 1:21:01 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html

The 10th International Software Product Line Conference (SPLC 2006)

 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/promotion_graphic.html (2 of 2) [10/16/2008 1:21:01 PM]

http://www.splc.net/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Birds-of-a-Feather Sessions

The conference birds-of-a-feather (BoF) sessions will be held Wednesday, 23 August 2006, at 7:30 p.m.
Additional BoF session(s) may be scheduled by contacting John D. McGregor.

DoD Birds-of-a-Feather Session
Wednesday, 23 August, 7:30 p.m.

Since 1998, the SEI has held a DoD Software Product Line Workshop. Recently those workshops have been
in Washington, DC in September. Because SPLC is close both in location and date, the SEI will instead
sponsor a BoF session at SPLC for the DoD acquisition and contractor community.

If you have an interest in product line practice within the government, please join us to share and learn.

Reports from the previous DoD workshops may be found at: http://www.sei.cmu.edu/productlines/workshops.
html

For more information contact, Larry Jones or John Bergey.

BigLever Birds-of-a-Feather Session
Wednesday, 23 August 2006, 7:30 p.m.

Join BigLever and friends for this informal "meet and greet" session. Come discuss our latest software product
line innovations and notable success stories -- and what BigLever has planned for the future.

For more information contact, Charles Krueger.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/BoF.html [10/16/2008 1:21:02 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
mailto:johnmc@cs.clemson.edu
http://www.sei.cmu.edu/productlines/workshops.html
http://www.sei.cmu.edu/productlines/workshops.html
mailto:lgj@sei.cmu.edu
mailto:jkb@sei.cmu.edu
mailto:ckrueger@biglever.com
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

Workshop 5 (W5)
10th International Software Product Line Conference

(SPLC 2006)
21-24 August 2006

Baltimore, Maryland, USA

OSSPL - First International Workshop on Open Source Software and Product Lines
http://www.dsi.unifi.it/osspl06/
22 August 2006

Organizers:
Frank van der Linden, Philips Medical Systems, The Netherlands
Piergiorgio Di Giacomo, University of Florence, Firenze, Italy

Contact: osspl06@dsi.unifi.it

Description
Open source software is getting much attention lately. Using open source software appears to be a profitable
way to obtain good software. This is also applicable for organizations doing product line engineering. On the
other hand, because of the diverse use of open source software, product line development is an attractive
way of working in open source communities. However, at present open source and product line development
are not related. This workshop aims to get a better understanding between the two communities to get an
insight how they can profit from each other.

The workshop deals with the following issues:

● Ownership, control and management of product line assets in an open source community
● Visibility of the code: when it is valuable to share proprietary code and how to take the right decision.
● Creation of different levels of architecture visibility: proprietary, among closed consortium, public. Is this

possible?
● Product line requirements, roadmaps and planning in open source development
● Using the open source community to evolve components and being explicit about variability
● Variability representation and management in an open source community
● Open source for the platform and in applications
● Cohabitation of product line management and agile processes
● Open source asset management tools in product line development
● The meaning of domain and application engineering in an open source context
● Recognition and recovery of a product line in an open source asset base
● Aspects dealing with evolutionary, variability or distribution of development relating to legal risks

involving: liability, warranties, patent infringements etc.

Submission (extended!): The extended deadline for submissions is June 15, 2006. For more information
please visit the workshop homepage at http://www.dsi.unifi.it/osspl06/.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/open_source_workshop.html [10/16/2008 1:21:07 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.dsi.unifi.it/osspl06/
mailto:frank.van.der.linden@philips.com
mailto:digiacomo@dsi.unifi.it
mailto:osspl06@dsi.unifi.it
http://www.dsi.unifi.it/osspl06/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

Panel 1 (P1)
10th International Software Product Line Conference

(SPLC 2006)
21-24 August 2006

Baltimore, Maryland, USA

Panel on Product Derivation Approaches
23 August 2006

Panel moderator: David Weiss, Avaya Labs

Panelists:
Danilo Beuche, pure-systems
Charles Krueger, BigLever Software
Rob van Ommering, Philips Research
Juha-Pekka Tolvanen, MetaCase

Abstract
This panel looks at product derivation approaches and their differences, strengths and weaknesses in
different PLE situations. Each panelist will examine a common problem (the Interactive Television
Applications) and provide an overview of their product derivation approach and how it was used to solve the
problem.

Overview
At some point, no matter how wonderful your product line process is, you have to ship the products. The
panelists will each present a different approach to PLE, concentrating on how actual products are derived
from specifications. The approaches presented include feature modeling, architecture description languages,
UML and domain-specific modeling languages.

A common product specification and derivation task will be given to all panelists, and they will show how their
approach works on it. The audience can - and is warmly encouraged to - participate, ask additional questions,
heckle, and hopefully laugh. A major goal is to identify the classes of PLE situations that best suit each
approach.

Following are some of the questions and issues to be addressed by the panel.

1. How large a portion of a product is automatically derived? Please answer in terms of some reasonably
precise measure, such as percent of modules, classes, or KNCSL, or coverage in a feature model.

2. How are new features and functionality developed? Give an example, if possible.
3. What is the cost and time to create a new feature or change the application platform, e.g., in hours of

effort as a fraction of effort needed to create the application engineering environment? Alternatively,
how would you estimate the cost and time?

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/derivation_panel.html [10/16/2008 1:21:08 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

15 Apr 2006 1

Interactive Television Applications

1 Abstract

Digital television allows interactive content to accompany standard broadcasts. The

development of bespoke interactive content is expensive. You are to design a system that

will allow the non-technical producers of television programmes to build interactive content

from a set of high-level building blocks.

2 Background

Digital television is becoming increasingly popular in the UK. In addition to providing higher

quality video and increased channel capacity, it allows interactive content to accompany

standard broadcasts. Interactive applications have been used to enhance traditional

broadcasts in many ways:

• Viewers can play along with quizzes (Figure 1).

• Viewers can choose different camera angles during sporting events.

• Viewers can take part in discussions and comment on events though message boards.

• Viewers can remind themselves of the important developments in a drama's plot (Figure 2).

Viewers can receive digital television via satellite, cable or a normal aerial (terrestrial), given

the necessary decoding hardware. Each reception mechanism has its own standard defining

how interactive applications are created.

Figure 1. Playing along with Test the Nation

15 Apr 2006 2

Figure 2. Viewing developments in The Murder Game

3 Problem

Currently, each interactive application is bespoke. This greatly limits the number of

programmes that can be accompanied by interactive content, as the applications are

expensive to develop. This is compounded by the fact that three different applications must

be developed, one for each of the satellite, cable, and terrestrial platforms. You are to design

a system that will allow non-technical producers to build applications to accompany their

programmes.

The application will sit on the right hand side of the screen (Figure 3), and display one or

more of the following pieces of content:

• A page of text, to be used for news stories, background information etc.

• A multiple choice selection for voting, for example "Man of the match" in a football match.

• A menu that allows the user to view items of content, including sub-menus.

The basic on-screen layout and navigational structure of the application has been defined by

the user interface department, and producers aren't able to change it.

Figure 3. Different types of content

15 Apr 2006 3

4 Scenarios

The following set of scenarios emerged during discussions with the producers. They are

ordered by their value to the producers, most valuable first.

4.1 Case 1

A producer would like to use a page of text to provide analysis of the recent events in a rugby

match. A journalist with a laptop will need to change the text on the page throughout the

match, from the stadium. The journalist shouldn't be able to change any other content.

4.2 Case 2

A producer would like to customise the colours and graphics used in the application, so that it

better matches the branding of their programme.

4.3 Case 3

A producer has built their application within the system, and would like it to appear on a

particular TV channel.

4.4 Case 4

A director can edit the page after the journalist finishes with it. Editing should include the

ability to undo recent changes to the page. The director can concurrently put pages of text

from different journalists on the part of the screen that the application controls.

4.5 Case 5

A panelist in a discussion programme has just made a controversial statement. The producer

would like to add a vote to the accompanying application, asking the viewers if they agree.

4.6 Case 6

A viewer has complained that the application accompanying a programme last week

contained libellous statements. The legal department have asked for a record of all

interactive content that was broadcast during the programme.

4.7 Case 7

During the closing stages of the biggest sporting event of the year, the machine hosting your

system catches fire. The system administration people need to move your system onto

another machine, without losing content that has been entered, and before anything

15 Apr 2006 4

important happens in the game.

5 Interactive application architecture

Designing interactive applications requires relatively detailed knowledge of the standards for

each platform. For this reason, you should concentrate on the system used by producers to

define the application content, and its interfaces to black box components that build the

actual application. To define these interfaces, you will need some knowledge of the basic

architecture of interactive applications. The following crash-course should suffice.

Digital televisions contain a basic operating system, and a set of libraries providing functions

to display text and graphics, change the currently displayed video stream, etc. Applications

are designed and specified with domain-specific modelling language (that you develop),

including possibly a menu-driven approach, a table-driven approach, a palette approach, or

other approach easy for producers to use, and delivered to digital televisions by inserting it

as XML into the same broadcast stream that contains the video and audio content. Once

running, messages can be sent to an application by inserting them into the broadcast stream.

Applications can send reply messages to your system, usually via a standard modem built

into the television. Sending these reply messages is very slow, and involves the viewer

paying call charges. For these reasons, reply messages can only be used for viewer initiated

actions, such as responding to a vote.

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

Panel 2 (P2)
10th International Software Product Line Conference

(SPLC 2006)
21-24 August 2006

Baltimore, Maryland, USA

Panel on Testing in a Software Product Line
23 August 2006

Panel moderator: Klaus Pohl, Lero, The Irish Software Engineering Research Centre & University of Duisburg-
Essen, Germany

Panelists:
Georg Grütter, Robert Bosch GmbH, Germany
John D. McGregor, Clemson University, USA
Andreas Metzger, University of Duisburg-Essen, Germany
Tim Trew, Philips Research, The Netherlands

Abstract
This panel is about system testing of software product line artifacts. The panelist will present different
approaches for software product line testing. Together, we will discuss their pros and cons. As a kind of
benchmark, a common example of an online store (The eShop Product Line) will be used to ease the
comparison of the different testing approaches.

Overview
Each panelist will present an approach to test the domain and application artifacts in software product line
engineering. The decision whether to test the domain artifacts in domain engineering or if testing is delayed to
application engineering is left to the panelists.

To facilitate a better comparison of the different test approaches, each panelist will illustrate his approach
using a running example of an online store product line.

The discussions will, among others, cover the following questions:

● Should there be system testing in domain engineering, or should system tests be performed during
application engineering only?

● Which test artifacts can be reused during product line testing?
● Is there an advantage of creating domain test artifacts which are reused during application engineering?
● Can application test cases be generated? And if so, should they be generated from domain test cases

or just from application engineering artifacts?
● Does the model-based test case derivation offer benefits when compared with deriving test cases

directly from natural language requirements?

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/testing_panel.html [10/16/2008 1:21:11 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

The eShop Product Line

Klaus Pohl*, + and Andreas Metzger*

* Software Systems Engineering,

University of Duisburg-Essen
Schützenbahn 70, 45117 Essen, Germany

+ Lero (The Irish Software
Engineering Research Center)
University of Limerick, Ireland

1 Situation
A manufacturer of online store software has provided a specification of his eShop software
product line. He asks you � as an expert in the field of software product line testing � to
advise him on how to perform system tests for his eShop product line. Especially, he wants
two concrete eShop applications to be tested (see Sect. 3).

The commonalities and the variability of the product line have been defined by product
management, considering market trends and technical constraints. The variability has been
explicitly documented in a variability model (see right hand side of Figure 1).

Further, common and variable requirements of the product line have been elicited and
documented by use cases (see use case diagram on the left hand side of Figure 1 and the use
case descriptions in Sect. 4). In addition, the manufacturer of the online store provides you
with detailed scenario descriptions, including pre- and post-conditions, scenario steps,
alternative scenarios, etc.

2 Domain Description
Running an eShop shall allow an online merchant to sell his goods to customers via the
internet. An online merchant typically approaches the manufacturer of the eShop product line
with specific needs on the functionality of the eShop. Based on the available variability of the
product line, the manufacturer will then be able to create an individual application specifically
for the merchant.

The variability of the eShop product line is shown on the right hand side of Figure 1. The
variability model is documented using the OVM approach (see Pohl, K.; Böckle, G.; van der
Linden, F. Software Product Line Engineering � Foundations, Principles, and Techniques,
Springer, Berlin, Heidelberg, New York, 2005). Triangles document variation points (�what
does vary?�), rectangles document variants (�how does it vary?�), and relations between these
elements describe constraints on the possible choice of variants; e.g., for the variation point
�bonus� at most one variant may be selected.

The left hand side of Figure 1 shows the use case diagram of the eShop product line. The
variable use cases are identified by trace links from the variability model to the use case
elements.

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

2.1 Commonalities of the eShop Product Line
All applications of the eShop product line share the common functionality: register
customer, buy product, and search product. For searching a product, the customers can
enter the name of the product or an order number.

The buy product use case includes the use case search product (which can be repeated as
often as needed). Each product that a customer wants to buy can be placed in a shopping cart.
Once the customer wants to complete his/her purchase, he/she can check out and pay the
ordered goods, thereby triggering the dispatch of the goods.

Before customers can buy any goods in the eShop, they must register (use case register
customer) such that their identity (i.e., name, billing and dispatch address) is known.

2.2 Variability in the eShop Product Line
The eShop product line contains (for simplification reasons only) five variation points (see the
variability model in Figure 1). These variation points � together with their variants � allow a
total of 72 applications to be derived from the product line.

VP1: Register Type

Customers have to register for the eShop before they are allowed to purchase goods.
Therefore, in each application of the eShop product line, at least one of the two different types
of registration has to be contained (documented in the variability model by the constraint
1..2).

The two different kinds of registration are described by the use cases register normally and
register completely. During the normal registration process, customers provide their e-mail
address and their postal address. During the register completely process, in addition to the
address information of the register normally use-case, the bank account (e.g., account
number) must be provided and the customers must agree that the online merchant can contact
the bank for more information.

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

Variability
Model

Pay by invoice

Register simply

Register completely

Register

Direct price deduction

Buy goods

Customer

Search goods

<<include>>

<<include>>

<<include>>

<<include>>

Bonus points

Provide search hints

Show similar results

Pay by credit card

Pay by debit card

<<include>>

Regis-
ter Type

VP1

Completely

V1.2

Simply

V1.1

1..2

Search
Options

VP5

Similar
Results

V5.2

Hints

V5.1

1..1

Bonus

VP2

Deduction

V2.1

Points

V2.2

0..1

Payment
Type

VP3

Card

V3.2

Invoice

V3.1

1..2

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

requires

requiresCard
Type

VP4

Debit

V4.2

Credit

V4.1

1..1

Variation
Point

Variant

Con-
straint
Con-

straint

Figure 1: Variability Model and Use Case Diagram of eShop Product Line

VP2: Bonus

The merchant can optionally choose to offer his customers a bonus program. If he decides to
do so, he has to decide on whether bonus points can be collected or whether a direct price
deduction will be offered once the value of the order exceeds a certain amount.

The bonus points are calculated based on the goods that have been previously ordered and
paid. When offering a direct price deduction, this deduction will be directly reduced from the
invoiced amount.

The product line offers only one of the two types of bonus programs to be included in an
eShop application (documented by the constraint 0..1 in the variability model).

VP3: Payment Type

The eShop product line offers two major kinds of payments. First, an eShop can allow the
customers to pay by invoice. Second, the eShop application can offer a payment by card. An
eShop application can offer both types of payments at once.

If an eShop application shall offer pay by invoice, the variant register completely is required
such that the bank information of a customer is available as a security (or guarantee).

VP4: Card Type

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

Once the merchant has decided to offer payment by card, he further has to refine his
selection. Product management of the eShop manufacturer has decided to allow a choice
between the (mutually exclusive) alternatives pay by credit card and pay by debit card.
This is expressed by the 1..1 constraint.

VP5: Search Options

The customer can search for a product by entering the product name or the order number of
the product using the search product use case. If the customers provide an incorrect product
name or order number, the search product use case might deliver no hits. By using the
variant provide search hints, the eShop customer is offered a help text on how to modify his
search request for better results.

In contrast, the show similar results variant will automatically modify the search request of
the customer and display all similar results.

Only one of the two variants (show similar results and provide search hints) can be chosen,
expressed by 1..1 constraint.

3 Description of the Applications
Two applications have been derived from the product line so far and shall be tested by you.
The applications are defined by the variants that have been bound.

Application 1:

! VP1: Register Type = Completely (V1.2)

! VP2: Bonus = Points (V2.2)

! VP3: Payment Type = Invoice (V3.1) + Card (V3.2)

! VP4: Card Type = Debit (V4.1)

! VP5: Search Options = Hints (V5.1)

Application 2:

! VP1: Register Type = Simply (V1.1) + Completely (V1.2)

! VP2: Bonus = -none- (not desired by merchant)

! VP3: Payment Type = Invoice (V3.1)

! VP4: Card Type = -none- (VP has not to be bound)

! VP5: Search Options = Similar results (V5.2)

4 Use Cases
The following tables present the use case descriptions of the eShop product line.

The use case descriptions are based on a suggestion for documenting variable use cases by
Bertolino et al. (see Bertolino, A.; Fantechi, A.; Gnesi, S.; Lami, G.; Maccari, A.; �Use Case
Description of Requirements for Product Lines�; Proceedings of the International Workshop

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

on Requirements Engineering for Product Lines 2002 (REPL�02), Technical Report: ALR-
2002-033, AVAYA Labs, 2002).

The dependencies between the use cases are expressed by pre- and post-conditions or are
shown in Figure 1 by means of the <<includes>> relationships.

Use Case Name Register
Brief Description A customer must register before purchasing goods
Actors Customer
Goal Register to be able to purchase goods
Trigger A customer wants to buy goods online
Pre-condition -
Result The customer is registered
Post-condition The customer is registered

 Step Action Description

Main Scenario 1
2
3
4
5

Customer activates registration
System shows the form to be filled in {VP1}
System shows the data of the customer
Customer confirms his data
System shows the main page of the eShop.

Scenario
Extensions

4a The customer has found an error in his data and wants to correct it;
Scenario continues at Step 2.

Variation Points Variants
VP1 V1.1: UC Register simply

V1.2: UC Register completely

Use Case Name Buy goods
Brief Description A customer searches, orders and pays goods that he has selected
Actors Customer
Goal Buy goods
Trigger Customers begins his purchase
Pre-condition Customer has been registered
Result Goods are ordered, payment information is known
Post-condition -

 Step Action Description

Main Scenario 1
2
3
4
5
6
7
8
9
10

Customer searches goods (refined by UC Search goods)
Customer selects goods
System adds goods to the shopping cart
Customer checks out
System calculates and shows amount to be paid
System requests payment information {VP3}
Customer confirms order
System executes order
System triggers dispatch of the goods
Customer leaves the eShop

Scenario Extensions 5a &
10a

Customer likes to shop for additional goods; Scenario continues at step 1
{VP2}

Variation Points Variations

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

VP2

VP3

VP4

 V2.1: UC Direct price deduction
V2.2: UC Bonus points

V3.1: UC Pay by invoice
V3.2: requires {VP4}

V4.1: UC Pay by credit card
V4.2: UC Pay by debit card

Use Case Name
Brief Description Customer searches goods in the eShop
Actors Customer
Goal Find goods
Trigger Customer clicks on �search goods� button
Pre-condition -
Result Search results are presented to customer
Post-condition -

 Step Action Description

Main Scenario 1
2
3
4
5

Customer enters a search term
Customer initiates search
System presents search results
Customer chooses desired results
Systems shows details on the selected goods

Scenario Extensions 1a1
1a2
1a3

3a1

4a

Customer chooses detailed search
System presents �detailed search� form
Customer enters details for searching the goods

System shows that no results have been found; Scenario continues at step 1

Customer starts a new search, because he did not find what he searched for;
Scenario continues at step 1

Variation Points Variations
VP5 3b1

3b2

V5.1 (UC Provide search hints):
System gives search hints; Scenario continues at step 1

V5.2 (UC Show similar results)
System shows similar results; Scenario continues at step 3

Use Case Name Register simply
Brief Description The customer registers with the eShop in a simple way
Actors Customer
Goal see UC Register
Trigger Alternative 1: The customer has chosen to register simply

Alternative 2: The eShop only offers UC Register simply
Pre-condition -
Result Customer has filled in the form for simple registration
Post-condition see UC Register

 Step Action Description
Main Scenario 1

2
3

The system presents a registration form
The customer fills the fields e-mail address and postal address
System checks the plausibility of the input (e.g., correctness of e-mail
address)

Scenario Extensions 3a

System detects an error in the input data; Scenario continues at step 1

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

Use Case Name Register completely
Brief Description The customer registers completely with the eShop
Actors Customer
Goal see UC Register
Trigger Alternative 1: The customer has chosen to register completely

Alternative 2: The eShop only offers UC Register completely
Pre-condition -
Result Customer has filled in the form for complete registration
Post-condition see UC Register

 Step Action Description

Main Scenario 1
2
3

4
5

6

The system presents a registration form (part 1)
The customer fills the fields e-mail address and postal address
System checks the plausibility of the input (e.g., correctness of e-mail
address)
The system presents a registration form (part 2)
The customer (additionally) fills in his bank account information (e.g.,
IBAN, ...)
System checks the plausibility of the input (e.g., validity of the IBAN)

Scenario Extensions 3a

5a

System detects an error in the input data; Scenario continues at step 1

System detects invalid bank account information; Scenario continues at step
4

Use Case Name Bonus points
Brief Description Customer orders goods and receives bonus points
Actors Customer
Goal Buy goods
Trigger Customer proceeds to checkout in UC Buy goods
Pre-condition -
Result Order of goods, update of bonus points
Post-condition -

 Step Action Description

Main Scenario 1

System calculates bonus points and adds them to the bonus points of the
customer

Use Case Name Direct price deduction
Brief Description Customer orders goods and receives a price deduction
Actors Customer
Goal Buy goods
Trigger Customer proceeds to checkout in UC Buy goods
Pre-condition -
Result Order of goods, update of bonus points
Post-condition -

 Step Action Description

Main Scenario 1 System calculates price deduction and reduces the invoiced amount

Use Case Name Pay by invoice
Brief Description Customer pays his goods by invoice
Actors Customer
Goal Buy goods and pay

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

Trigger Customer proceeds to checkout
Pre-condition Alternative 1: Customer has chosen to pay by invoice

Alternative 2: System only offers UC Pay by invoice
Result Goods have been ordered; payment has been authorized; invoice information has been

stored, and bill has been printed
Post-condition -

 Step Action Description

Main Scenario 1
2
3
4
5
6

System requests billing address
Customer enters billing address
Customer authorizes transaction
System checks validity of billing address
System requests confirmation of billing address and form of payment
Customer confirms

Scenario Extensions 5a1
5a2
5a3

Billing address is faulty; System shows errors in billing address
System requests modification/correction of address
Customer corrects address; Scenario continues at step 3

Use Case Name Pay by debit card
Brief Description Customer pays his goods by debit card
Actors Customer
Goal Buy goods and pay
Trigger Customer proceeds to checkout
Pre-condition Alternative 1: Customer has chosen to pay by debit card

Alternative 2: System only offers UC Pay by debit card
Result Goods have been ordered; payment information is available; payment has been

processed by the customer�s bank
Post-condition -

 Step Action Description

Main Scenario 1
2
3
4
5
6

System requests debit card details
Customer enters debit card details
Customer authorizes transaction
System checks validity of debit card
System requests confirmation of debit card details and form of payment
Customer confirms

Scenario Extensions 4a1
4a2
4a3

1a1

1a2
1a3

Debit card details are faulty; System shows errors in debit card details
System requests modification/correction of debit card details
Customer corrects debit card details; Scenario continues at step 3

System identifies the customer as having registered completely and
therefore presents the account information (i.e., the debit card details)
System requests a confirmation of the data
Customer confirms

Use Case Name Pay by credit card
Brief Description Customer pays his goods by credit card
Actors Customer
Goal Buy goods and pay
Trigger Customer proceeds to checkout
Pre-condition Alternative 1: Customer has chosen to pay by credit card

Alternative 2: System only offers UC Pay by credit card
Result Goods have been ordered; payment information is available; payment has been

processed by the credit card company
Post-condition -

© 2006, Prof. Dr. Klaus Pohl, Software Systems Engineering, University of Duisburg-Essen

 Step Action Description

Main Scenario 1
2
3
4
5
6

System requests credit card details
Customer enters credit card details
Customer authorizes transaction
System checks validity of credit card
System requests confirmation of credit card details and form of payment
Customer confirms

Scenario Extensions 4a1

4a2

Credit card is not valid; System shows error and requests correction of card
information (or to provide an alternative credit card)
Customer corrects credit card details; Scenario continues at step 3

Use Case Name Provide search hints
Brief Description The system provided no matches for the query; Therefore, hints for searching are

provided
Actors Customer
Goal The customer shall find results for his query
Trigger No search results
Pre-condition -
Result Search hints are given
Post-condition -

 Step Action Description

Main Scenario 1
2

The system notifies the customer that no results have been found
The system provides search hints

Use Case Name Show similar results
Brief Description The system provided no matches for the query; Therefore, similar results are

automatically retrieved
Actors Customer
Goal The customer shall find similar results to his query
Trigger No search results
Pre-condition -
Result Similar results are shown
Post-condition -

 Step Action Description

Main Scenario 1 The system computes and shows similar results

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

DoD Experience Report
10th International Software Product Line Conference

(SPLC 2006)
21-24 August 2006

Baltimore, Maryland, USA

The Advanced Multiplex Test SYstem (AMTS): A Product Line Approach for Army Aviation
Maintenance
Ken Capolongo

Army Aviation vehicles are complex systems of systems and require many resources to operate and sustain,
especially in a combat environment where aircraft availability and readiness are essential to the successful
completion of battlefield missions. The Communications-Electronics Life Cycle Management Center (C-E
LCMC) Software Engineering Center (SEC) is responsible for providing diagnostic products to support these
aircraft in the field and is facing the challenge to produce more products with similar or fewer resources,
brought on by the current business environment and operational tempo (OPTEMPO). This paper discusses
how the C-E LCMC SEC is meeting the challenge through the adoption of software product line engineering
practices and the development of a reliable software product framework. The framework and practices are
used to facilitate production of avionics maintenance software products that improve avionics field
maintenance practices, reduce sustainment costs, and increase aircraft readiness.

Outline:

● The AMTS Concept
● Organization History and Mission
● Business Goals: Platform, System, and Subsystem Maintenance
● Software Architecture
● Obstacles: Organizational, Funding, and Utility
● Adoption: Implemented Strategies and lessons learned
● Benefits: Analysis of Collected Metrics
● Growth and Future Opportunities

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/amts_report.html [10/16/2008 1:21:14 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

Panel 3 (P3)
10th International Software Product Line Conference

(SPLC 2006)
21-24 August 2006

Baltimore, Maryland, USA

Panel on Product Line Research:
Lessons Learned from the last 10 years and Directions for the next 10
24 August 2006

Panel moderator: Liam O'Brien, Lero, The Irish Software Engineering Research Centre

Panelists:
Paul Clements, Software Engineering Institute, USA
Kyo Kang, POSTECH, Korea
Dirk Muthig, Fraunhofer IESE, Germany
Klaus Pohl, Lero, The Irish Software Engineering Research Centre & University of Duisburg-Essen, Germany

Abstract
This panel is about past and future research in software product lines. The panelists will look back at the past
10 years to examine outcomes and lessons learned and will look forward to the next 10 years and will give
potential outcomes and directions for the future of software product line research. The outcomes will be
examined for relevance to the practitioner community.

Overview
Each panelist will present their lessons learned from the past and the directions for the next 10 years. Several
industry judges will be asked to make a determination as to how useful the outcomes have been or will be for
practitioners. The panelists will have an opportunity to respond to the judges comments and this will lead to a
general discussion.

The discussions will, among others, cover the following questions:

● What have been the main lessons and outcomes for research in software product lines over the past
10 years?

● What will likely be the major directions and outcomes for research in software product lines over the
next 10 years?

● How relevant have the past outcomes been for practitioners and how relevant will future outcomes be
for practitioners?

● What will be the next big breakthrough for software product line research?

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/PL_research_panel.html [10/16/2008 1:21:15 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Conference Workshops

Workshop Chair: Birgit Geppert, AVAYA Labs

Note: Some of the workshops extended their submission deadline. Please check the workshop descriptions
for more detail. * denotes workshops with an extended deadline.

21 August 2006
W2* APLE - 1st International Workshop on Agile Product Line Engineering

Organizers: Kendra Cooper, Xavier Franch
W3 Managing Variability for Software Product Lines: Working With Variability Mechanisms

Organizers: Paul Clements, Dirk Muthig

22 August 2006
W4* SPLiT'06: 3rd Workshop on Software Product Line Testing

Organizers: Peter Knauber, Charles Krueger, Tim Trew
W5* OSSPL - First International Workshop on Open Source Software and Product Lines

Organizers: Frank van der Linden, Piergiorgio Di Giacomo

Note: In addition to the above workshops, the doctoral symposium will be held on the 22nd.

DS Software Product Lines Doctoral Symposium
Organizers: Isabel John, Len Bass, Giuseppe Lami

Workshop 2 (W2)
APLE - 1st International Workshop on Agile Product Line Engineering
http://www.lsi.upc.edu/events/aple/
21 August 2006

Organizers/Contacts:
Kendra Cooper, Dept. of Computer Science, University of Texas at Dallas - Texas, USA
Xavier Franch, Software Department, Universitat Politècnica de Catalunya - Catalunya, Spain

Description
The need to rapidly develop high quality, complex software continues to drive research in a number of
(separate) areas in the software engineering community. For example, software product line development
techniques have been of keen interest as means to re-use and tailor technical assets including models
(requirements specifications, design), implementation, and test cases. A main focus in this area is to
effectively create sets of related products by re-using and tailoring managed assets. Agile development
techniques have also been proposed to rapidly develop software by focusing on developing working code;
they seek to minimize the amount of documentation, process definition, and model development. It is
interesting to note that although the goals of the two techniques have similarities (rapidly develop high quality,
complex software), the solutions to realize the goals in the techniques seem to conflict. The theme of this

http://www.sei.cmu.edu/splc2006/workshops_listings.html (1 of 4) [10/16/2008 1:21:18 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
mailto:bgeppert@research.avayalabs.com
http://www.lsi.upc.edu/events/aple/
mailto:kcooper@utdallas.edu
mailto:franch@lsi.upc.edu

The 10th International Software Product Line Conference (SPLC 2006)

workshop is to probe the following question: Given the similar goals but different foci of agile and product-line
development techniques, to what degree can (or should) they be integrated?

Publication of Selected Papers
It's our pleasure to announce a special issue on "Agile Product Line Engineering" of the Journal of Systems
and Software (JSS, Elsevier). Extended versions of selected papers presented at this workshop will be
considered for publication in this issue.

Submission (extended!): The extended deadline for submissions is June 9, 2006. For more information
please visit the workshop homepage at http://www.lsi.upc.edu/events/aple/.

Workshop 3 (W3)
Managing Variability for Software Product Lines: Working With Variability Mechanisms
http://www.sei.cmu.edu/splc2006/variability_workshop.html
21 August 2006

Organizers:
Paul Clements, Software Engineering Institute
Dirk Muthig, Fraunhofer Institute for Experimental Software Engineering

Contact: clements@sei.cmu.edu

Description
Managing variability is the essence of software product line practice. Variability enters the product line picture
through the need for different features, deployment on different platforms, the desire for different quality
attributes, and the accommodation of different deployment scenarios. Eventually, every need for variability
manifests itself in one way or another in the actual artifacts that populate a product line's core asset base.
"Variability mechanisms" is the name we give to the constructs that achieve variation at the artifact level.
Selecting the correct variability mechanism(s) can have a dramatic effect on the cost to deploy new products,
react to evolutionary pressures, and in general maintain and grow the product line. But selection remains an
ad hoc process in nearly all product line organizations. This workshop is intended to fill the void between
variability requirements visible to those who deal with features and other product-level concerns, and the
variability mechanisms visible to creators and consumers of a product line's core assets. The goal of the
workshop is to begin to codify a body of knowledge for the informed and purposeful selection of variability
mechanisms to use in a software product line's core assets. The workshop will be highly interactive and
focused on making tangible progress towards answering specific questions relating to best practices in
variability management.

Submission: The deadline for submissions is July 7, 2006. For more information please visit the workshop
homepage at http://www.sei.cmu.edu/splc2006/variability_workshop.html.

Workshop 4 (W4)
SPLiT 2006 - 3rd Workshop on Software Product Line Testing
http://www.biglever.com/split2006/

Organizers:
Peter Knauber, Mannheim University of Applied Sciences, Germany
Charles Krueger, BigLever Software, Austin, TX, USA
Tim Trew, Philips Research, Eindhoven, The Netherlands

Contact: split@biglever.com

Description
Product line engineering (PLE) has become a major topic in industrial software development, and many

http://www.sei.cmu.edu/splc2006/workshops_listings.html (2 of 4) [10/16/2008 1:21:18 PM]

http://www.lsi.upc.edu/events/aple/
http://www.sei.cmu.edu/splc2006/variability_workshop.html
mailto:clements@sei.cmu.edu
mailto:muthig@iese.fhg.de
mailto:clements@sei.cmu.edu
http://www.sei.cmu.edu/splc2006/variability_workshop.html
http://www.biglever.com/split2006/
mailto:p.knauber@hs-mannheim.de
mailto:ckrueger@biglever.com
mailto:tim.trew@philips.com
mailto:split@biglever.com

The 10th International Software Product Line Conference (SPLC 2006)

organizations have started to consider PLE as state of the practice. One topic that needs greater emphasis is
testing of product lines. Product line testing is crucial to the successful establishment of PLE technology in an
organization.

The workshop addresses some of the open fundamental challenges of testing in a PLE setting. Given the
improvements in productivity that PLE delivers to development, how does a test organization keep pace? To
what extent can we test reusable assets and how much can this reduce the testing obligations for each
product? What kinds of changes or extensions have to be made to the PL infrastructure to support testing
appropriately? Can we leverage our established testing tools and procedures? What properties of a PL
architecture improve the testability of reusable assets and products and how can these be enforced during
architectural design? Are there PLE techniques that can provide similar efficiency gains for testing as are
possible for development? Without adequate answers, testing becomes the bottleneck in PLE.

In this workshop we aim to bring together both researchers and practitioners on all aspects of PL testing, from
designing for testability, through test coverage, to testing tools. We are especially interested in exchanging
industrial experience in PL testing and comparing different approaches to enable an integration of different
ideas. Our goal is to provide a context for such an information exchange and to provide an opportunity to
discuss innovative ideas, setting a research agenda, and starting collaborations on this topic. We intend to
invite experts not only from product-line engineering, but also testing experts.

Submission (extended!): The extended deadline for submissions is June 19, 2006. For more information
please visit the workshop homepage at http://www.biglever.com/split2006/.

Workshop 5 (W5)
OSSPL - First International Workshop on Open Source Software and Product Lines
http://www.dsi.unifi.it/osspl06/
22 August 2006

Organizers:
Frank van der Linden, Philips Medical Systems, The Netherlands
Piergiorgio Di Giacomo, University of Florence, Firenze, Italy

Contact: osspl06@dsi.unifi.it

Description
Open source software is getting much attention lately. Using open source software appears to be a profitable
way to obtain good software. This is also applicable for organizations doing product line engineering. On the
other hand, because of the diverse use of open source software, product line development is an attractive
way of working in open source communities. However, at present open source and product line development
are not related. This workshop aims to get a better understanding between the two communities to get an
insight how they can profit from each other.

The workshop deals with the following issues:

● Ownership, control and management of product line assets in an open source community
● Visibility of the code: when it is valuable to share proprietary code and how to take the right decision.
● Creation of different levels of architecture visibility: proprietary, among closed consortium, public. Is this

possible?
● Product line requirements, roadmaps and planning in open source development
● Using the open source community to evolve components and being explicit about variability
● Variability representation and management in an open source community
● Open source for the platform and in applications
● Cohabitation of product line management and agile processes
● Open source asset management tools in product line development
● The meaning of domain and application engineering in an open source context
● Recognition and recovery of a product line in an open source asset base
● Aspects dealing with evolutionary, variability or distribution of development relating to legal risks

involving: liability, warranties, patent infringements etc.

http://www.sei.cmu.edu/splc2006/workshops_listings.html (3 of 4) [10/16/2008 1:21:18 PM]

http://www.biglever.com/split2006/
http://www.dsi.unifi.it/osspl06/
mailto:frank.van.der.linden@philips.com
mailto:digiacomo@dsi.unifi.it
mailto:osspl06@dsi.unifi.it

The 10th International Software Product Line Conference (SPLC 2006)

Submission (extended!): The extended deadline for submissions is June 15, 2006. For more information
please visit the workshop homepage at http://www.dsi.unifi.it/osspl06/.

Software Product Lines Doctoral Symposium (DS)
http://www1.isti.cnr.it/SPL-DS-2006/
22 August 2006

Doctoral Symposium Organizers:
Isabel John - Fraunhofer IESE, Germany
Len Bass - Software Engineering Institute, USA
Giuseppe Lami - I.S.T.I./C.N.R., Italy

Contact: SPL-DS@isti.cnr.it

Call for Papers: http://www1.isti.cnr.it/SPL-DS-2006/DS-CFP.html

Description
The doctoral symposium provides a platform for young researchers to present their work to an international
audience and discuss it with each other and with experts in the field. Experienced researchers will comment
on the presented work and give feedback for further development. This event is a unique opportunity for the
presenting young researchers and doctoral students to receive invaluable expert feedback, make contact with
other researchers in the field, professionally present their work, and become familiar with other approaches
and future research topics. The doctoral symposium addresses research activities in the field of software
product lines (SPLs). Topics of interest include all aspects of the development phases, management,
evaluation, reuse, and maintenance of SPLs. The peculiarity of this doctoral symposium is that it is addressed
specifically to young researchers with original ideas and initiatives in the SPL field. Although it addresses
mainly PhD work in progress, we also encourage the submission of other work in progress such as master's
degree or diploma theses.

Important Dates:
Submission deadline
Notification of acceptance
Camera ready version
Symposium date

12 May 2006
19 June 2006
14 July 2006
22 August 2006

Panelists/Reviewers:
Birgit Geppert - Avaya Labs, USA
Andre van der Hoek - University of California, USA
Kyo Kang - POSTECH, Korea
David Weiss - Avaya Labs, USA

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/workshops_listings.html (4 of 4) [10/16/2008 1:21:18 PM]

http://www.dsi.unifi.it/osspl06/
mailto:SPL-DS@isti.cnr.it
http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Conference Tutorials

Tutorial Chair: Daniel J. Paulish, Siemens Corporate Research

Calendar View

21 August 2006
AM PM

 T1 An Introduction to Product Line Requirements
Engineering
Brian Berenbach

 T4 Creating Reusable Test Assets in a
Software Product Line
John McGregor

 T2 New Methods Behind the New Generation of
Software Product Lines Success Stories
Charles Krueger

 T5 Leveraging Model Driven Engineering in
Software Product Lines
Bruce Trask, Angel Roman

 T3 Introduction to Software Product Lines
Patrick Donohoe

 T6 Introduction to Software Product Line
Adoption
Linda Northrop, Larry Jones

 T8 Software Product Line Variability Management
Klaus Pohl, Frank van der Linden, Andreas Metzger

22 August 2006
AM PM

 T9 Domain-Specific Modeling and Code
Generation for Product Lines
Juha-Pekka Tolvanen

 T12 Lightweight Dependency Models for Product
Lines
Neeraj Sangal

 T10 The Scoping Game
Mark Dalgarno

 T13 Transforming Legacy Systems into Product Lines
Danilo Beuche

 T11 Using Feature Models for Product
Derivation
Olaf Spinczyk, Holger Papajewski

 T14 Feature Modularity in Software Product Lines
Don Batory

 T15 Generative Software Development
Krzysztof Czarnecki

Tutorial 1 (T1)
An Introduction to Product Line Requirements Engineering
Brian Berenbach
21 August 2006, (Half Day - AM)

http://www.sei.cmu.edu/splc2006/tutorials_calendar_view.html (1 of 6) [10/16/2008 1:21:21 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
mailto:daniel.paulish@siemens.com

The 10th International Software Product Line Conference (SPLC 2006)

Requirements elicitation and management has become ever more important as product lines become more
complex and time to market is shortened. Outsourcing has added a new dimension to requirements
management, exacerbating problems associated with transitioning from analysis to design. This half day
tutorial will provide an introduction to product line requirements engineering from the perspective of project
and product management: how it impacts project managers, quality assurance personnel, requirements
analysts, developers and testers. Topics covered will include product line requirements, feature modeling,
CMMI compliant requirements management and requirements analysis processes (both UML and text based).
Business analysts who are interested in using UML for modeling will also find the course interesting. No
formal knowledge of programming is required.

Tutorial 2 (T2)
New Methods Behind the New Generation of Software Product Lines Success Stories
Charles Krueger
21 August 2006, (Half Day - AM)

A new generation of software product line success stories is being driven by a new generation of methods,
tools and techniques. While early software product line case studies at the genesis of the field revealed some
of the best software engineering improvement metrics seen in four decades, the latest generation of software
product line success stories exhibit even greater improvements, extending benefits beyond product creation
into maintenance and evolution, lowering the overall complexity of product line development, increasing the
scalability of product line portfolios, and enabling organizations to make the transition to software product line
practice with orders of magnitude less time, cost and effort. We explore some of the important new methods
such as software mass customization sans application engineering, minimally invasive transitions, bounded
product line combinatorics, and product line lifecycle management.

Tutorial 3 (T3)
Introduction to Software Product Lines
Patrick Donohoe
21 August 2006, (Half Day - AM)

Software product lines have emerged as a new software development paradigm of great importance. A
software product line is a set of software intensive systems sharing a common, managed set of features, and
that are developed in a disciplined fashion using a common set of core assets. Organizations developing a
portfolio of products as a software product line are experiencing order-of-magnitude improvements in cost,
time to market, staff productivity, and quality of the deployed products.

This tutorial will introduce the essential activities and underlying practice areas of software product line
development. It will review the basic concepts of software product lines, discuss the costs and benefits of
product line adoption, introduce the SEI's Framework for Software Product Line Practice, and describe
approaches to applying the practices of the framework.

Tutorial 4 (T4)
Creating Reusable Test Assets in a Software Product Line
John McGregor
21 August 2006, (Half Day - PM)

This tutorial focuses on the test assets and test processes created by a software product line organization.
The tutorial will allow participants to consider how to modify existing testing practices to take advantage of
strategic reuse. The software product line approach blends organizational management, technical
management and software engineering principles to efficiently and effectively produce a set of related
products. The major test assets: test plans, test cases, test data, and test reports are created at multiple
levels of abstraction to facilitate their reuse. A product line organization also defines a test process that differs
from the test process in a traditional development organization. This tutorial will allow participants to consider
how to modify existing testing practices to take advantage of strategic reuse. At the end of this tutorial you will

http://www.sei.cmu.edu/splc2006/tutorials_calendar_view.html (2 of 6) [10/16/2008 1:21:21 PM]

The 10th International Software Product Line Conference (SPLC 2006)

be able to:

● Understand the basic concepts of testing in software product line organizations.
● Understand the benefits, costs and risks of creating reusable test assets.
● Define a test process for your product line organization.
● Identify the steps necessary to initiate these activities for your organization.

Tutorial 5 (T5)
Leveraging Model Driven Engineering in Software Product Lines
Bruce Trask, Angel Roman
21 August 2006, (Half Day - PM)

Model Driven Engineering (MDE) is a new innovation in the software industry that has proven to work
synergistically with Software Product Line Architectures. It can provide the tools necessary to fully harness the
power of Software Product Lines. The major players in the software industry including commerical companies
such as IBM, Microsoft, standards bodies including the Object Management Group, and leading universities
such as the ISIS group at Vanderbilt University are fully embracing this MDE/PLA combination. IBM is
spearheading the Eclipse Foundation including its MDE tools. Microsoft has launched their Software Factories
foray into the MDE space. Software groups such as the ISIS group at Vanderbilt are using these MDE
techniques in combination with PLAs for very complex systems. The Object Management Group is working on
standardizing the various facets of MDE. The goal of this tutorial is to educate attendees on what MDE
technologies are, how exactly they relate synergistically to Product Line Architectures, and how to actually
apply them using an existing Eclipse implementation.

Tutorial 6 (T6)
Introduction to Software Product Line Adoption
Linda Northrop, Larry Jones
21 August 2006, (Half Day - PM)

The tremendous benefits of taking a software product line approach are well documented. Organizations have
achieved significant reductions in cost and time to market and, at the same time, increased the quality of
families of their software systems. However, to date, there are considerable barriers to organizational
adoption of product line practices. Phased adoption is attractive as a risk reduction and fiscally viable
proposition. This tutorial describes a phased, pattern-based approach to software product line adoption. A
phased adoption strategy is attractive as a risk reduction and fiscally viable proposition. The tutorial begins
with a discussion of software product line adoption issues and then presents the Adoption Factory pattern.
The Adoption Factory pattern provides a roadmap for phased, product line adoption. The tutorial covers the
Adoption Factory in detail, including focus areas, phases, subpatterns, related practice areas, outputs, and
roles. Examples of product line adoption plans following the pattern are used to illustrate its utility. The tutorial
also describes strategies for creating synergy within an organization between product line adoption and
ongoing CMMI or other improvement initiatives.

Tutorial 8 (T8)
Software Product Line Variability Management
Klaus Pohl, Frank van der Linden, Andreas Metzger
21 August 2006, (All Day)

Tutorial participants will become familiar with the key concepts of software product line engineering and will
learn how to apply variability management in practice. The participants will be able to differentiate between
the two processes domain engineering and application engineering, and will have an understanding of the
differences between single-system development and the development activities in product line engineering.
The focus will be on requirements engineering and architectural design activities, and the relationships
between them. The participants will further have learned about the concept of variability, have practiced the
concepts through exercises, and will be able to model variability in requirements and design artifacts by using
the orthogonal variability modeling approach (OVM).

http://www.sei.cmu.edu/splc2006/tutorials_calendar_view.html (3 of 6) [10/16/2008 1:21:21 PM]

The 10th International Software Product Line Conference (SPLC 2006)

Tutorial 9 (T9)
Domain-Specific Modeling and Code Generation for Product Lines
Juha-Pekka Tolvanen
22 August 2006, (Half Day - AM)

Current modeling languages provide surprisingly little support for automating product line development. They
are either based in the code world using the semantically well-defined concepts of programming languages (e.
g. UML) or based on an architectural view using a simple component-connector concept. In both cases, the
languages themselves say nothing about a product family or its variants. This situation could be compared to
that of a programmer being asked to write object-oriented programs where the language does not support any
object-oriented concepts.

Most domain engineering approaches emphasize a language as an important mechanism to leverage and
guide product development in product lines. Domain engineering results in creating a language (with related
tools) for the variant specification and production that goes beyond configuring pre-built components.
Previously, the effort for implementing textual or graphical languages and related tools was considerably high.
This limited the use of domain engineering to a few cases only and hindered the use of true product family
development methods. However, recent advances in metamodeling and related technology (e.g.
metamodeling tools, Software Factory concept) as well as tools provide better support for language and
generator creation. This tutorial describes how to create domain-specific languages and generators to
automate product derivation. We inspect 20+ industry cases on language creation and demonstrate their use
with hands-on examples. Industrial experiences of this approach show remarkable improvements in
productivity (5-10 times faster variant creation) as well as capability to handle complex and large product lines
(more than 100 product variants).

Tutorial 10 (T10)
The Scoping Game
Mark Dalgarno
22 August 2006, (Half Day - AM)

Product Line Scoping is the activity of determining what products constitute the product line. i.e. the Product
Line Scope. This tutorial will introduce and explore Product Line Scoping.

By the end of the tutorial participants should:

● Understand Scoping and why it is an essential Product Line activity.
● Understand Scoping as an economic decision driven by business objectives and involving Scope trade-

offs.
● Understand the sources of information which underpin Scoping.
● Be able to identify stakeholders in the Scoping activity and relate this to their own organization.
● Be aware of alternative Scoping approaches.
● Understand Scoping as an iterative, on-going activity.
● Understand Scoping's position with respect to other Product Line activities.
● Know where to look for more information.

Tutorial 11 (T11)
Using Feature Models for Product Derivation
Olaf Spinczyk, Holger Papajewski
22 August 2006, (Half Day - AM)

The implementation of a software product line leads to a high degree of variability within the software
architecture. For an effective development and deployment it is necessary to resolve variation points within
the architecture and source code automatically during product/variant derivation. Given the complexity of most

http://www.sei.cmu.edu/splc2006/tutorials_calendar_view.html (4 of 6) [10/16/2008 1:21:21 PM]

The 10th International Software Product Line Conference (SPLC 2006)

software systems tool support is necessary for these tasks. This tutorial shows how feature models combined
with appropriate tools can provide this support. The importance of the separation of problem space modeling
and solution space modeling is discussed. Concepts how to connect both spaces using constraints and/or
generative approaches are shown. Furthermore, some typical patterns of variability in the solution space are
shown and their automatic resolution in common languages like C/C++ and Java is demonstrated. Integration
of code generators, aspect-oriented programming and software configuration management systems into the
derivation process is also discussed. The tutorial is accompanied by demonstrations of the presented
concepts with freely available tools.

Tutorial 12 (T12)
Lightweight Dependency Models for Product Lines
Neeraj Sangal
22 August 2006, (Half Day - PM)

This tutorial will present a practical technique for managing the architecture of software product lines using
Lightweight Dependency Models. We will demonstrate that the matrix representation used by these models
provides a unique view of the architecture and is highly scalable compared to the directed graph approaches
that are common today. We will also show a variety of matrix algorithms and transformations that can be
applied to analyze and organize the system into a form that reflects the architecture and demonstrates the
importance of managing dependencies in product lines.

During the tutorial, we will illustrate our approach by applying it to real applications each consisting of
hundreds or thousands of files. We will show how dependency models can be created for product lines and
how formal design rules can be specified to manage the evolution of these architectures. Finally, we will use
the actual dependency models to demonstrate how architecture evolves and how it often begins to degrade.

Tutorial 13 (T13)
Transforming Legacy Systems into Product Lines
Danilo Beuche
22 August 2006, (Half Day - PM)

Not every software product lines starts from the scratch, often organizations face the problem that after a
while their software system is deployed in several variants and the need arises to migrate to systematic
variability and variant management using a software product line approach. The tutorial will discuss issues
coming up during this migration process mainly on the technical level, leaving out most of the organizational
questions. The goal of the tutorial is to give attendees an initial idea how a transition into a software product
line development process could be done with respect to the technical transition. The tutorial starts with a brief
introduction into software product line concepts, discussing terms such as problem and solution space,
feature models, versions vs. variants. Tutorial topics are how to choose adequate problem space modeling,
the mining of problem space variability from existing artifacts such as requirements documents and software
architecture. Also part of the discussion will be the need for separation of problem space from solution space
and ways to realize it. A substantial part will be dedicated to variability detection and refactoring in the solution
space of legacy systems.

Tutorial 14 (T14)
Feature Modularity in Software Product Lines
Don Batory
22 August 2006, (Half Day - PM)

Feature Oriented Programming (FOP) is a design methodology and tools for program synthesis in software
product lines. Programs are specified declaratively in terms of features. FOP has been used to develop
product-lines in widely varying domains, including compilers for extensible Java dialects, fire support
simulators for the U.S. Army, network protocols, and program verification tools. The fundamental units of
modularization in FOP are program extensions (aspects, mixins, or traits) that encapsulate the implementation
of an individual feature. An FOP model of a product-line is an algebra: base programs are constants and

http://www.sei.cmu.edu/splc2006/tutorials_calendar_view.html (5 of 6) [10/16/2008 1:21:21 PM]

The 10th International Software Product Line Conference (SPLC 2006)

program extensions are functions (that add a specified feature to an input program). Program designs are
expressions - compositions of functions and constants - that are amenable to optimization and analysis. This
tutorial reviews core results on FOP: models and tools for synthesizing code and non-code artifacts by feature
module composition, automatic algorithms for validating compositions, and the relationship between product-
lines, metaprogramming, and model driven engineering (MDE).

Tutorial 15 (T15)
Generative Software Development
Krzysztof Czarnecki
22 August 2006, (All Day)

Product-line engineering seeks to exploit the commonalities among systems from a given problem domain
while managing the variabilities among them in a systematic way. In product-line engineering, new system
variants can be rapidly created based on a set of reusable assets (such as a common architecture,
components, models, etc.). Generative software development aims at modeling and implementing product
lines in such a way that a given system can be automatically generated from a specification written in one or
more textual or graphical domain-specific languages (DSLs).

In this tutorial, participants will learn how to perform domain analysis (i.e., capturing the commonalities and
variabilities within a system family in a software schema using feature modeling), domain design (i.e.,
developing a common architecture for a system family), and implementing software generators using multiple
technologies, such as template-based code generation and model transformations. Available tools for feature
modeling and implementing DSLs as well as related approaches such as Software Factories and Model-
Driven Architecture will be surveyed and compared. The presented concepts and methods will be
demonstrated using a sample case study of an e-commerce platform.

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/tutorials_calendar_view.html (6 of 6) [10/16/2008 1:21:21 PM]

http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Conference Panels

23 August 2006
P1 Product Derivation Approaches

Panel moderator: David Weiss, Avaya Labs
Model problem: Interactive Television Applications

P2 Testing in a Software Product Line
Panel moderator: Klaus Pohl, Lero, The Irish Software Engineering Research Centre & University of
Duisburg-Essen, Germany
Model problem: The eShop Product Line

24 August 2006
P3 Product Line Research

Panel moderator: Liam O'Brien, Lero, The Irish Software Engineering Research Centre

Panel 1 (P1)
Panel on Product Derivation Approaches
23 August 2006

Panel moderator: David Weiss, Avaya Labs

Panelists:
Danilo Beuche, pure-systems
Charles Krueger, BigLever Software
Rob van Ommering, Philips Research
Juha-Pekka Tolvanen, MetaCase

Abstract
This panel looks at product derivation approaches and their differences, strengths and weaknesses in
different PLE situations. Each panelist will examine a common problem (the Interactive Television
Applications) and provide an overview of their product derivation approach and how it was used to solve the
problem.

Overview
At some point, no matter how wonderful your product line process is, you have to ship the products. The
panelists will each present a different approach to PLE, concentrating on how actual products are derived
from specifications. The approaches presented include feature modeling, architecture description languages,
UML and domain-specific modeling languages.

A common product specification and derivation task will be given to all panelists, and they will show how their
approach works on it. The audience can - and is warmly encouraged to - participate, ask additional questions,
heckle, and hopefully laugh. A major goal is to identify the classes of PLE situations that best suit each
approach.

Following are some of the questions and issues to be addressed by the panel.

http://www.sei.cmu.edu/splc2006/panels_listings.html (1 of 3) [10/16/2008 1:21:23 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/

The 10th International Software Product Line Conference (SPLC 2006)

1. How large a portion of a product is automatically derived? Please answer in terms of some reasonably
precise measure, such as percent of modules, classes, or KNCSL, or coverage in a feature model.

2. How are new features and functionality developed? Give an example, if possible.
3. What is the cost and time to create a new feature or change the application platform, e.g., in hours of

effort as a fraction of effort needed to create the application engineering environment? Alternatively,
how would you estimate the cost and time?

Panel 2 (P2)
Testing in a Software Product Line
23 August 2006

Panel moderator: Klaus Pohl, Lero, The Irish Software Engineering Research Centre & University of Duisburg-
Essen, Germany

Panelists:
Georg Grütter, Robert Bosch GmbH, Germany
John D. McGregor, Clemson University, USA
Andreas Metzger, University of Duisburg-Essen, Germany
Tim Trew, Philips Research, The Netherlands

Abstract
This panel is about system testing of software product line artifacts. The panelist will present different
approaches for software product line testing. Together, we will discuss their pros and cons. As a kind of
benchmark, a common example of an online store (The eShop Product Line) will be used to ease the
comparison of the different testing approaches.

Overview
Each panelist will present an approach to test the domain and application artifacts in software product line
engineering. The decision whether to test the domain artifacts in domain engineering or if testing is delayed to
application engineering is left to the panelists.

To facilitate a better comparison of the different test approaches, each panelist will illustrate his approach
using a running example of an online store product line.

The discussions will, among others, cover the following questions:

● Should there be system testing in domain engineering, or should system tests be performed during
application engineering only?

● Which test artifacts can be reused during product line testing?
● Is there an advantage of creating domain test artifacts which are reused during application engineering?
● Can application test cases be generated? And if so, should they be generated from domain test cases

or just from application engineering artifacts?
● Does the model-based test case derivation offer benefits when compared with deriving test cases

directly from natural language requirements?

Panel 3 (P3)
Product Line Research: Lessons Learned from the last 10 years and Directions for the next 10
24 August 2006

Moderator: Liam O'Brien, Lero, The Irish Software Engineering Research Centre

Panelists:
Paul Clements, Software Engineering Institute, USA
Kyo Kang, POSTECH, Korea
Dirk Muthig, Fraunhofer IESE, Germany
Klaus Pohl, Lero, The Irish Software Engineering Research Centre & University of Duisburg-Essen, Germany

http://www.sei.cmu.edu/splc2006/panels_listings.html (2 of 3) [10/16/2008 1:21:23 PM]

The 10th International Software Product Line Conference (SPLC 2006)

Abstract
This panel is about past and future research in software product lines. The panelists will look back at the past
10 years to examine outcomes and lessons learned and will look forward to the next 10 years and will give
potential outcomes and directions for the future of software product line research. The outcomes will be
examined for relevance to the practitioner community.

Overview
Each panelist will present their lessons learned from the past and the directions for the next 10 years. Several
industry judges will be asked to make a determination as to how useful the outcomes have been or will be for
practitioners. The panelists will have an opportunity to respond to the judges comments and this will lead to a
general discussion.

The discussions will, among others, cover the following questions:

● What have been the main lessons and outcomes for research in software product lines over the past
10 years?

● What will likely be the major directions and outcomes for research in software product lines over the
next 10 years?

● How relevant have the past outcomes been for practitioners and how relevant will future outcomes be
for practitioners?

● What will be the next big breakthrough for software product line research?

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/panels_listings.html (3 of 3) [10/16/2008 1:21:23 PM]

http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

The 10th International Software Product Line Conference (SPLC 2006)

Conference Information

 SPLC 2006 Home
 Keynote Speakers
 Technical Program
 Tutorials
 Workshops
 Panels
 Software Product Lines
Doctoral Symposium

 Software Product Line
Hall of Fame

 Birds-of-a-Feather
 Important Dates
 Corporate Supporters
 Conference & Program
Committees

 Location/Hotel
 Past Conferences
 Contact Information

10th International Software Product Line Conference
(SPLC 2006)

21-24 August 2006
Baltimore, Maryland, USA

Invitation to Corporate Sponsorship

The Tenth International Software Product Line Conference (SPLC) 2006 will be held in Baltimore, Maryland,
USA on August 21 � 24, 2006. Software product lines represent an important and growing software
development paradigm, and SPLC is a leading forum for researchers and practitioners working in the field.
SPLC 2006, the tenth official gathering of the software product line community, is a result of the merging of
two former conferences: the Software Product Line Conference (SPLC), which began in 2000 in the USA, and
the Product Family Engineering (PFE) Conference, which began in 1996 in Europe. SPLC 2006 will provide a
venue for practitioners, researchers, and educators to reflect on the achievements made during the past
decade, assess the current state of the field, and identify key challenges still facing researchers and
practitioners.

The conference will feature research and experience papers, topical panels, tutorials, workshops,
demonstrations, birds-of-a-feather discussions, and other opportunities for members of the product line
community to interact. This year�s program will span a wider range of product line interests than ever before.
The keynote speakers will be Carliss Baldwin of the Harvard Business School and Gregor Kiczales, originator
of aspect-oriented programming. Special sessions focusing on the research agendas of leading research
organizations, testing and quality assurance in product lines and several other topics will be conducted in
addition to the usual conference sessions. SPLC 2006 will also support a Doctoral Symposium in which the
next generation of researchers will receive guidance and support.

We invite you to become a corporate sponsor of SPLC. There are three levels of sponsorship, described
below. Your sponsorship, in addition to helping with the general expenses of the conference, will assist
aspiring research students to attend the conference.

Your support will help SPLC be an effective venue for sharing and learning. I will be happy to answer any
questions you may have.

Thanks for your consideration,

John D. McGregor
Conference Chair
johnmc@cs.clemson.edu

 Gold Level
($5,000)

Silver Level
($2,500)

Bronze Level
($1,000)

Call for participation: Logo No No

WWW page: Mentioned + logo Mentioned + logo Logo

Conference program: One page advert + logo Logo Mentioned

Conference proceedings: Logo Mentioned Not mentioned

Other adverts: Yes Yes Yes

Email distribution
mentioned:

Yes Yes Yes

Adverts in conference bag: 2 full pages of
presentation of the
company/product

1 full page of presentation
of the company/product

No

Opening and closing
session:

Explicitly mentioned Explicitly mentioned Not explicitly mentioned

Banners: If provided, one Banner at
Conference Side

No No

http://www.sei.cmu.edu/splc2006/corporate_sponsor.html (1 of 2) [10/16/2008 1:21:25 PM]

http://www.sei.cmu.edu/splc2006
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.sei.cmu.edu/splc2006/doc_sym.html
http://www.splc.net/
mailto:johnmc@cs.clemson.edu

The 10th International Software Product Line Conference (SPLC 2006)

Posters: One-two A0 Poster in
plenary conference room
one A1 Poster in other

conference rooms

One A1 Poster in main
conference room

One Poster with all
�Supporters� in main

conference room

Free attendance: Three free conference
registrations (does not

include tutorials or
workshops)

Two free conference
registrations (does not

include tutorials or
workshops)

No free registration

Contact Information:
For general information, contact John D. McGregor.
For web site information, contact Bob Krut.

http://www.sei.cmu.edu/splc2006/corporate_sponsor.html (2 of 2) [10/16/2008 1:21:25 PM]

http://www.sei.cmu.edu/
mailto:johnmc@cs.clemson.edu
mailto:rk@sei.cmu.edu

	The 10th International Software Product Line Conference (SPLC 2006)
	Welcome
	Workshops
	Tutorials
	Panels
	Birds-of-a-Feather Sessions
	The Option Value of Software Pr
oduct Lines
	Aspect-Oriented Programming
Radical Research in Modularity
	Summary for the
1st International Workshop on
Agile Product Line Engineering
APLE 2006
	Managing Variability
for Software Product
Lines: Working With
Variability Mechanisms
	Variability Management--Working with Variability Mechanisms
	1st International Workshop on
Open Source Software and Product Lines OSSPL06
	Open source strengths for defining software product line practices
	Open source strengths for defining software product line practices
	Feature-Based Determination of Product Line Asset Types: In-house, COTS, or Open Source
	Feature-Oriented Determination of Product Line Asset Types:
In-House, COTS, or Open Source? (Position Paper)
	Open Source in the Software Product Line:
An Inevitable Trajectory?
	Open Source in Software Product Line: An Inevitable Trajectory
	OSS Product Family Engineering
	Applying OSS development
practices in software product line
development
	Software Product Lines
Doctoral Symposium
	Building Interactive TV Applications
with pure::variants

	Product Derivation Approaches
SPLC 2006 Panel
	Product Derivation Panel
Domain-Specific Modeling
	Product Derivation Approaches The Digital TV case and Koala
	Panel: Testing in a Software Product Line
	Panel: Product Line Research: Lessons Learned from the last 10 years and Directions for
the next 10
	Panel Statement: Product Line Research
	Software Product Line Research
	Panel on Product Line Research Lessons Learned from the last 10 years and Directions for the next 10 years
	Panel: Software Product Line Research--Lessons Learned from the Last Ten Years and Directions for the Next Ten
	Questions―Now or Later

	Product Line Adoption:
A Vice President's View
& Lessons learned
	New Methods in Software Product Line Developme
	10th International Software Product Line Conference (SPLC 2006)
21-24 August 2006 Baltimore, Maryland, USA 2006 Software Product Line Hall of Fame Inductee
	Bosch Gasoline Systems: Engine Control Software Product Line
	Keynote Speakers
	The 10th International Software Product Line Conference (SPLC 2006)
	The 10th International Software Product Line Conference (SPLC 2006)
	The 10th International Software Product Line Conference (SPLC 2006)
	The 10th International Software Product Line Conference (SPLC 2006)
	The 10th International Software Product Line Conference (SPLC 2006)
	The 10th International Software Product Line Conference (SPLC 2006)
	The 10th International Software Product Line Conference (SPLC 2006)
	The 10th International Software Product Line Conference (SPLC 2006)
	Software Product Lines Doctoral Symposium
	Product Line Hall of Fame

	Panel on Product Derivation Approaches

	Interactive Television Applications

	Panel on Testing in a Software Product Line
	The eShop Product Line
	The Advanced Multiplex Test SYstem (AMTS): A Product Line Approach for Army Aviation
Maintenance
	Panel on Product Line Research: Lessons Learned from the last 10 years and Directions for the Next 10

	The 10th International Software Product Line Conference (SPLC 2006)

