
A Framework for Distributed Interaction

Stephen Crane

October 11, 1996

Abstract

In this position paper we argue that the implementation of abstractions

which support interaction between entities in a distributed system is usually ad

hoc and that there is a need for a rigorous framework which can accomodate

di�erent types of interaction subject to an agreed set of requirements. We

present these requirements and a framework which meets them and argue that

the quality of service supported by the underlying transport system should

have no bearing on the semantics of the interaction.

1 Introduction

Distributed programming environments have commonly restricted programmers to a
single way of expressing interactions between their programs' components. Remote
Procedure Call [1] is popular because it generalises the centralised, single-threaded
procedure call into one between address spaces.

However, distributed programs are quite unlike centralised programs. Without
describing all of the ways in which distributed semantics di�er, we will concentrate
on one: concurrency. A centralised program, being constrained to a single address
space, almost invariably possesses a single thread of control. When it is multi-
threaded, communication between threads is via shared data, supported by monitor
conditions or semaphores to allow synchronisation and mutual exclusion.

A distributed program on the other hand always has multiple threads of con-
trol. Whether more than one is simultaneously active depends on the reasons for
distributing the components of the program in the �rst instance:

Access to Remote Data In this case, the `distributed program' is a collection
of loosely coupled components which are potentially located in di�erent en-
terprises. In an open distributed system, long-running servers act only in
response to requests from relatively short-lived clients. In this model, a client
performs some computation, requests information from a server and blocks
until it receives a reply. For such needs, RPC is perfectly suited.

Exploitation of Parallelism In this case, the motivation for distribution is that
the problem at hand is susceptible to sub-division and the sub-problems are
capable of being solved simultaneously. Where communication between the
components is required (and for maximum speed-up, it should of course be
minimal) it takes the form of asynchronous noti�cation of information. Rarely,
if ever, is RPC's request-reply paradigm the best solution.

Of course, in practice few distributed programs fall neatly into either category. If
more than one interaction style is not supported, programmers are forced to model
the required ones in terms of the dominant paradigm. While such modelling is
perfectly possible [7] it does not follow that it is a pleasant task and, programmers

1



being what they are, the choice of winning paradigm has been the cause of many
holy wars.

If more than one interaction style is supported, there are many arguments in
favour of treating them all equally, apart from an end to the RPC versus message-
passing debate. We outline some of these arguments in the next section. The third
section describes the components of the framework while the fourth demonstrates its

exibility by example. We conclude with a complete list of currently implemented
interactions.

2 Requirements on the Framework

The requirements which motivated development of our interaction framework stem
from many years of development of distributed programming environments for both
instructional and industrial applications [4, 9, 10]. We distinguish three require-
ments as crucial: support for multiple binding idioms; separation of transport and
interaction semantics; and selection over a set of guarded endpoints.

2.1 Multiple Binding Idioms

Our model of distributed computation imposes a strict separation between program
structure and its algorithmic aspects [8]. This has been referred to as `programming
in the large' or viewing components as `software integrated circuits'. In traditional
models, binding is established by the �rst party to the transaction | the client. Our
experience has led us to the belief that, while essential, client-originated binding is
inappropriate for parallel programming and can obscure application structure, and
that clarity is more easily obtained by locating the responsibility for establishing
initial application structure elsewhere.

2.1.1 First-party Binding

The essence of �rst-party binding is that the client uses a reference to initialise one
of its interfaces. How the client obtained the reference is immaterial, it could have
got it from a nameserver, as a result of a previous transaction, or even from its
execution environment.

First-party binding is extremely common in modern distributed systems. In
Orbix for example, [6] all binding is performed by the �rst-party and the result
of a bind action is a proxy. This is normally implicit: endpoint and reference are
indistinguishable to the programmer with automatically-generated marshalling code
performing the necessary transformations.

2.1.2 Third-party Binding

In the same manner, we de�ne third-party binding as a binding between client and
server which is established by `something else' which is neither client nor server.

Third-party binding is relatively rare in modern distributed systems. Systems
which transform a con�guration description into an initial application structure
commonly use third-party binding to do so [3]. Management utilities which perform
online application recon�guration are also in the role of the third party when they
connect a client to a server [2, 5].

2.2 Varying QoS

Quality of Service is a term which describes the demands of a distributed application
on the transport system interconnecting its components [13]. It introduces a need

2



to replace traditionally common transport semantics such as `best e�ort' or `reliable
delivery' by a spectrum of communication protocols one of which is best suited to
the requirements of a particular application.

Interaction and QoS are orthogonal concepts. While programmers should be free
to specify the quality of service which they require from the transport supporting a
binding, the style of the interaction should have no bearing on the quality of service
provided by it. Programmers should not be misled into considering RPC inherently
reliable, but message-passing best e�ort.

2.3 Selection

The Unix device-independent I/O model is a powerful abstraction which, among
other things, allows servers to wait for (select) an I/O event from one of a num-
ber of heterogeneous devices. In a similar fashion, we wish to allow programmers
of server components to allow services to be implemented by any combination of
interaction styles. This leads to a requirement that all interactions share a common
ancestor class which allows servers to wait for an event on one of several services.

Events of interest are not con�ned to incoming requests for service although this
is the common case. An application may also wish to know when the QoS required
on a binding drops below some threshold or when a connection to the remote service
breaks altogether.

3 The Framework

The previous section motivated the need for a framework by describing some of the
properties which we wish all interactions to possess. In the light of these require-
ments, we outline the participating elements of the framework.

operations()

Service

Remote

operations()

Proto

Ptr<Interface>

Reference

Reference()

Proxy

client_ops()

bind ()

Service

Interface

operations()

Figure 1: Class relationships between elements of an interaction.

3



3.1 Participants

The shaded area of �gure 1 shows the elements of an interaction required by the
framework. Classes outside of this area, Proto and Service, are in supporting roles
and are not directly relevant to the discussion.

Service This class de�nes the service which an interaction provides. Instances of
this class are destinations of messages sent to servers, e.g., ports, remotely-
invokable objects, etc.

Proxy is a placeholder which is bound to the interaction endpoint. The semantics
of attempted use before binding depends on the binder associated with it. A
proxy which is published in a con�guration description is required to block a
task accessing it until a third-party has bound it. On the other hand, use of
a private unbound proxy should cause an exception.

Reference is the intermediary between Service and Proxy. It is initialised from
a service and a QoS description and passed as a parameter to a compatible
Proxy's bind operation where it causes creation of the desired communications
subsystem.

Interface de�nes the abstract signature of the target class which supports the
interaction. This facilitates provision of location transparency.

Remote de�nes the interface to the communications subsystem described by the
above QoS description. Location transparency is achieved by making its in-
terface indistinguishable from that of the Service itself.

The latter two elements are more implementation-oriented and as such less manda-
tory. However they are a convenient way of ful�lling the requirement of location
transparency. Figure 2 shows how instances of these classes interact to establish a
binding between a co-located proxy and service, while �gure 3 shows the establish-
ment of a binding to a remote service.

aProxy

_ptr
_smartptr

aPtr<Interface>
aService

aProxy aReference aService

ctor

bind()

proxy_op() op()

isLocal()

get_id()

get_id()

Figure 2: Binding to a local service.

4



aProxy aReference aRemote

bind()
isLocal()

proxy_op() op()

elaborate()

ctor()

create protocols

_proto->transmit()

_smartptr aRemote
_ptr

_proto
aProtocol

_session

aProxy
aPtr<Interface>

Figure 3: Binding to a remote service.

3.2 Binders

A binder implements the desired binding style by permitting controlled binding of
the proxy which it manages. Di�erent binders implement di�erent behaviours in
response to attempted use of an unbound proxy. A binder is often (but not always)
transient, existing only to manage the initial binding action before removing itself.
Currently identi�ed binders are:

First-party binders require their proxies to be bound before use. When binding
occurs, they remove themselves from the invocation sequence. They trap
attempts at invocation before binding, throwing an exception or terminating
the program.

Third-party binders block their invokers until an externally-initiated binding ac-
tion occurs. Like �rst-party binders, they are transient.

Import binders intercept the �rst invocation and trigger the importation of a ref-
erence to the required service from a nameserver. They too are transient.

Recon�gurable binders behave like persistent third-party binders. They export
a rebind service to a nameserver to which online management tools connect
in order to break and replace the binding. These binders are responsible for
obtaining the consent of the protocol layers underpinning the binding before
carrying out the recon�guration.

Relocating binders are persistent objects which support transparent binding re-
placement. This is useful for maintaining bindings to mobile servers. Possible
semantics of these binders can be found in [11]. Their behaviour is closely
related to that of recon�gurable binders.

Figure 4 shows the relationships between these binder classes. Interaction class
proxies have no direct dependency on any of them and contain merely a reference
to the smart pointer class, from which binders descend and by which they replace
themselves when binding has taken place.

5



Ptr<Interface>

operator->()

FirstParty ThirdParty Import Reconfigure

Figure 4: Binders: class relationships.

4 Populating the Framework

The validity of the framework is demonstrated by example. As extrema we consider
event dissemination and remote object invocation.

4.1 Event Dissemination

Event dissemination is not easily accomodated in a pure client-server distributed
system because it is not immediately clear which entity in the interaction is the
client and which is the server.

In our model, clients are entities desiring event noti�cation, while servers dis-
seminate noti�cations of events. The interaction is typed by the structure of the
noti�cation data. The interaction comprises two distinct bindings: the primary
carries control messages from the client to the server while the secondary, back-
binding, carries event noti�cations from the server to the client. The back-binding
is established by an enable control message carrying a reference to an `event-sink
service' private to the client-side of the interaction. When it receives a control mes-
sage, the event service binds a new `event sink proxy' using the reference to the
event sink, and adds this proxy to its list of clients. C++ classes which implement
this interaction are:

Event implements the event service. It contains a list of proxies to client-side
noti�cation services. It supports the announce operation by which a server
can transmit a noti�cation using every proxy in this list.

Event::Proxy implements a requirement for a compatible event service. It pos-
sesses control members enable and disable by which a client indicates to
the bound server its desire for event noti�cations. It supports blocking and
selectable wait operations to allow the client to synchronise with the arrival
of data.

Event::Reference is a typed, transmissible object which facilitates construction
of the primary (control) binding from the client to the server.

Event::Interface is a typed abstract base class of Event and Event::Remote,
supporting location transparency.

In our implementation, the event interaction comprises two instances of the
asynchronous Notify class of which one carries the control data to the server and
the other the event data to the client. The bindings between these endpoints may
be heterogeneous, o�ering di�ering transport semantics for the two types of data,
for instance reliable control messages and timely event messages to support group
multimedia transmission.

6



4.2 Remote Object Invocation

In a CORBA-compliant environment [12] interaction between client and server en-
tities is achieved by specifying their interfaces in an Interface De�nition Language,
IDL. An example of IDL is,

interface �le f
int open (in string name, in unsigned perm);
int close (in int des);
int read (out string buf, in int len);
int write (in string buf, in int len);

g

The IDL compiler translates this de�nition into a representation which is useable
in the implementation language of client and server components, typically C++.

In terms of our interaction model, the IDL compiler is a factory of user-de�ned
invocation-oriented interaction classes. The back-end of our IDL compiler emits
classes re
ecting this view, �gure 5,

Ptr<file::Interface>

file::Interface

int open (...);
int close (...);
int read (...);
int write (...);

int open (...);

file

...

int open (...);

...

file::Remote

ORB::Remote ORB::BOA

ORB::Client ORB::Server

file::Reference

Reference (file&)int open (...);

file::Proxy

bind(Reference &)

ORB::Proxy

Figure 5: An IDL-generated interaction: class structure.

�le is the object which implements the �le-system service,

�le::Proxy is a compatible, client-side entity,

Ptr<�le::Interface> provides bindable access to either a local file or a file::Remote,

�le::Remote provides transparent access to a non-local file, marshalling request
parameters and unmarshalling returns.

7



Functionality common to all object-interaction classes is located in the ORB
namespace:

BOA or Basic Object Adaptor implements a remotely-invokable server-side end-
point. CORBA further de�nes certain activation and authorisation responsi-
bilities for BOAs which we do not implement at this level.

Remote stores the identity of its peer BOA and provides operations such as send
and wait to send marshalled bu�ers and wait for the arrival of unmarshalled
bu�ers via the Client.

Client provides an interface to the top of the protocol stack tailored to remote
invocations. It is an abstract class; its functionality is supplied by a concrete
client-protocol class which will be described in the next section.

Server like Client, is an abstract interface whose concretion is provided by a server-
side protocol.

4.3 Pseudo-Interactions

Pseudo-interactions are degenerate cases of the interaction framework illustrating
other aspects of its 
exibility which were not envisaged when the framework was
designed. We illustrate two cases: distributed program initialisation and operating
system signals.

4.3.1 Distributed Program Initialisation

Distributed programs in Regis [9] comprise multiple copies of an executable image
running on di�erent machines. We refer to a single executing image as a node.
Nodes exhibit di�erent behaviours depending on their command-line arguments.

The �rst node of a Regis program to run always executes the anonymous single-
ton component at the root of the tree of components. When it wishes to instantiate
a component at a node which does not yet exist, it contacts an execution service
requesting it to run a new copy of the image with di�erent arguments on another
host on the network. These arguments inform the new node of (a) its logical node
number and (b) the location of the root's con�guration service. The new node binds
by �rst party to the root con�guration service and noti�es it of its con�guration
service. It is now ready to accept instantiation and binding instructions.

instantiate()
bind()

Local Remote

instantiate()
bind()

instantiate()
bind()

Protocol

1+

operator[]

Array

Interface

Array<Interface>

Figure 6: Con�guration service: class relationships.

8



The interaction between nodes' con�guration services is a degenerate case be-
cause, in order to provide a third-party binding service, the participants can only
use �rst-party binding. Distributed node services are accessed through a member-
ship map (of which a copy is present at each node but only the root's must be
complete) indexed by logical node number. All entries in this map are accessed
through a common abstract interface to provide location transparency to higher
levels of the con�guration service, �gure 6.

4.3.2 Signals

A signal is an example of a process interacting with its operating system environ-
ment. It is desirable that a component be able to accept noti�cation of a signal as
easily as to participate in any other kind of interaction. This is achieved using the
Signal interaction. It is degenerate because it cannot be bound to: the Service is
accessed from the kernel managing the server's address space.

5 Conclusion

Our framework for construction of distributed interactions has been found to be

exible enough to accomodate any interaction which we have discovered to date.
Currently implemented interactions are,

Interaction Purpose
Sync Distributed Synchronisation (Semaphores)
Notify Asynchronous Noti�cation
Port Typed Message Ports
Entry Ada-style entry-points
Event Event dissemination
Signal Operating System Signal
Object Remote method invocation

Figure 7: Useful interactions.

In contrast to the approach described here, an earlier incarnation of the Regis
system encouraged construction of user-de�ned interactions by exploiting the prop-
erties of the Port, either through inheritance or containment. Where ports were
found wanting, the desired behaviour was obtained by allowing their default be-
haviour to be overridden. Such patching demonstrated that a deeper abstraction
lay beneath that of the port and what was required was a framework in which to
exploit it.

In summary, our framework provides the following abstractions,

� Location transparency is guaranteed by requiring the Remote participant to
possess the same interface as the Service itself.

� The Proxy's desired runtime binding semantics are obtained by the binder
which controls access to the smart pointer to the service.

� Type and role compatibility is enforced by the Proxy's typed bind member
function which ensures that a particular interaction's Proxy can only be bound
to that interaction's Service and further, that the type of data transmitted
must be compatible with that expected by the receiver.

9



Acknowledgements

The author acknowledges the contribution of many stimulating discussions with
his colleagues in the Distributed Software Engineering section at Imperial College,
especially Je� Magee, Naranker Dulay and Nat Pryce.

References

[1] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39{59, February 1984.

[2] S. Crane, N. Dulay, H. Foss�a, J. Kramer, J. Magee, M. Sloman, and K. Twidle.
Con�guration management for distributed software services. In Y. Raynaud
A. Sethi and F. Faure-Vincent, editors, Integrated Network Management IV,
pages 29{42. Chapman and Hall, 1995.

[3] N. Dulay. Darwin language reference manual. Technical report, Department of
Computing, Imperial College, 1992. ftp://dse.doc.ic.ac.uk/regis/darwin.ps.gz.

[4] N. Dulay, J. Kramer, J. Magee, M. Sloman, and K. Twidle. Distributed sys-
tem construction: Experience with the conic toolkit. In J. Nehmer, editor,
Experiences with Distributed Systems, pages 187{212. Springer-Verlag, 1987.

[5] S. Friedberg. Transparent recon�guration requires a third-party connect. Tech-
nical Report 220, Department of Computer Science, University of Rochester,
November 1987.

[6] Iona Technologies Ltd., 8-34 Percy Place, Dublin 4, Ireland. The Orbix Archi-
tecture, January 1995.

[7] H. C. Lauer and R. M. Needham. On the duality of operating system structures.
Operating Systems Review, 13(2):3{19, April 1979.

[8] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed soft-
ware architectures. In Proceedings of the Fifth European Software Engineering
Conference, Barcelona, September 1995.

[9] J. Magee, N. Dulay, and J. Kramer. A constructive development environment
for parallel and distributed programs. IEE/IOP/BCS Distributed Systems En-
gineering, 1(5):304{312, September 1994.

[10] J. Magee, J. Kramer, M. Sloman, and N. Dulay. An overview of the rex
software architecture. In Proceedings of the Second IEEE DCS Conference,
Cairo, October 1990.

[11] S. Menon and R. J. LeBlanc Jr. Object replacement using dynamic proxy
updates. IEE/IOP/BCS Distributed Systems Engineering Journal, 1(5):271{
279, September 1994. Special issue on con�gurable distributed systems.

[12] The Object Management Group, OMG Headquarters, 492 Old Connecticut
Path, Framington, MA 01701, USA. The Common Object Request Broker:
Architecture and Speci�cation, 2.0 edition, July 1995.

[13] R. Steinmetz and K. Nahrstedt. Multimedia: Computing, Communications and
Applications. Prentice-Hall Innovative Technology Series, New Jersey, 1995.

10


