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ABSTRACT

Abstract

This report explains some ideas on software architecture visualisation and analysis. Techniques for software archi-
tecture visualisation and analysis can be used to perform a kind of architecture verification, meaning that high-level
views and low-level views of a complex system are kept consistent with each other.

The report contains an example, which however is a true toy-example, in order to keep this report as short as pos-
sible. Some of the verification steps shown in this report can easily be automated in a piece of software which we
will call a “relational calculator” the example has been devised as a mock-up demo of the relational calculator,
just assuming its existence. The example is followed through several steps of a simplified development process,
summarised as follows:

� the software architect defines an architecture as a set of graph-like structural rules,
� then the programming team goes and starts creating code,
� architecture-conformance is checked regularly by extracting structure from code and comparing this actual

structure to the architect’s rules; this calls for the ‘calculator’ as a data/graph/set manipulation engine.

The development project benefits from this architecture verification in several ways:

� supporting a common understanding of the intended architecture,
� ensuring consistency between code and ‘official’ architecture.

This report is based on an idea that an architecture A is a specification of the intended structure of a large design,
and a concrete design D is a structure ‘as realised’. There is evidence that technically it will become possible to
have a vocabulary to express A and the technology to verify whether a givenD does satisfy A.

Keywords: software structuring, graph algorithms, reverse engineering, formal specification, relation algebra,
software architecture.
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INTRODUCTION AND MOTIVATION

1 Introduction and Motivation

Whereas for programming in the small there exist well-established concepts of specification and implementation,
the subject of ‘programming in the large’ (or software architecture, as we sometimes call it), has hardly any es-
tablished terminology. In this report we elaborate the idea that an architecture A is a specification of the intended
structure of a large design, and a concrete design D is a structure ‘as realised’. We present some evidence that it
will become possible to have a vocabulary to expressA and the technology to verify whether a givenD does satisfy
A.

The software complexity of many Philips products increases, amongst other reasons because many features are to
be realised in software instead of in hardware. Often there is a need to deal with product families instead of just
products. Not only the processor performance grows exponentially, but most often the software size grows expo-
nentially too. Other complicating factors are that closed boxes become part of open systems, that media become
part of multi-media, and that in many business groups there is a growing interest in optimising software re-use.

In today’s software engineering practice, products go through a concept phase in which the architecture is well-
visualised by means of diagrams, while the team is still growing, and while a good architect is present. But in the
realisation phase the architecture diagrams may have become obsolete, and although low-level coding standards
and analysis tools exist, it is usually not possible to check the real software against the high-level architecture. In
the realisation phase, there can be serious problems in managing the software complexity. Yet there is hope: some
visualisation techniques exist already and for example the tool TEDDY turned out to be already very useful for
analysing evolving architectures; several other developments point into the same direction, for example QAC and
Graphical Designer.

Some of the ideas reported in the present report were developed in the context of the project ‘design engineering
methods’. We list some key ideas of this report:

� many relevant structures in a software architecture are nothing but binary relations,
� manipulating relations is a way of obtaining views on intended or concrete architectures,
� alternative views on concrete software architectures can be visualised,
� a modest amount of automated support could be of great help.

It is a goal of this report to explain the idea of software architecture verification. We believe that there are technical
options which will help in understanding the evolving Philips architectures. It would be beneficial to have a kind
of continuity in the architecture evolution in the sense that in all project phases there are explicit architecture rules,
and up-to-date high level views which are kept consistent with the real software.

The main body of this report consists of a story about a fictitious software team which develops a fictitious product
and applies some verification techniques to its evolving architecture. In order to keep this report as short as pos-
sible, the fictitious product is just a toy example, but nevertheless the example will convey the idea of software
architecture verification. Sections 2 to 6 present this story. Please note that the data structures used to define the
architecture as well as the structure extracted from the code are just examples.

Related work: The idea of architecture verification is also presented in [1] and [2]. The TEDDY tool is described
until now only in Philips internal reports. There are also Philips internal reports containing a detailed study of the
theory of relations for purposes of softwarearchitecting. For more information about the mathematical theory of
relations we refer to [3].

Acknowledgements: The author would like to thank René Krikhaar for the cooperation on the subject of this report.
In fact, this report is only an extremely simplified case study of things which the second author and René are already
putting into practice in real-life systems. The author would like to thank Peter van den Hamer for the discussions
and for his feedback on an earlier version of this report. Special thanks go to Henk Obbink, project leader of the
‘design engineering methods’ project, which turned out to be a fruitful place for discussions and for the exchange
of ideas.
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THE INITIAL SOFTWARE ARCHITECTURE

2 The initial software architecture

In the beginning of the system’s conception there is a software architect whose task it is to define the system’s soft-
ware architecture. The software architect will listen to all the marketeers, customer’s representatives and hardware
specialists. Of course there is a project document listing goals like flexibility, modularity, future-proofness as well
as a list of performance requirements and cost constraints.

Performance requirements and cost constraints strongly influence the number and types of microprocessors, the
programming language (assembly, C-like, C, C++, SDL, and so on) and the kind of operating system or RTK that
is affordable. But the modularity goals are covered by a software architecture diagram. For a real-life 512 Kbyte
system, say, this diagram may in the initial phase take the form of an A4-sized drawing with some 40 to 70 named
boxes, organised in layers.

Fig. 1. The software architecture is presented.

In this paper we shall only follow a mock-up development process of a toy architecture, so instead of 40 boxes
(software components) we look at a diagram of just 4. But we shall be explicit about the ‘uses’ relations between
these software components.

So let us assume that after some time the software architect presents the key software components and a diagram of
the designed component-level ‘use’ relation. He presents this to the designers and programmer(s) who are going to
further detail this design and who will eventually make the C programs. Let us assume that amongst other things,
the architect says:

“Dear friends, Figure 2 is our software architecture: there are four software components, which I will
explain now. RSRC MNGR is the Resource Manager, which will contain the main procedures of all
our processes and these will be scheduled by the HW and SW of our platform. SYS FUNC contains
the System Functions, and this is the heart of our system. This will provide the data transformations
our customers are waiting for. HW ABSTR is the minimal Abstraction of the special Hardware of our
platform. ERR DRVR is the Error Driver which provides for error printing and contains a driver for the
special error LED. The lines in Figure 2, directed from top to bottom, show the ‘use’ relations foreseen.
So for example from SYS FUNC you are allowed to call the functions of HW ABSTR.”
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THE INITIAL SOFTWARE ARCHITECTURE

Although here Figure 2 has been made by hand, it could also have been made with TEDDY, a browser which pro-
poses an initial diagram layout after reading the file with the essential information of the ‘uses’ relation, and which
allows the user (the architect) to modify the layout interactively.

RSRC
MNGR

SYS
FUNC

HW
ABSTR

ERR
DRVR

Fig. 2. Architected component-level ‘use’ relation.

Of course, instead of manual drawing or using TEDDY, other visualisation software could be used. The only re-
quirement is that a diagram and an explicit binary relation are easily kept consistent. The best way of keeping two
things consistent with each other is to generate one of them automatically from the other. It is important to note
that the essential information of Figure 2 is an intended ‘use’ relations on components, which is as follows:

RSRC_MNGR SYS_FUNC
SYS_FUNC HW_ABSTR
SYS_FUNC ERR_DRVR

In many real projects, the processor is more powerful than the processor of the previous generation of products
and there is two or four times as much ROM available, so most often the team is optimistic that that the software
architecture is feasible. Also in our case, the programmers agree with the software architecture and happily they
start filling in the details.
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DETAILS OF THE REAL SYSTEM

3 Details of the real system

After some work, the programmers will come up with C code and for example the error driver ERR DRV could
consist of two functions, err pr() which calls led 33() and led 33() which calls err pr().

err_pr() { led_33(); }
led_33() { err_pr(); }

Since in this paper we are only following a mock-up development of a toy architecture, we shall not discuss the
complex algorithmics of real-life software, nor the specification techniques necessary for that, but we only show
some extremely simple C functions, calling each other, but with no meaningful functionality whatsoever. Note also
that we do not stick to the usual layout conventions, in order to save space. After all these disclaimers, we give the
C code of all software components.

/****************************************************
* Component: ERR_DRVR *
****************************************************/

err_pr() { led_33(); }
led_33() { err_pr(); }

/****************************************************
* Component: HW_ABSTR *
****************************************************/

#include "ERR_DRVR.h"

power() { err_pr(); i2c(); }
i2c() { }

/****************************************************
* Component: RSRC_MNGR *
****************************************************/

#include "SYS_FUNC.h"
#include "HW_ABSTR.h"
#include "ERR_DRVR.h"

init() { e(); led_33(); }
reboot() { power(); init(); power(); }
step() { while (1+1==2) a(); }

/****************************************************
* Component: SYS_FUNC *
****************************************************/

#include "HW_ABSTR.h"
#include "ERR_DRVR.h"

a() { b(); c(); }
b() { power(); }
c() { d(); g(); }
d() { i2c(); }
e() { f(); }
f() { g(); err_pr(); led_33(); }
g() { h(); }
h() { err_pr(); }
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EXTRACTING RELATIONS FROM THE REAL SYSTEM

4 Extracting relations from the real system

For a 512 Kbyte system, it may take a year from conception to completed code, and then the code is not as easily
surveyed as the one page of C code of our toy example. After this year, there is no more focus on architecture,
because everybody is busy with testing, debugging and adding shortcuts and tricks for meeting the performance
requirements. New people joined the project and maybe the architect has already left.

If this were a real-life project and it would continue for yet another year, the project could find itself in a reverse en-
gineering phase. There is even a danger that the project finds itself in the middle of a spaghetti: nobody understands
all of the code and nobody understands the system’s modular structure and the associated ‘uses’ relations.

But stop, we shouldn’t wait until the spaghetti-phase. As soon as the initial code is available, it can be checked
against the architecture diagram. Of course in a real-life project, there could be several levels of hierarchy, and
there may be even more kinds of ‘uses’ relations than just the ‘calls’ relation on C functions, but the essential idea
remains the same. It is possible to extract the real ‘uses’ relation, as opposed to the architected ‘uses’ relation from
the code. All the information is on-line available; the only problem is that there is too much information. The
obvious solution is to use automated support for extracting the essential information from the code. Again this
information can be cast into the form of tables. There are technical options to perform this extraction, for example
QAC, although of course they depend on the programming language in use.

For the present example the the essential ‘use’ information is easily extracted and stored in a file called uses.

err_pr led_33
led_33 err_pr
power err_pr
power i2c
init e
init led_33
reboot power
reboot init
reboot power
step a
a b
a c
b power
c d
c g
d i2c
e f
f g
f err_pr
f led_33
g h
h err_pr

But it is not obvious that this satisfies the initial architecture of Figure 2. As a first step, it is already helpful to
visualise this ‘uses’ relation, see Figure 3. This is made with a structure browser (TEDDY). Of course this browser
is not only useful for analysing a design once finished, it could in principle also be used for drawing diagrams of
relations which do not exist yet, but which will be implemented next. Note the thick line between err_pr and
led_33 which reveals the mutual usage (a thick line is a ‘uses’ arrow going upward, and since there is a cycle,
there must be at least one thick arrow).
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EXTRACTING RELATIONS FROM THE REAL SYSTEM

reboot
step

power

init

a

pr
err

i2c

33
led

e

b c

d

f

g

h

Fig. 3. The use relation at the C function level.

In order to apply a suitable process of abstraction of the ‘use’ relation we need the ‘part-of’ relation too. In this
case, the ‘part of’ relation (which tells for each C function its component) is as given by the TEDDY diagram of
Figure 4. This diagram shows the functions as boxes with rounded corners and the components (files) as rectangular
boxes. Again, the essential information behind the ‘part of’ relation is just a binary relation; it can be stored as a
file containing pairs of identifiers.

Page 8 of 19



EXTRACTING RELATIONS FROM THE REAL SYSTEM

DRVR
ERR

ABSTR
HW

MNGR
RSRC

FUNC
SYS

pr
err

33
led

power

i2c

init

reboot

step

a

b

c

d

e

f

g

h

Fig. 4. ‘Part of’ relation between functions and components.

In particular,err pr is part ofERR DRVR.led 33 is part of ERR DRVR.power andi2c are part of HW ABSTR.
The function init is part of RSRC MNGR and so are reboot and step. Finally, a to h are part of SYS FUNC.

Now we have everything needed in order to compare Figure 2 and Figure 3. This is done by transforming the use
relation from the C function level to a relation amongst software components. We call this transformation lifting:
we move the relation from the level of the small objects (the C functions) to the level of the big objects (the software
components). The key to this lifting is of course the ‘part-of’ relation of Figure 4.

In detail, the process of lifting goes as follows: from file uses, note that err pr uses led 33. From the ‘part of’
relation (Figure 4), err pr is in ERR DRVR and led 33 is in ERR DRVR so ERR DRVR uses itself, which is not
so interesting. Converselyled 33 uses err pr, which adds no new information. Next, power uses err pr and
since power is in HW ABSTR and err pr is in ERR DRVRwe may conclude that HW ABSTR uses ERR DRVR. In
the same way we find that RSRC MNGR uses SYS FUNC. When carrying along, the following relation is obtained;
Assume that it is stored in a file called Uses.

HW_ABSTR ERR_DRVR
RSRC_MNGR SYS_FUNC
RSRC_MNGR HW_ABSTR
RSRC_MNGR ERR_DRVR
SYS_FUNC HW_ABSTR
SYS_FUNC ERR_DRVR

This transformation of lifting, that is transforming a ‘uses’ relation to get a relation at a higher level, is a key concept
for software architecture verification. It combines abstraction and advanced cross-referencing. The outcome is
visualised in Figure 5.
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EXTRACTING RELATIONS FROM THE REAL SYSTEM

MNGR
RSRC

FUNC
SYS

ABSTR
HW

DRVR
ERR

Fig. 5. The C-level use relation viewed at the component level.

There is also another route to arrive at the same information, namely by looking at the #include lines in the
C code. When using a UNIX system, it suffices to type grep include *.c and after some trvial post-
processing we have a component-level ‘uses’ relation. Fortunately it is the same relation; if the grep ed relation
would have had additional lines, this would indicate that there are superfluous #include lines (which happens
not to be the case). The converse cannot happen at all, because if each component is compiled separately, the com-
piler will check that all C functions used are listed in one of the included header (.h) files; here we assume that
the header files themselves are correct, in the sense that they list all headers of functions of their components, and
nothing else.

???

Fig. 6. The architect discovers the real system.

Now it is time for a comparison. The team calls the architect and visualises the contents of the Uses relation, as
in Figure 5. But look, Figures 2 and 5 are not the same. What has happened?

Page 10 of 19



DISCUSSION

5 Discussion

Of course everybodywants to know what went wrong and why Figures 2 and 5 are not the same. Maybe the architect
will say that the programmers have turned his clean architecture into a mess and maybe the programmers will say
that the architect has not enough knowledge about real software.

init() { e(); led_33(); }
reboot() { power(); init(); power(); }
step() { while (1+1==2) a(); }

Fig. 7. The programmer explains why RSRC MNGR must use ERR DRVR.

But then the team realises that maybe there are no stupid mistakes at all and that maybe the problem is more subtle.
One of the programmers explains an important observation first:

The resource manager component RSRC MNGR has three C functions, init, reboot, step, each
of which can be viewed as an independent main program. Of these, init and reboot are tied to
the hardware reset interrupt and the software interrupt (trap), whereas step is supposed to be called
in an eternal loop. The architected component-level ‘use’ relation of Figure 2 has been made with the
step function in mind. But everybody knows that for initialisation and rebooting one has to do some
low level tricks every now and then. For example reboot has to call power and indeed, this causes
a direct ‘uses’ line from RSRC MNGR to HW ABSTR. This explains why Figure 5 has more lines than
Figure 2. And if you look at it this way, we have in fact respected the original architecture.

This seems a plausible explanation, but how can one be sure if this is really true? This demands a further analysis.
There is a technique for analysing the code, namely by means of lifting. If one could (for the sake of the analysis)
remove all ‘uses’ lines and all C functions not relevant to step, then one gets a thinned version of Figure 3. And
then lifting could yield a thinned version of Figure 5.

It is clear that for small examples one can perform the lifting transformation manually, but for large systems auto-
mated support could be of great help. Let us assume that we have a piece of software which can do lifting of ‘uses’
relations and a few more related transformations. Let us call this piece of software a relational calculator. One of
the main purposes of the present report is to explain the idea of a relational calculator as a technical option; we will
not discuss any make-or-buy decisions, but we just assume we that we have it (also without the calculator many of
its calculations are easily done by shellscripts or other ad-hoc programs).
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DISCUSSION

A possible user-interface of the calculator is shown in Figure 8. The calculator works with binary relations, and just
like a normal pocket-calculator it is important to show the outcomes of the calculations on some kind of display.
Maybe one wants to choose between two kinds of display: a text-file format and a graphical format. The text-file
display is trivial and the graphical display is already existing: use TEDDY or similar visualisation software.

lift_to_module_level

binary operations:relations:

usesView

UsesView

partofView

usestransView
step_usestransView

UsesdesignView

indirect_reachable

reachable_from_element

restrict_domain_and_range

compose

invert

Uses_View

go_to_graphical

go_to_text_file

Fig. 8. The relational calculator.

The lower part of the user-interface consists of two halves. The left-hand side part allows for entering file-names for
the storage and retrieval of relations. For example Usesdesignview is the name of Figure 2, partofview is
the name of Figure 4, usesview is Figure 3, Usesview is Figure 5, and the remaining names belong to relation
files which will arise soon if we continue the development of the toy architecture.

The right-hand side part allows has a number of buttons, one for each calculation which can be performed. For
example in order to lift Usesdesignview of Figure 2 with the partofView of Figure 4, these two files must
be selected and then the ‘lift to module level’ button must be pressed.
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CALCULATING A REVISED ‘USES’ RELATION

6 Calculating a revised ‘Uses’ relation

Next the real analysis is performed, which begins with the removal of all ‘uses’ lines and all C functions not relevant
to step. The first question is: ‘which functions are used by step?’ Somewhat more precise one wants to have
all functions used by step as well as all functions used by such functions and so on. Therefore, one proceeds as
follows: first calculate the transitive closure of the uses relation. This is exactly what the second button, labeled
‘indirectreachable’ is meant for. The outcome is visualised in Figure 9.

reboot
step

power

init

a

pr
err

i2c

33
led

e

b c

d

f

g

h

Fig. 9. Transitive closure of the ‘use’ relation on functions.

Next, this relation is restricted to those ‘uses’ pairs which begin withstep, by means of the button ‘reachable from element’.
The outcome is visualised in Figure 10.
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CALCULATING A REVISED ‘USES’ RELATION

reboot
step

power

init

a

pr
err

i2c

33
led

e

b c

d

f

g

h

Fig. 10. Functions transitively connected to step function.

In fact this relation is not really interesting. The interesting things is the set of functions occurring in it. Let us
assume that the calculator can work with sets instead of relations too (the buttons for that are not shown in Figure 8).
Then the main result is the set:

a
b
c
d
err_pr
g
h
i2c
led_33
power
step

which means that e, f, reboot and init have been thrown out. This set must be used to restrict the ‘uses’
relation of Figure 3. Both the domain and the range of the latter ‘uses’ relation must be restricted. The button ‘re-
strict domain and range’ makes the calculator perform this task. After that ‘lift to module level’ must be applied
to that result, which gives the main outcome of the analysis (Figure 11).
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CALCULATING A REVISED ‘USES’ RELATION

In this particular example, the same outcome would have been obtained by just removing init and reboot
without removal of the functions which are not transitively connected to step, but in general, removal of such
functions makes a difference, and therefore the latter part of the analysis may not be skipped. So now there is a
main outcome, visualised in Figure 11.

MNGR
RSRC

FUNC
SYS

ABSTR
HW

DRVR
ERR

Fig. 11. Component level use relation with surpressed init and reboot calls.

Now it is clear that the programmer’s explanation is partially true, but not all of it. Indeed, most of the differences
between Figures 2 and 5 are caused by init and reboot. But the ‘uses’ line from HW ABSTR to ERR DRVR
is not explained that way. So the team must discuss this further. The team must arriving at one of two possible
conclusions: either HW ABSTRmay not use ERR DRVR and thus power should not invokeerr pr and should be
modified; or it is really necessary that power invokes err pr and thus the revised architecture of Figure 11 must
be declared to be the official architecture. In this story, the latter alternative is chosen (see [4] for a nice dicussion
of typical causes of such differences). By now, the team arrives at a common understanding of the architecture.
The main lesson is that using some simple concepts about relations and a modest amount of automated support,
several views on the system can be developed and compared.


